Almost disjoint families and Banach spaces

Grzegorz Plebanek
University of Wroctaw

36th Summer Topology Conference, July 2022

Dedicated to Jas, Kamil Duszenko (1986 — 23/07/2014)



Compacta from almost disjoint families



Compacta from almost disjoint families

Q Let &/ C Z(w) be an almost disjoint family, that is AN B is
finite for different A, B € 7.



Compacta from almost disjoint families

Q Let &/ C Z(w) be an almost disjoint family, that is AN B is
finite for different A, B € 7.

@ We assume that &7 is infinite and consists of infinite sets.



Compacta from almost disjoint families

Q Let &/ C Z(w) be an almost disjoint family, that is AN B is
finite for different A, B € 7.

@ We assume that o7 is infinite and consists of infinite sets.

© Write ¥, for ®U <7 and define a topology on V., by
declaring that points in w are isolated while basic

neighbourhoods of A € W, are of the form {A}UA\ /, with
| C o finite.



Compacta from almost disjoint families

Q Let &/ C Z(w) be an almost disjoint family, that is AN B is
finite for different A, B € 7.

@ We assume that o7 is infinite and consists of infinite sets.

© Write ¥, for ®U <7 and define a topology on V., by
declaring that points in w are isolated while basic
neighbourhoods of A € W, are of the form {A}UA\ /, with
| C o finite.

Q Write K, for W, U {e}, the one-point compactification.



Compacta from almost disjoint families

Q Let &/ C Z(w) be an almost disjoint family, that is AN B is
finite for different A, B € 7.

@ We assume that o7 is infinite and consists of infinite sets.

© Write ¥, for ®U <7 and define a topology on V., by
declaring that points in w are isolated while basic
neighbourhoods of A € W, are of the form {A}UA\ /, with
| C o finite.

Q Write K, for W, U {e}, the one-point compactification.



Compacta from almost disjoint families

Q Let &/ C Z(w) be an almost disjoint family, that is AN B is
finite for different A, B € 7.

@ We assume that &7 is infinite and consists of infinite sets.

© Write ¥, for ®U <7 and define a topology on V., by
declaring that points in w are isolated while basic
neighbourhoods of A € W, are of the form {A}UA\ /, with
| C o finite.

Q Write K, for W, U {e}, the one-point compactification.




Compacta from almost disjoint families

Q Let &/ C Z(w) be an almost disjoint family, that is AN B is
finite for different A, B € 7.

@ We assume that &7 is infinite and consists of infinite sets.
© Write ¥, for ®U <7 and define a topology on V., by
declaring that points in w are isolated while basic

neighbourhoods of A € W, are of the form {A}UA\ /, with
| C o finite.

Q Write K, for W, U {e}, the one-point compactification.

K. may be seen as the Stone space of all ultrafilters on the
algebra generated by @7 and finite sets.




Compacta from almost disjoint families

Q Let &/ C Z(w) be an almost disjoint family, that is AN B is
finite for different A, B € 7.

@ We assume that &7 is infinite and consists of infinite sets.
© Write ¥, for ®U <7 and define a topology on V., by
declaring that points in w are isolated while basic

neighbourhoods of A € W, are of the form {A}UA\ /, with
| C o finite.

Q Write K, for W, U {e}, the one-point compactification.

K. may be seen as the Stone space of all ultrafilters on the
algebra generated by @7 and finite sets.

There is a lot of research done on the interplay between
combinatorial properties of <7 and topology of W, (or K./), see
Hrusak [2014].
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Banach spaces

Given a compact space K, C(K) is the Banach space of real-valued
continuous functions on K (with the usual supremum norm).

The subject of this talk

‘ an almost disjoint family sz‘

VErsus

‘the isomorphic structure of the Banach space C(K.) ‘

e C(K.) may be seen as the subspace of /. spanned by xz,
B e o/ UfinU 0.

e C(K.) spaces were considered already by Johnson &
Lindenstrauss [1974].

@ They also introduced another type of spaces defined by .o
denoted JLy(<7), see e.g. Avilés, Martinez Cervantes and
Rodriguez [2018].

@ See also Magidor & P. [2017] for applications of almost
disjoint families on @, to Banach space theory.
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If C(K) and C(L) are isometric then K and L are homeomorphic
(Banach-Stone).

However, C(2?) is isomorphic to C[0,1], C(2?) ~ C[0,1] (by
Miljutin’s theorem).

Natural question
For which AD families &/ and &' C(Ky) ~ C(Ku)?

Marciszewski & Pol [2009]

If & and 7' are AD families of branches of 2<® and ®w<?,
respectively, then C(K) # C(Ky).

There are 2° pairwise nonisomorphic Banach spaces of the form
C(Ky), || =c.

For the second assertion: Every isomorphism
T:C(Ky)— C(Ky) is determined by a sequence of measures U,
on K., where [gdu,= Tg(n).
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Marciszewski [1989]

@ Given a separable compactum K, write ri(K) = @ if
{g|D: g € C(K)} is a Borel subset of R? for no countable
dense D C K. Otherwise, ri(K) is the least ot < @; such that
{g|D:ge€ C(K)}isin Z(l)+aUI_I(1)+a.

Q If C(K)~ C(L) then ri(K) <ri(L)+1.

© Given Z C 2%, write o/(Z) for the AD family of branches
B(x) = {x|n:n€ o}, where x € Z.

@ The Borel complexity of Z is reflected by ri(K,/(z)) so there
are AD families @/(Z;) for & < @y such that C(Ky(z,)) are
pairwise nonisomorphic.
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Only one C(K,,) small space

See Cabello Sanchez, Castillo, Marciszewski,
Salguero-Alarcén and P. [2020] for further applications of ri and
for the following.

Under MA(@,), C(K./) ~ C(K.) whenever AD families <, &’
satisfy |«7| = || = .
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Complemented subspaces

A subspace Y of a Banach space X is complemented if there is a
closed subspace Z C X such that X =Y & Z.

Equivalently, there is a projection P : X — X (a bounded linear
operator such that Po P = P) mapping X onto Y.

Recall that ¢ is the classical Banach space of sequences in R?
converging to 0 (with the supremum norm).

The space ¢y is separably injective, that is any copy of ¢ is
complemented in any separable superspace.

Koszmider [2005] under MA, Koszmider & Laustsen [2021]

There is an uncountable AD family .7 such that

@ Every operator T : C(K,) — C(K.) is of the form
T =c-1+S, where the range of S is contained in a subspace
isomorphic to cp;

o C(Ky)~co® C(Ky) is essentially the unique decomposition
into a direct sum of infinitely dimensional summands.
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formed by Banach spaces and linear continuous operators in which
the kernel of each arrow coincides with the image of the preceding
one. Such a sequence, or the middle space X alone, is usually
called a twisted sum of A and B.

Given A, B, we can always take X = A® B to form a trivial twisted
sum of A, B.

Definition.

The exact sequence above is nontrivial if j[A] is not complemented
in X.
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Problem (Cabello Sénchez, Castillo, Kalton, Yost)

Let K be a nonmetrizable compact space. Does ¢y admit a
nontrivial twisted sum with C(K)?

Can we find a Banach space X and embed ¢y onto an
uncomplemented subspace Y of X so that X/Y ~ C(K)?

Some partial solutions
@ Sobczyk: ‘No’ if K is metrizable.
e Cabello Sanchez & Castillo: ‘Yes', for K = fw.
@ Castillo: ‘Yes' under CH, for K nonmetrizable scattered of
finite height.
o Correa & Tausk: Yes, if K contains a copy of 2°.
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Two answers to CCKY

CCKY asks whether there are nontrivial solutions to
0—c—?— C(K)—0.

@ Marciszewski & P. [2018]: Under MA(w;), no for K =2
and for K = K/, where |.o/| = ;. (Consistently, Problem
CCKY has a negative solution).

@ Auvilés, Marciszewski & P. [2019]: Under CH, ‘yes’ for
every nonmetrizable compactum K. (Consistently, Problem
CCKY has a positive solution).



How to find 0 — ¢ —? — C(K) — 0




How to find 0 — ¢g =7 — C(K) — 0

@ Form a compact space of the form KU ®.
@ Then 0 — ¢ —» C(KU®) — C(K) — 0.

@ Such an exact sequence is nontrivial (cp is not complemented
inside C(K U ) iff there is no bounded extension operator
C(K) — C(KUw) (in particular, there is no retraction
KUw —L).



How to find 0 — ¢g =7 — C(K) — 0

@ Form a compact space of the form KU ®.
@ Then 0 — ¢ —» C(KU®) — C(K) — 0.

@ Such an exact sequence is nontrivial (cp is not complemented
inside C(K U ) iff there is no bounded extension operator
C(K) — C(KUw) (in particular, there is no retraction
KUw —L).




How to find 0 — ¢g =7 — C(K) — 0

@ Form a compact space of the form KU ®.
@ Then 0 — ¢ —» C(KU®) — C(K) — 0.

@ Such an exact sequence is nontrivial (cp is not complemented
inside C(K U ) iff there is no bounded extension operator
C(K) — C(KUw) (in particular, there is no retraction
KUw —L).

e




How to find 0 — ¢g =7 — C(K) — 0

@ Form a compact space of the form KU ®.
@ Then 0 — ¢ —» C(KU®) — C(K) — 0.

@ Such an exact sequence is nontrivial (cp is not complemented
inside C(K U ) iff there is no bounded extension operator
C(K) — C(KUw) (in particular, there is no retraction
KUw —L).

e




How to find 0 — ¢g =7 — C(K) — 0

@ Form a compact space of the form KU ®.
@ Then 0 — ¢ —» C(KU®) — C(K) — 0.

@ Such an exact sequence is nontrivial (cp is not complemented
inside C(K U ) iff there is no bounded extension operator
C(K) — C(KUw) (in particular, there is no retraction
KUw —L).

e

N e




How to find 0 — ¢g =7 — C(K) — 0

@ Form a compact space of the form KU ®.
@ Then 0 — ¢ —» C(KU®) — C(K) — 0.

@ Such an exact sequence is nontrivial (cp is not complemented
inside C(K U ) iff there is no bounded extension operator
C(K) — C(KUw) (in particular, there is no retraction
KUw —L).

e

N e




How to find 0 — ¢g =7 — C(K) — 0

@ Form a compact space of the form KU ®.
@ Then 0 — ¢ —» C(KU®) — C(K) — 0.

@ Such an exact sequence is nontrivial (cp is not complemented
inside C(K U ) iff there is no bounded extension operator
C(K) — C(KUw) (in particular, there is no retraction
KUw —L).

e

N e




How to construct a suitable KU @



How to construct a suitable KU @

e For some o < k < ¢ find in K a copy of kKU {eo}.



How to construct a suitable KU @

e For some o < k < ¢ find in K a copy of kKU {eo}.
@ Take an AD & of size k¥ and consider K.



How to construct a suitable KU @

e For some o < k < ¢ find in K a copy of kKU {eo}.
@ Take an AD & of size k¥ and consider K.
e Form KU w by identifying (K/) with kU {eo}.



How to construct a suitable KU @

e For some o < k < ¢ find in K a copy of kKU {eo}.
@ Take an AD & of size k¥ and consider K.
e Form KU w by identifying (K/) with kU {eo}.



How to construct a suitable KU @

e For some o < k < ¢ find in K a copy of kKU {eo}.
@ Take an AD & of size k¥ and consider K.
e Form KU w by identifying (K/) with kU {eo}.
Such a space KU is suitable (gives a nontrivial twisted sum) if

of satisfies the following (in the spirit of multiple gaps investigated
by Avilés and Todor&evic):



How to construct a suitable KU @

e For some o < k < ¢ find in K a copy of kKU {eo}.
@ Take an AD & of size k¥ and consider K.
e Form KU w by identifying (K/) with kU {eo}.
Such a space KU is suitable (gives a nontrivial twisted sum) if

of satisfies the following (in the spirit of multiple gaps investigated
by Avilés and Todor&evic):

Nonseparated parts

For every n> 2, o/ can be decomposed into &4, ..., 4, pairwise
disjoint parts that cannot be separated, that is if S* O A for every
Ac ), i=1,...,nthen N, 5 #0.
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e For some o < k < ¢ find in K a copy of kKU {eo}.
@ Take an AD & of size k¥ and consider K.
e Form KU w by identifying (K/) with kU {eo}.
Such a space KU is suitable (gives a nontrivial twisted sum) if

of satisfies the following (in the spirit of multiple gaps investigated
by Avilés and Todor&evic):

Nonseparated parts

For every n> 2, o/ can be decomposed into &4, ..., 4, pairwise
disjoint parts that cannot be separated, that is if S* O A for every
Ac ), i=1,...,nthen N, 5 #0.

One can find such a family &7 of cardinality < non(&’), where & is
the o-ideal of subsets of [0,1] generated by closed measure zero
sets (see Bartoszyniski & Shelah [1992]).
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The complemented subspace problem

Definition.

Say that a Banach space X is a ©-space if it is isomorphic to
C(K), the space of continuous functions on a compact space K.

Problem.

Suppose that X is a complemented subspace of a %-space; must
X be a @-space?

Rosenthal [1972]

Suppose that X is a complemented subspace of C[0,1] and X* is
not separable. Then X ~ CJ[0,1].




The complemented subspace problem: No!



The complemented subspace problem: No!

Let 6 : L — K be a continuous surjection between compact spaces
and let 6° be the corresponding isometric embedding
0°: C(K)— C(L) given by 6°(g) =go6.



The complemented subspace problem: No!

Let 6 : L — K be a continuous surjection between compact spaces
and let 6° be the corresponding isometric embedding
0°: C(K)— C(L) given by 6°(g) =go6.

Salguero-Alarcén & P. [2022]

There are two separable scattered compacta K and L and a
continuous surjection 6 : L — K such that C(L) ~ 6°[C(K)] @& X
and the Banach space X is not a %-space.




The complemented subspace problem: No!

Let 6 : L — K be a continuous surjection between compact spaces
and let 6° be the corresponding isometric embedding
0°: C(K)— C(L) given by 6°(g) =go6.

Salguero-Alarcén & P. [2022]

There are two separable scattered compacta K and L and a
continuous surjection 6 : L — K such that C(L) ~ 6°[C(K)] @& X
and the Banach space X is not a %-space.

@ Pelczynski: Suppose that ¢, is a probability measure on
6 1(x), x € K and K > x — @, € C(L)* is weak* continuous.
Then C(L) = 0°[C(K)] @ X because Tf(x)= [, f dgy defines
T:C(L)— C(K) and Pf =(Tf)o8 is a projection.
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Let 6 : L — K be a continuous surjection between compact spaces
and let 6° be the corresponding isometric embedding
0°: C(K)— C(L) given by 6°(g) =go6.

Salguero-Alarcén & P. [2022]

There are two separable scattered compacta K and L and a
continuous surjection 6 : L — K such that C(L) ~ 6°[C(K)] @& X
and the Banach space X is not a %-space.

@ Pelczynski: Suppose that ¢, is a probability measure on
6 1(x), x € K and K > x — @, € C(L)* is weak* continuous.
Then C(L) = 0°[C(K)] @ X because Tf(x)= [, f dgy defines
T:C(L)— C(K) and Pf =(Tf)o8 is a projection.

o If X is a ©-space then the ball in X* contains a closed set F
such that X > x — x|F € C(F) is an isomorphism.
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Lém

A= n k) v<m ¥
‘ﬁw:‘;:‘.\ 2 gc-\;) 3/
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© Property (3) enables us to define a projection from C(L) onto
0°[C(K)] so C(L)=06°[C(K)]® X.
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There is

0 o I, X > co(c) —— 0

where X is not a @-space.
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