Almost disjoint families and Banach spaces

Grzegorz Plebanek

University of Wrocław

36th Summer Topology Conference, July 2022

Dedicated to Jaś, Kamil Duszenko (1986 – 23/07/2014)

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆三 ▶ ◆○ ♥

• Let $\mathscr{A} \subseteq \mathscr{P}(\omega)$ be an almost disjoint family, that is $A \cap B$ is finite for different $A, B \in \mathscr{A}$.

• Let $\mathscr{A} \subseteq \mathscr{P}(\omega)$ be an almost disjoint family, that is $A \cap B$ is finite for different $A, B \in \mathscr{A}$.

2 We assume that \mathscr{A} is infinite and consists of infinite sets.

- Let $\mathscr{A} \subseteq \mathscr{P}(\omega)$ be an almost disjoint family, that is $A \cap B$ is finite for different $A, B \in \mathscr{A}$.
- **2** We assume that \mathscr{A} is infinite and consists of infinite sets.
- Write Ψ_A for ω∪A and define a topology on Ψ_A by declaring that points in ω are isolated while basic neighbourhoods of A ∈ Ψ_A are of the form {A}∪A \ I, with I ⊆ ω finite.

・ロト ・ 回 ト ・ ヨ ト ・ ヨ ・ つへの

- Let $\mathscr{A} \subseteq \mathscr{P}(\omega)$ be an almost disjoint family, that is $A \cap B$ is finite for different $A, B \in \mathscr{A}$.
- **2** We assume that \mathscr{A} is infinite and consists of infinite sets.
- Write Ψ_𝖉 for ω∪𝒴 and define a topology on Ψ_𝒴 by declaring that points in ω are isolated while basic neighbourhoods of A ∈ Ψ_𝒴 are of the form {A}∪A \ I, with I ⊆ ω finite.

イロト イロト イヨト イヨト ヨー わへの

9 Write $K_{\mathscr{A}}$ for $\Psi_{\mathscr{A}} \cup \{\infty\}$, the one-point compactification.

- Let $\mathscr{A} \subseteq \mathscr{P}(\omega)$ be an almost disjoint family, that is $A \cap B$ is finite for different $A, B \in \mathscr{A}$.
- **2** We assume that \mathscr{A} is infinite and consists of infinite sets.
- Write Ψ_𝖉 for ω∪𝒴 and define a topology on Ψ_𝒴 by declaring that points in ω are isolated while basic neighbourhoods of A ∈ Ψ_𝒴 are of the form {A}∪A \ I, with I ⊆ ω finite.

イロト イロト イヨト イヨト ヨー わへの

9 Write $K_{\mathscr{A}}$ for $\Psi_{\mathscr{A}} \cup \{\infty\}$, the one-point compactification.

- Let $\mathscr{A} \subseteq \mathscr{P}(\omega)$ be an almost disjoint family, that is $A \cap B$ is finite for different $A, B \in \mathscr{A}$.
- **2** We assume that \mathscr{A} is infinite and consists of infinite sets.
- Write Ψ_A for ω∪A and define a topology on Ψ_A by declaring that points in ω are isolated while basic neighbourhoods of A ∈ Ψ_A are of the form {A}∪A \ I, with I ⊆ ω finite.

イロト イロト イヨト イヨト ヨー わへの

9 Write $K_{\mathscr{A}}$ for $\Psi_{\mathscr{A}} \cup \{\infty\}$, the one-point compactification.

Remark

- Let $\mathscr{A} \subseteq \mathscr{P}(\omega)$ be an almost disjoint family, that is $A \cap B$ is finite for different $A, B \in \mathscr{A}$.
- **2** We assume that \mathscr{A} is infinite and consists of infinite sets.
- Write Ψ_A for ω∪A and define a topology on Ψ_A by declaring that points in ω are isolated while basic neighbourhoods of A ∈ Ψ_A are of the form {A}∪A \ I, with I ⊆ ω finite.
- **9** Write $K_{\mathscr{A}}$ for $\Psi_{\mathscr{A}} \cup \{\infty\}$, the one-point compactification.

Remark

 $K_{\mathscr{A}}$ may be seen as the Stone space of all ultrafilters on the algebra generated by \mathscr{A} and finite sets.

- Let $\mathscr{A} \subseteq \mathscr{P}(\omega)$ be an almost disjoint family, that is $A \cap B$ is finite for different $A, B \in \mathscr{A}$.
- **2** We assume that \mathscr{A} is infinite and consists of infinite sets.
- Write Ψ_A for ω∪A and define a topology on Ψ_A by declaring that points in ω are isolated while basic neighbourhoods of A ∈ Ψ_A are of the form {A}∪A \ I, with I ⊆ ω finite.
- Write $K_{\mathscr{A}}$ for $\Psi_{\mathscr{A}} \cup \{\infty\}$, the one-point compactification.

Remark

 $K_{\mathscr{A}}$ may be seen as the Stone space of all ultrafilters on the algebra generated by \mathscr{A} and finite sets.

There is a lot of research done on the interplay between combinatorial properties of \mathscr{A} and topology of $\Psi_{\mathscr{A}}$ (or $K_{\mathscr{A}}$), see **Hrušák** [2014].

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆三 ▶ ◆○ ♥

Given a compact space K, C(K) is the Banach space of real-valued continuous functions on K (with the usual supremum norm).

Given a compact space K, C(K) is the Banach space of real-valued continuous functions on K (with the usual supremum norm).

The subject of this talk

an almost disjoint family \mathscr{A}

versus

the isomorphic structure of the Banach space $C(K_{\mathscr{A}})$

イロン イロン イヨン イヨン 三日

Given a compact space K, C(K) is the Banach space of real-valued continuous functions on K (with the usual supremum norm).

The subject of this talk

an almost disjoint family \mathscr{A}

versus

the isomorphic structure of the Banach space $C(K_{\mathscr{A}})$

• $C(K_{\mathscr{A}})$ may be seen as the subspace of ℓ_{∞} spanned by χ_B , $B \in \mathscr{A} \cup \operatorname{fin} \cup \omega$.

イロト イヨト イヨト イヨト ヨー わらの

Given a compact space K, C(K) is the Banach space of real-valued continuous functions on K (with the usual supremum norm).

The subject of this talk

an almost disjoint family \mathscr{A}

versus

the isomorphic structure of the Banach space $C(K_{\mathscr{A}})$

• $C(K_{\mathscr{A}})$ may be seen as the subspace of ℓ_{∞} spanned by χ_B , $B \in \mathscr{A} \cup \operatorname{fin} \cup \omega$.

イロト イヨト イヨト イヨト ヨー わらの

 C(K_𝖉) spaces were considered already by Johnson & Lindenstrauss [1974].

Given a compact space K, C(K) is the Banach space of real-valued continuous functions on K (with the usual supremum norm).

The subject of this talk

an almost disjoint family \mathscr{A}

versus

the isomorphic structure of the Banach space $C(K_{\mathscr{A}})$

- $C(K_{\mathscr{A}})$ may be seen as the subspace of ℓ_{∞} spanned by χ_B , $B \in \mathscr{A} \cup \operatorname{fin} \cup \omega$.
- C(K_𝖉) spaces were considered already by Johnson & Lindenstrauss [1974].
- They also introduced another type of spaces defined by A denoted JL₂(A), see e.g. Avilés, Martínez Cervantes and Rodríguez [2018].

Given a compact space K, C(K) is the Banach space of real-valued continuous functions on K (with the usual supremum norm).

The subject of this talk

an almost disjoint family \mathscr{A}

versus

the isomorphic structure of the Banach space $C(K_{\mathscr{A}})$

- $C(K_{\mathscr{A}})$ may be seen as the subspace of ℓ_{∞} spanned by χ_B , $B \in \mathscr{A} \cup \operatorname{fin} \cup \omega$.
- C(K_𝖉) spaces were considered already by Johnson & Lindenstrauss [1974].
- They also introduced another type of spaces defined by A denoted JL₂(A), see e.g. Avilés, Martínez Cervantes and Rodríguez [2018].
- See also Magidor & P. [2017] for applications of almost disjoint families on ∞₂ to Banach space theory.

▲□▶▲□▶▲≣▶▲≣▶ ≣ のQ@

If C(K) and C(L) are **isometric** then K and L are homeomorphic (Banach-Stone).

If C(K) and C(L) are **isometric** then K and L are homeomorphic (Banach-Stone).

イロト イヨト イヨト イヨト ヨー わらの

However, $C(2^{\omega})$ is **isomorphic** to C[0,1], $C(2^{\omega}) \simeq C[0,1]$ (by Miljutin's theorem).

If C(K) and C(L) are **isometric** then K and L are homeomorphic (Banach-Stone).

イロト イヨト イヨト イヨト ヨー わらの

However, $C(2^{\omega})$ is **isomorphic** to C[0,1], $C(2^{\omega}) \simeq C[0,1]$ (by Miljutin's theorem).

Natural question

For which AD families \mathscr{A} and $\mathscr{A}' C(K_{\mathscr{A}}) \simeq C(K_{\mathscr{A}'})$?

If C(K) and C(L) are **isometric** then K and L are homeomorphic (Banach-Stone).

However, $C(2^{\omega})$ is **isomorphic** to C[0,1], $C(2^{\omega}) \simeq C[0,1]$ (by Miljutin's theorem).

Natural question

For which AD families \mathscr{A} and $\mathscr{A}' C(K_{\mathscr{A}}) \simeq C(K_{\mathscr{A}'})$?

Marciszewski & Pol [2009]

If \mathscr{A} and \mathscr{A}' are AD families of branches of $2^{<\omega}$ and $\omega^{<\omega}$, respectively, then $C(K_{\mathscr{A}}) \not\simeq C(K_{\mathscr{A}'})$.

If C(K) and C(L) are **isometric** then K and L are homeomorphic (Banach-Stone).

However, $C(2^{\omega})$ is **isomorphic** to C[0,1], $C(2^{\omega}) \simeq C[0,1]$ (by Miljutin's theorem).

Natural question

For which AD families \mathscr{A} and $\mathscr{A}' C(K_{\mathscr{A}}) \simeq C(K_{\mathscr{A}'})$?

Marciszewski & Pol [2009]

If \mathscr{A} and \mathscr{A}' are AD families of branches of $2^{<\omega}$ and $\omega^{<\omega}$, respectively, then $C(K_{\mathscr{A}}) \not\simeq C(K_{\mathscr{A}'})$. There are $2^{\mathfrak{c}}$ pairwise nonisomorphic Banach spaces of the form $C(K_{\mathscr{A}})$, $|\mathscr{A}| = \mathfrak{c}$.

If C(K) and C(L) are **isometric** then K and L are homeomorphic (Banach-Stone).

However, $C(2^{\omega})$ is **isomorphic** to C[0,1], $C(2^{\omega}) \simeq C[0,1]$ (by Miljutin's theorem).

Natural question

For which AD families \mathscr{A} and $\mathscr{A}' C(K_{\mathscr{A}}) \simeq C(K_{\mathscr{A}'})$?

Marciszewski & Pol [2009]

If \mathscr{A} and \mathscr{A}' are AD families of branches of $2^{<\omega}$ and $\omega^{<\omega}$, respectively, then $C(K_{\mathscr{A}}) \not\simeq C(K_{\mathscr{A}'})$. There are $2^{\mathfrak{c}}$ pairwise nonisomorphic Banach spaces of the form $C(K_{\mathscr{A}})$, $|\mathscr{A}| = \mathfrak{c}$.

For the second assertion: Every isomorphism $T: C(K_{\mathscr{A}}) \to C(K_{\mathscr{A}'})$ is determined by a sequence of measures μ_n on $K_{\mathscr{A}}$, where $\int g \, d\mu_n = Tg(n)$.

▲□▶▲□▶▲≣▶▲≣▶ ■ のQ@

Given a separable compactum K, write ri(K) = ω₁ if
 {g|D:g∈C(K)} is a Borel subset of ℝ^D for no countable
 dense D ⊆ K. Otherwise, ri(K) is the least α < ω₁ such that
 {g|D:g∈C(K)} is in Σ⁰_{1+α} ∪ Π⁰_{1+α}.

Given a separable compactum K, write ri(K) = ω₁ if
 {g|D:g∈C(K)} is a Borel subset of ℝ^D for no countable
 dense D⊆K. Otherwise, ri(K) is the least α < ω₁ such that
 {g|D:g∈C(K)} is in Σ⁰_{1+α} ∪ Π⁰_{1+α}.

3 If $C(K) \simeq C(L)$ then $ri(K) \le ri(L) + 1$.

Given a separable compactum K, write ri(K) = ω₁ if
 {g|D:g∈C(K)} is a Borel subset of ℝ^D for no countable
 dense D⊆K. Otherwise, ri(K) is the least α < ω₁ such that
 {g|D:g∈C(K)} is in Σ⁰_{1+α} ∪ Π⁰_{1+α}.

3 If
$$C(K) \simeq C(L)$$
 then $\operatorname{ri}(K) \leq \operatorname{ri}(L) + 1$.

 Given Z ⊆ 2^ω, write 𝒜(Z) for the AD family of branches B(x) = {x|n: n ∈ ω}, where x ∈ Z.

- Given a separable compactum K, write ri(K) = ω₁ if
 {g|D:g∈C(K)} is a Borel subset of ℝ^D for no countable
 dense D⊆K. Otherwise, ri(K) is the least α < ω₁ such that
 {g|D:g∈C(K)} is in Σ⁰_{1+α} ∪ Π⁰_{1+α}.
- 3 If $C(K) \simeq C(L)$ then $ri(K) \le ri(L) + 1$.
- Given Z ⊆ 2^ω, write 𝒜(Z) for the AD family of branches B(x) = {x|n : n ∈ ω}, where x ∈ Z.
- The Borel complexity of Z is reflected by ri(K_{A(Z)}) so there are AD families A(Z_ξ) for ξ < ω₁ such that C(K_{A(Z_ξ)}) are pairwise nonisomorphic.

Only one $C(K_{\mathscr{A}})$ small space

▲□▶▲圖▶▲≣▶▲≣▶ = 善 のへで

See Cabello Sanchez, Castillo, Marciszewski, Salguero-Alarcón and P. [2020] for further applications of ri and for the following.

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへの

See Cabello Sanchez, Castillo, Marciszewski, Salguero-Alarcón and P. [2020] for further applications of ri and for the following.

Theorem.

Under MA(ω_1), $C(K_{\mathscr{A}}) \simeq C(K_{\mathscr{A}'})$ whenever AD families $\mathscr{A}, \mathscr{A}'$ satisfy $|\mathscr{A}| = |\mathscr{A}'| = \omega_1$.

Complemented subspaces
A subspace Y of a Banach space X is complemented if there is a closed subspace $Z \subseteq X$ such that $X = Y \oplus Z$.

A subspace Y of a Banach space X is complemented if there is a closed subspace $Z \subseteq X$ such that $X = Y \oplus Z$. Equivalently, there is a projection $P : X \to X$ (a bounded linear operator such that $P \circ P = P$) mapping X onto Y.

<ロ> <回> <回> < 回> < 回> < 回> < 回> = 三

A subspace Y of a Banach space X is complemented if there is a closed subspace $Z \subseteq X$ such that $X = Y \oplus Z$. Equivalently, there is a projection $P: X \to X$ (a bounded linear operator such that $P \circ P = P$) mapping X onto Y. Recall that c_0 is the classical Banach space of sequences in \mathbb{R}^{ω} converging to 0 (with the supremum norm).

A subspace Y of a Banach space X is complemented if there is a closed subspace $Z \subseteq X$ such that $X = Y \oplus Z$. Equivalently, there is a projection $P : X \to X$ (a bounded linear operator such that $P \circ P = P$) mapping X onto Y. Recall that c_0 is the classical Banach space of sequences in \mathbb{R}^{ω} converging to 0 (with the supremum norm). The space c_0 is *separably injective*, that is any copy of c_0 is complemented in any separable superspace.

A subspace Y of a Banach space X is complemented if there is a closed subspace $Z \subseteq X$ such that $X = Y \oplus Z$. Equivalently, there is a projection $P: X \to X$ (a bounded linear operator such that $P \circ P = P$) mapping X onto Y. Recall that c_0 is the classical Banach space of sequences in \mathbb{R}^{ω} converging to 0 (with the supremum norm). The space c_0 is separably injective, that is any copy of c_0 is complemented in any separable superspace.

Koszmider [2005] under MA, Koszmider & Laustsen [2021]

There is an uncountable AD family \mathscr{A} such that

- Every operator T : C(K_𝖉) → C(K_ℤ) is of the form T = c · I + S, where the range of S is contained in a subspace isomorphic to c₀;
- C(K_A) ≃ c₀ ⊕ C(K_A) is essentially the unique decomposition into a direct sum of infinitely dimensional summands.

Twisted sums

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

An exact sequence of Banach spaces is a diagram

$$0 \longrightarrow A \xrightarrow{j} X \xrightarrow{\rho} B \longrightarrow 0$$

formed by Banach spaces and linear continuous operators in which the kernel of each arrow coincides with the image of the preceding one. Such a sequence, or the middle space X alone, is usually called a *twisted sum* of A and B.

An exact sequence of Banach spaces is a diagram

$$0 \longrightarrow A \xrightarrow{j} X \xrightarrow{\rho} B \longrightarrow 0$$

formed by Banach spaces and linear continuous operators in which the kernel of each arrow coincides with the image of the preceding one. Such a sequence, or the middle space X alone, is usually called a *twisted sum* of A and B.

Given A, B, we can always take $X = A \oplus B$ to form a trivial twisted sum of A, B.

An exact sequence of Banach spaces is a diagram

$$0 \longrightarrow A \xrightarrow{j} X \xrightarrow{\rho} B \longrightarrow 0$$

formed by Banach spaces and linear continuous operators in which the kernel of each arrow coincides with the image of the preceding one. Such a sequence, or the middle space X alone, is usually called a *twisted sum* of A and B.

Given A, B, we can always take $X = A \oplus B$ to form a trivial twisted sum of A, B.

Definition.

The exact sequence above is nontrivial if j[A] is not complemented in X.

CCKY Problem

Let K be a nonmetrizable compact space. Does c_0 admit a nontrivial twisted sum with C(K)?

Let K be a nonmetrizable compact space. Does c_0 admit a nontrivial twisted sum with C(K)? Can we find a Banach space X and embed c_0 onto an uncomplemented subspace Y of X so that $X/Y \simeq C(K)$?

Let K be a nonmetrizable compact space. Does c_0 admit a nontrivial twisted sum with C(K)? Can we find a Banach space X and embed c_0 onto an uncomplemented subspace Y of X so that $X/Y \simeq C(K)$?

Let K be a nonmetrizable compact space. Does c_0 admit a nontrivial twisted sum with C(K)? Can we find a Banach space X and embed c_0 onto an uncomplemented subspace Y of X so that $X/Y \simeq C(K)$?

Some partial solutions

• **Sobczyk:** 'No' if K is metrizable.

Let K be a nonmetrizable compact space. Does c_0 admit a nontrivial twisted sum with C(K)? Can we find a Banach space X and embed c_0 onto an uncomplemented subspace Y of X so that $X/Y \simeq C(K)$?

- **Sobczyk:** 'No' if K is metrizable.
- Cabello Sánchez & Castillo: 'Yes', for $K = \beta \omega$.

Let K be a nonmetrizable compact space. Does c_0 admit a nontrivial twisted sum with C(K)? Can we find a Banach space X and embed c_0 onto an uncomplemented subspace Y of X so that $X/Y \simeq C(K)$?

- **Sobczyk:** 'No' if *K* is metrizable.
- Cabello Sánchez & Castillo: 'Yes', for $K = \beta \omega$.
- **Castillo:** 'Yes' under CH, for K nonmetrizable scattered of finite height.

Let K be a nonmetrizable compact space. Does c_0 admit a nontrivial twisted sum with C(K)? Can we find a Banach space X and embed c_0 onto an uncomplemented subspace Y of X so that $X/Y \simeq C(K)$?

- **Sobczyk:** 'No' if *K* is metrizable.
- Cabello Sánchez & Castillo: 'Yes', for $K = \beta \omega$.
- **Castillo:** 'Yes' under CH, for K nonmetrizable scattered of finite height.
- Correa & Tausk: Yes, if K contains a copy of 2^c.

Two answers to CCKY

▲□▶▲圖▶▲≣▶▲≣▶ ≣ めぬぐ

CCKY asks whether there are nontrivial solutions to $0 \rightarrow c_0 \rightarrow ? \rightarrow C(K) \rightarrow 0.$

・ロト・日本・ヨト・ヨー シック

CCKY asks whether there are nontrivial solutions to $0 \rightarrow c_0 \rightarrow ? \rightarrow C(K) \rightarrow 0.$

• Marciszewski & P. [2018]: Under MA(ω_1), no for $K = 2^{\omega_1}$ and for $K = K_{\mathscr{A}}$, where $|\mathscr{A}| = \omega_1$. (Consistently, Problem CCKY has a negative solution).

CCKY asks whether there are nontrivial solutions to $0 \rightarrow c_0 \rightarrow ? \rightarrow C(K) \rightarrow 0.$

- Marciszewski & P. [2018]: Under MA(ω₁), no for K = 2^{ω₁} and for K = K_𝔄, where |𝔄| = ω₁. (Consistently, Problem CCKY has a negative solution).
- Avilés, Marciszewski & P. [2019]: Under CH, 'yes' for every nonmetrizable compactum K. (Consistently, Problem CCKY has a positive solution).

▲□▶▲圖▶▲≣▶▲≣▶ ≣ の�?

- Form a compact space of the form $K \cup \omega$.
- Then $0 \rightarrow c_0 \rightarrow C(K \cup \omega) \rightarrow C(K) \rightarrow 0$.
- Such an exact sequence is nontrivial (c_0 is not complemented inside $C(K \cup \omega)$ iff there is no bounded extension operator $C(K) \rightarrow C(K \cup \omega)$ (in particular, there is no retraction $K \cup \omega \rightarrow L$).

イロト イヨト イヨト イヨト ヨー わらの

- Form a compact space of the form $K \cup \omega$.
- Then $0 \rightarrow c_0 \rightarrow C(K \cup \omega) \rightarrow C(K) \rightarrow 0$.
- Such an exact sequence is nontrivial (c_0 is not complemented inside $C(K \cup \omega)$ iff there is no bounded extension operator $C(K) \rightarrow C(K \cup \omega)$ (in particular, there is no retraction $K \cup \omega \rightarrow L$).

- Form a compact space of the form $K \cup \omega$.
- Then $0 \rightarrow c_0 \rightarrow C(K \cup \omega) \rightarrow C(K) \rightarrow 0$.
- Such an exact sequence is nontrivial (c_0 is not complemented inside $C(K \cup \omega)$ iff there is no bounded extension operator $C(K) \rightarrow C(K \cup \omega)$ (in particular, there is no retraction $K \cup \omega \rightarrow L$).

- Form a compact space of the form $K \cup \omega$.
- Then $0 \rightarrow c_0 \rightarrow C(K \cup \omega) \rightarrow C(K) \rightarrow 0$.
- Such an exact sequence is nontrivial (c₀ is not complemented inside C(K ∪ ω) iff there is no bounded extension operator C(K) → C(K ∪ ω) (in particular, there is no retraction K ∪ ω → L).

- Form a compact space of the form $K \cup \omega$.
- Then $0 \rightarrow c_0 \rightarrow C(K \cup \omega) \rightarrow C(K) \rightarrow 0$.
- Such an exact sequence is nontrivial (c₀ is not complemented inside C(K ∪ ω) iff there is no bounded extension operator C(K) → C(K ∪ ω) (in particular, there is no retraction K ∪ ω → L).

- Form a compact space of the form $K \cup \omega$.
- Then $0 \rightarrow c_0 \rightarrow C(K \cup \omega) \rightarrow C(K) \rightarrow 0$.
- Such an exact sequence is nontrivial (c₀ is not complemented inside C(K ∪ ω) iff there is no bounded extension operator C(K) → C(K ∪ ω) (in particular, there is no retraction K ∪ ω → L).

- Form a compact space of the form $K \cup \omega$.
- Then $0 \rightarrow c_0 \rightarrow C(K \cup \omega) \rightarrow C(K) \rightarrow 0$.
- Such an exact sequence is nontrivial (c₀ is not complemented inside C(K ∪ ω) iff there is no bounded extension operator C(K) → C(K ∪ ω) (in particular, there is no retraction K ∪ ω → L).

・ロト・日本・ヨト・ヨー うらぐ

• For some $\omega < \kappa \leq \mathfrak{c}$ find in K a copy of $\kappa \cup \{\infty\}$.

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣 - のへ⊙

- For some $\omega < \kappa \leq \mathfrak{c}$ find in K a copy of $\kappa \cup \{\infty\}$.
- Take an AD \mathscr{A} of size κ and consider $K_{\mathscr{A}}$.

- For some $\omega < \kappa \leq \mathfrak{c}$ find in K a copy of $\kappa \cup \{\infty\}$.
- Take an AD \mathscr{A} of size κ and consider $K_{\mathscr{A}}$.
- Form $K \cup \omega$ by identifying $(K_{\mathscr{A}})'$ with $\kappa \cup \{\infty\}$.

・ロト ・ 回 ト ・ ヨ ト ・ ヨ ・ つへの

- For some $\omega < \kappa \leq \mathfrak{c}$ find in K a copy of $\kappa \cup \{\infty\}$.
- Take an AD \mathscr{A} of size κ and consider $K_{\mathscr{A}}$.
- Form $K \cup \omega$ by identifying $(K_{\mathscr{A}})'$ with $\kappa \cup \{\infty\}$.

・ロト ・ 回 ト ・ ヨ ト ・ ヨ ・ つへの

- For some $\omega < \kappa \leq \mathfrak{c}$ find in K a copy of $\kappa \cup \{\infty\}$.
- Take an AD \mathscr{A} of size κ and consider $K_{\mathscr{A}}$.
- Form $K \cup \omega$ by identifying $(K_{\mathscr{A}})'$ with $\kappa \cup \{\infty\}$.

Such a space $K \cup \omega$ is suitable (gives a nontrivial twisted sum) if \mathscr{A} satisfies the following (in the spirit of multiple gaps investigated by **Avilés and Todorčević**):

・ロト ・ 回 ト ・ ヨ ト ・ ヨ ・ うへつ

- For some $\omega < \kappa \leq \mathfrak{c}$ find in K a copy of $\kappa \cup \{\infty\}$.
- Take an AD \mathscr{A} of size κ and consider $K_{\mathscr{A}}$.
- Form $K \cup \omega$ by identifying $(K_{\mathscr{A}})'$ with $\kappa \cup \{\infty\}$.

Such a space $K \cup \omega$ is suitable (gives a nontrivial twisted sum) if \mathscr{A} satisfies the following (in the spirit of multiple gaps investigated by **Avilés and Todorčević**):

Nonseparated parts

For every $n \ge 2$, \mathscr{A} can be decomposed into $\mathscr{A}_1, \ldots, \mathscr{A}_n$ pairwise disjoint parts that cannot be separated, that is if $S_i^* \supseteq A$ for every $A \in \mathscr{A}_i$, $i = 1, \ldots, n$ then $\bigcap_{i \le n} S_i \ne \emptyset$.

イロト イヨト イヨト イヨト ヨー わらの
How to construct a suitable $K \cup \omega$

- For some $\omega < \kappa \leq \mathfrak{c}$ find in K a copy of $\kappa \cup \{\infty\}$.
- Take an AD \mathscr{A} of size κ and consider $K_{\mathscr{A}}$.
- Form $K \cup \omega$ by identifying $(K_{\mathscr{A}})'$ with $\kappa \cup \{\infty\}$.

Such a space $K \cup \omega$ is suitable (gives a nontrivial twisted sum) if \mathscr{A} satisfies the following (in the spirit of multiple gaps investigated by **Avilés and Todorčević**):

Nonseparated parts

For every $n \ge 2$, \mathscr{A} can be decomposed into $\mathscr{A}_1, \ldots, \mathscr{A}_n$ pairwise disjoint parts that cannot be separated, that is if $S_i^* \supseteq A$ for every $A \in \mathscr{A}_i$, $i = 1, \ldots, n$ then $\bigcap_{i < n} S_i \neq \emptyset$.

One can find such a family \mathscr{A} of cardinality $\leq \operatorname{non}(\mathscr{E})$, where \mathscr{E} is the σ -ideal of subsets of [0,1] generated by closed measure zero sets (see **Bartoszyński & Shelah [1992]**).

Definition.

Say that a Banach space X is a \mathscr{C} -space if it is isomorphic to C(K), the space of continuous functions on a compact space K.

イロト イヨト イヨト イヨト 三日

Definition.

Say that a Banach space X is a \mathscr{C} -space if it is isomorphic to C(K), the space of continuous functions on a compact space K.

Problem.

Suppose that X is a complemented subspace of a \mathscr{C} -space; must X be a \mathscr{C} -space?

Definition.

Say that a Banach space X is a \mathscr{C} -space if it is isomorphic to C(K), the space of continuous functions on a compact space K.

Problem.

Suppose that X is a complemented subspace of a \mathscr{C} -space; must X be a \mathscr{C} -space?

Rosenthal [1972]

Suppose that X is a complemented subspace of C[0,1] and X^{*} is not separable. Then $X \simeq C[0,1]$.

Let $\theta: L \to K$ be a continuous surjection between compact spaces and let θ° be the corresponding isometric embedding $\theta^{\circ}: C(K) \to C(L)$ given by $\theta^{\circ}(g) = g \circ \theta$.

Let $\theta: L \to K$ be a continuous surjection between compact spaces and let θ° be the corresponding isometric embedding $\theta^{\circ}: C(K) \to C(L)$ given by $\theta^{\circ}(g) = g \circ \theta$.

Salguero-Alarcón & P. [2022]

There are two separable scattered compacta K and L and a continuous surjection $\theta: L \to K$ such that $C(L) \simeq \theta^{\circ}[C(K)] \oplus X$ and the Banach space X is not a \mathscr{C} -space.

Let $\theta: L \to K$ be a continuous surjection between compact spaces and let θ° be the corresponding isometric embedding $\theta^{\circ}: C(K) \to C(L)$ given by $\theta^{\circ}(g) = g \circ \theta$.

Salguero-Alarcón & P. [2022]

There are two separable scattered compacta K and L and a continuous surjection $\theta: L \to K$ such that $C(L) \simeq \theta^{\circ}[C(K)] \oplus X$ and the Banach space X is not a \mathscr{C} -space.

• **Pełczyński:** Suppose that φ_x is a probability measure on $\theta^{-1}(x), x \in K$ and $K \ni x \to \varphi_x \in C(L)^*$ is weak* continuous. Then $C(L) = \theta^{\circ}[C(K)] \oplus X$ because $Tf(x) = \int_L f \, d\varphi_x$ defines $T : C(L) \to C(K)$ and $Pf = (Tf) \circ \theta$ is a projection.

Let $\theta: L \to K$ be a continuous surjection between compact spaces and let θ° be the corresponding isometric embedding $\theta^{\circ}: C(K) \to C(L)$ given by $\theta^{\circ}(g) = g \circ \theta$.

Salguero-Alarcón & P. [2022]

There are two separable scattered compacta K and L and a continuous surjection $\theta: L \to K$ such that $C(L) \simeq \theta^{\circ}[C(K)] \oplus X$ and the Banach space X is not a \mathscr{C} -space.

- **Pełczyński:** Suppose that φ_x is a probability measure on $\theta^{-1}(x), x \in K$ and $K \ni x \to \varphi_x \in C(L)^*$ is weak* continuous. Then $C(L) = \theta^{\circ}[C(K)] \oplus X$ because $Tf(x) = \int_L f \, d\varphi_x$ defines $T : C(L) \to C(K)$ and $Pf = (Tf) \circ \theta$ is a projection.
- If X is a *C*-space then the ball in X^{*} contains a closed set F such that X ∋ x → x|F ∈ C(F) is an isomorphism.

Shape of our construction

Shape of our construction

► Ξ • • •

・ロ・・日・・日・・日・ のへぐ

We work in

$$\Delta = \{ (n,k) \in \omega^2 : k \le n \},\$$

and consider the sticks $S_n = \{(n,k) : k \le n\}$ and the measures $\varphi_n = \frac{1}{n+1} \cdot \sum_{k \le n} \delta_{(n,k)}$.

We work in

$$\Delta = \{ (n,k) \in \omega^2 : k \le n \},\$$

We work in

$$\Delta = \{ (n,k) \in \omega^2 : k \le n \},\$$

and consider the sticks $S_n = \{(n,k) : k \leq n\}$ and the measures $\varphi_n = \frac{1}{n+1} \cdot \sum_{k \leq n} \delta_{(n,k)}$. By a cylinder $C \subseteq \Delta$ we mean a set of the form $(A \times \omega) \cap \Delta$. Define

• an almost disjoint family \mathscr{A} of cylinders and let \mathfrak{B}_1 be the algebra of subsets of Δ generated by \mathscr{A} and all the sticks S_n ;

We work in

$$\Delta = \{ (n,k) \in \omega^2 : k \le n \},\$$

- an almost disjoint family A of cylinders and let B₁ be the algebra of subsets of Δ generated by A and all the sticks S_n;
- Split every A ∈ A into B⁰_A, B¹_A and let B⁰₂ be the algebra of subsets of ∆ generated by all B⁰_A, B¹_A and finite subsets;

We work in

$$\Delta = \{ (n,k) \in \omega^2 : k \le n \},\$$

- an almost disjoint family A of cylinders and let B₁ be the algebra of subsets of Δ generated by A and all the sticks S_n;
- Split every A ∈ A into B⁰_A, B¹_A and let B⁰₂ be the algebra of subsets of ∆ generated by all B⁰_A, B¹_A and finite subsets;
- Solution be sure that lim_{n∈A0} $φ_n(B_A^0) = 1/2$ for every A ∈ A, A = (A₀ × ω) ∩ Δ;

We work in

$$\Delta = \{ (n,k) \in \omega^2 : k \le n \},\$$

- an almost disjoint family A of cylinders and let B₁ be the algebra of subsets of Δ generated by A and all the sticks S_n;
- Split every A ∈ A into B⁰_A, B¹_A and let B⁰₂ be the algebra of subsets of ∆ generated by all B⁰_A, B¹_A and finite subsets;
- Solution be sure that lim_{n∈A0} $φ_n(B_A^0) = 1/2$ for every A ∈ A, A = (A₀ × ω) ∩ Δ;
- Put $K = ult(\mathfrak{B}_1)$, $L = ult(\mathfrak{B}_2)$; $\theta : L \to K$ is the obvious surjection.

We work in

$$\Delta = \{ (n,k) \in \omega^2 : k \le n \},\$$

- an almost disjoint family \mathscr{A} of cylinders and let \mathfrak{B}_1 be the algebra of subsets of Δ generated by \mathscr{A} and all the sticks S_n ;
- Split every A ∈ A into B⁰_A, B¹_A and let B⁰₂ be the algebra of subsets of ∆ generated by all B⁰_A, B¹_A and finite subsets;
- Solution be sure that lim_{n∈A0} $φ_n(B^0_A) = 1/2$ for every A ∈ A, A = (A₀ × ω) ∩ Δ;
- Put $K = ult(\mathfrak{B}_1)$, $L = ult(\mathfrak{B}_2)$; $\theta : L \to K$ is the obvious surjection.
- Property (3) enables us to define a projection from C(L) onto θ°[C(K)] so C(L) = θ°[C(K)] ⊕ X.

Remark

Salguero-Alarcón & P. [2021]

There is

$$0 \longrightarrow c_0 \xrightarrow{j} X \xrightarrow{\rho} c_0(\mathfrak{c}) \longrightarrow 0$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

where X is not a \mathscr{C} -space.

I thank the Organizers for their kind invitation.

I thank the Organizers for their kind invitation. Thanks are due to

イロト イヨト イヨト イヨト 三日

- Antonio Avilés,
- Félix Cabello Sánchez,
- Jesús M.F. Castillo,
- Witold Marciszewski,
- Alberto Salguero-Alarcón

I thank the Organizers for their kind invitation. Thanks are due to

- Antonio Avilés,
- Félix Cabello Sánchez,
- Jesús M.F. Castillo,
- Witold Marciszewski,
- Alberto Salguero-Alarcón

for our collaboration convincing me that the scattered compacta of height 3 are so mysterious and charming.

イロト イヨト イヨト イヨト 三日

I thank the Organizers for their kind invitation. Thanks are due to

- Antonio Avilés,
- Félix Cabello Sánchez,
- Jesús M.F. Castillo,
- Witold Marciszewski,
- Alberto Salguero-Alarcón

for our collaboration convincing me that the scattered compacta of height 3 are so mysterious and charming. My word of admiration for Ukrainians

I thank the Organizers for their kind invitation. Thanks are due to

- Antonio Avilés,
- Félix Cabello Sánchez,
- Jesús M.F. Castillo,
- Witold Marciszewski,
- Alberto Salguero-Alarcón

for our collaboration convincing me that the scattered compacta of height 3 are so mysterious and charming. My word of admiration for Ukrainians

I thank the Organizers for their kind invitation. Thanks are due to

- Antonio Avilés,
- Félix Cabello Sánchez,
- Jesús M.F. Castillo,
- Witold Marciszewski,
- Alberto Salguero-Alarcón

for our collaboration convincing me that the scattered compacta of height 3 are so mysterious and charming. My word of admiration for Ukrainians

イロン イロン イヨン イヨン 三日

for their brave hearts.