Almost disjoint families and Banach spaces

Grzegorz Plebanek

University of Wrocław
36th Summer Topology Conference, July 2022

Dedicated to Jaś, Kamil Duszenko (1986-23/07/2014)

Compacta from almost disjoint families

Compacta from almost disjoint families

(1) Let $\mathscr{A} \subseteq \mathscr{P}(\omega)$ be an almost disjoint family, that is $A \cap B$ is finite for different $A, B \in \mathscr{A}$.

Compacta from almost disjoint families

(1) Let $\mathscr{A} \subseteq \mathscr{P}(\omega)$ be an almost disjoint family, that is $A \cap B$ is finite for different $A, B \in \mathscr{A}$.
(2) We assume that \mathscr{A} is infinite and consists of infinite sets.

Compacta from almost disjoint families

(1) Let $\mathscr{A} \subseteq \mathscr{P}(\omega)$ be an almost disjoint family, that is $A \cap B$ is finite for different $A, B \in \mathscr{A}$.
(2) We assume that \mathscr{A} is infinite and consists of infinite sets.
(3) Write $\Psi_{\mathscr{A}}$ for $\omega \cup \mathscr{A}$ and define a topology on $\Psi_{\mathscr{A}}$ by declaring that points in ω are isolated while basic neighbourhoods of $A \in \Psi_{\mathscr{A}}$ are of the form $\{A\} \cup A \backslash I$, with $I \subseteq \omega$ finite.

Compacta from almost disjoint families

(1) Let $\mathscr{A} \subseteq \mathscr{P}(\omega)$ be an almost disjoint family, that is $A \cap B$ is finite for different $A, B \in \mathscr{A}$.
(2) We assume that \mathscr{A} is infinite and consists of infinite sets.
(3) Write $\Psi_{\mathscr{A}}$ for $\omega \cup \mathscr{A}$ and define a topology on $\Psi_{\mathscr{A}}$ by declaring that points in ω are isolated while basic neighbourhoods of $A \in \Psi_{\mathscr{A}}$ are of the form $\{A\} \cup A \backslash I$, with $I \subseteq \omega$ finite.
(9) Write $K_{\mathscr{A}}$ for $\Psi_{\mathscr{A}} \cup\{\infty\}$, the one-point compactification.

Compacta from almost disjoint families

(1) Let $\mathscr{A} \subseteq \mathscr{P}(\omega)$ be an almost disjoint family, that is $A \cap B$ is finite for different $A, B \in \mathscr{A}$.
(2) We assume that \mathscr{A} is infinite and consists of infinite sets.
(3) Write $\Psi_{\mathscr{A}}$ for $\omega \cup \mathscr{A}$ and define a topology on $\Psi_{\mathscr{A}}$ by declaring that points in ω are isolated while basic neighbourhoods of $A \in \Psi_{\mathscr{A}}$ are of the form $\{A\} \cup A \backslash I$, with $I \subseteq \omega$ finite.
(9) Write $K_{\mathscr{A}}$ for $\Psi_{\mathscr{A}} \cup\{\infty\}$, the one-point compactification.

Compacta from almost disjoint families

(1) Let $\mathscr{A} \subseteq \mathscr{P}(\omega)$ be an almost disjoint family, that is $A \cap B$ is finite for different $A, B \in \mathscr{A}$.
(2) We assume that \mathscr{A} is infinite and consists of infinite sets.
(3) Write $\Psi_{\mathscr{A}}$ for $\omega \cup \mathscr{A}$ and define a topology on $\Psi_{\mathscr{A}}$ by declaring that points in ω are isolated while basic neighbourhoods of $A \in \Psi_{\mathscr{A}}$ are of the form $\{A\} \cup A \backslash I$, with $I \subseteq \omega$ finite.
(9) Write $K_{\mathscr{A}}$ for $\Psi_{\mathscr{A}} \cup\{\infty\}$, the one-point compactification.

Remark

Compacta from almost disjoint families

(1) Let $\mathscr{A} \subseteq \mathscr{P}(\omega)$ be an almost disjoint family, that is $A \cap B$ is finite for different $A, B \in \mathscr{A}$.
(2) We assume that \mathscr{A} is infinite and consists of infinite sets.
(3) Write $\Psi_{\mathscr{A}}$ for $\omega \cup \mathscr{A}$ and define a topology on $\Psi_{\mathscr{A}}$ by declaring that points in ω are isolated while basic neighbourhoods of $A \in \Psi_{\mathscr{A}}$ are of the form $\{A\} \cup A \backslash I$, with $I \subseteq \omega$ finite.
(9) Write $K_{\mathscr{A}}$ for $\Psi_{\mathscr{A}} \cup\{\infty\}$, the one-point compactification.

Remark

$K_{\mathscr{A}}$ may be seen as the Stone space of all ultrafilters on the algebra generated by \mathscr{A} and finite sets.

Compacta from almost disjoint families

(1) Let $\mathscr{A} \subseteq \mathscr{P}(\omega)$ be an almost disjoint family, that is $A \cap B$ is finite for different $A, B \in \mathscr{A}$.
(2) We assume that \mathscr{A} is infinite and consists of infinite sets.
(3) Write $\Psi_{\mathscr{A}}$ for $\omega \cup \mathscr{A}$ and define a topology on $\Psi_{\mathscr{A}}$ by declaring that points in ω are isolated while basic neighbourhoods of $A \in \Psi_{\mathscr{A}}$ are of the form $\{A\} \cup A \backslash I$, with $I \subseteq \omega$ finite.
(9) Write $K_{\mathscr{A}}$ for $\Psi_{\mathscr{A}} \cup\{\infty\}$, the one-point compactification.

Remark

$K_{\mathscr{A}}$ may be seen as the Stone space of all ultrafilters on the algebra generated by \mathscr{A} and finite sets.

There is a lot of research done on the interplay between combinatorial properties of \mathscr{A} and topology of $\Psi_{\mathscr{A}}\left(\right.$ or $\left.K_{\mathscr{A}}\right)$, see Hrušák [2014].

Compacta from almost disjoint families

Compacta from almost disjoint families

Compacta from almost disjoint families

Banach spaces

Given a compact space $K, C(K)$ is the Banach space of real-valued continuous functions on K (with the usual supremum norm).

Banach spaces

Given a compact space $K, C(K)$ is the Banach space of real-valued continuous functions on K (with the usual supremum norm).

The subject of this talk

an almost disjoint family \mathscr{A}
versus
the isomorphic structure of the Banach space $C\left(K_{\mathscr{A}}\right)$

Banach spaces

Given a compact space $K, C(K)$ is the Banach space of real-valued continuous functions on K (with the usual supremum norm).

The subject of this talk

an almost disjoint family \mathscr{A}
versus
the isomorphic structure of the Banach space $C\left(K_{\mathscr{A}}\right)$

- $C\left(K_{\mathscr{A}}\right)$ may be seen as the subspace of ℓ_{∞} spanned by χ_{B}, $B \in \mathscr{A} \cup$ fin $\cup \omega$.

Banach spaces

Given a compact space $K, C(K)$ is the Banach space of real-valued continuous functions on K (with the usual supremum norm).

The subject of this talk

an almost disjoint family \mathscr{A}
versus
the isomorphic structure of the Banach space $C\left(K_{\mathscr{A}}\right)$

- $C\left(K_{\mathscr{A}}\right)$ may be seen as the subspace of ℓ_{∞} spanned by χ_{B}, $B \in \mathscr{A} \cup$ fin $\cup \omega$.
- $C\left(K_{\mathscr{A}}\right)$ spaces were considered already by Johnson \& Lindenstrauss [1974].

Banach spaces

Given a compact space $K, C(K)$ is the Banach space of real-valued continuous functions on K (with the usual supremum norm).

The subject of this talk

an almost disjoint family \mathscr{A}

versus

the isomorphic structure of the Banach space $C\left(K_{\mathscr{A}}\right)$

- $C\left(K_{\mathscr{A}}\right)$ may be seen as the subspace of ℓ_{∞} spanned by χ_{B}, $B \in \mathscr{A} \cup$ fin $\cup \omega$.
- $C\left(K_{\mathscr{A}}\right)$ spaces were considered already by Johnson \& Lindenstrauss [1974].
- They also introduced another type of spaces defined by \mathscr{A} denoted $J L_{2}(\mathscr{A})$, see e.g. Avilés, Martínez Cervantes and Rodríguez [2018].

Banach spaces

Given a compact space $K, C(K)$ is the Banach space of real-valued continuous functions on K (with the usual supremum norm).

The subject of this talk

an almost disjoint family \mathscr{A}

versus

the isomorphic structure of the Banach space $C\left(K_{\mathscr{A}}\right)$

- $C\left(K_{\mathscr{A}}\right)$ may be seen as the subspace of ℓ_{∞} spanned by χ_{B}, $B \in \mathscr{A} \cup$ fin $\cup \omega$.
- $C\left(K_{\mathscr{A}}\right)$ spaces were considered already by Johnson \& Lindenstrauss [1974].
- They also introduced another type of spaces defined by \mathscr{A} denoted $J L_{2}(\mathscr{A})$, see e.g. Avilés, Martínez Cervantes and Rodríguez [2018].
- See also Magidor \& P. [2017] for applications of almost disjoint families on ω_{2} to Banach space theory.

Distinguishing $C\left(K_{\mathscr{A}}\right)$ spaces

If $C(K)$ and $C(L)$ are isometric then K and L are homeomorphic (Banach-Stone).

Distinguishing $C\left(K_{\mathscr{A}}\right)$ spaces

If $C(K)$ and $C(L)$ are isometric then K and L are homeomorphic (Banach-Stone).
However, $C\left(2^{\omega}\right)$ is isomorphic to $C[0,1], C\left(2^{\omega}\right) \simeq C[0,1]$ (by Miljutin's theorem).

Distinguishing $C\left(K_{\mathscr{A}}\right)$ spaces

If $C(K)$ and $C(L)$ are isometric then K and L are homeomorphic (Banach-Stone).
However, $C\left(2^{\omega}\right)$ is isomorphic to $C[0,1], C\left(2^{\omega}\right) \simeq C[0,1]$ (by Miljutin's theorem).

Natural question

For which AD families \mathscr{A} and $\mathscr{A}^{\prime} C\left(K_{\mathscr{A}}\right) \simeq C\left(K_{\mathscr{A}^{\prime}}\right)$?

Distinguishing $C\left(K_{\mathscr{A}}\right)$ spaces

If $C(K)$ and $C(L)$ are isometric then K and L are homeomorphic (Banach-Stone).
However, $C\left(2^{\omega}\right)$ is isomorphic to $C[0,1], C\left(2^{\omega}\right) \simeq C[0,1]$ (by Miljutin's theorem).

Natural question

For which AD families \mathscr{A} and $\mathscr{A}^{\prime} C\left(K_{\mathscr{A}}\right) \simeq C\left(K_{\mathscr{A}^{\prime}}\right)$?

Marciszewski \& Pol [2009]

If \mathscr{A} and \mathscr{A}^{\prime} are AD families of branches of $2^{<\omega}$ and $\omega^{<\omega}$, respectively, then $C\left(K_{\mathscr{A}}\right) \not 千 C\left(K_{\mathscr{A}}\right)$.

Distinguishing $C\left(K_{\mathscr{A}}\right)$ spaces

If $C(K)$ and $C(L)$ are isometric then K and L are homeomorphic (Banach-Stone).
However, $C\left(2^{\omega}\right)$ is isomorphic to $C[0,1], C\left(2^{\omega}\right) \simeq C[0,1]$ (by Miljutin's theorem).

Natural question

For which AD families \mathscr{A} and $\mathscr{A}^{\prime} C\left(K_{\mathscr{A}}\right) \simeq C\left(K_{\mathscr{A}}\right)$?

Marciszewski \& Pol [2009]

If \mathscr{A} and \mathscr{A}^{\prime} are AD families of branches of $2^{<\omega}$ and $\omega^{<\omega}$, respectively, then $C\left(K_{\mathscr{A}}\right) \not 千 C\left(K_{\mathscr{A}}\right)$.
There are $2^{\mathfrak{c}}$ pairwise nonisomorphic Banach spaces of the form $C\left(K_{\mathscr{A}}\right),|\mathscr{A}|=\mathbf{c}$.

Distinguishing $C\left(K_{\mathscr{A}}\right)$ spaces

If $C(K)$ and $C(L)$ are isometric then K and L are homeomorphic (Banach-Stone).
However, $C\left(2^{\omega}\right)$ is isomorphic to $C[0,1], C\left(2^{\omega}\right) \simeq C[0,1]$ (by Miljutin's theorem).

Natural question

For which AD families \mathscr{A} and $\mathscr{A}^{\prime} C\left(K_{\mathscr{A}}\right) \simeq C\left(K_{\mathscr{A}}\right)$?

Marciszewski \& Pol [2009]

If \mathscr{A} and \mathscr{A}^{\prime} are AD families of branches of $2^{<\omega}$ and $\omega^{<\omega}$, respectively, then $C\left(K_{\mathscr{A}}\right) \not 千 C\left(K_{\mathscr{A}^{\prime}}\right)$.
There are $2^{\mathfrak{c}}$ pairwise nonisomorphic Banach spaces of the form $C\left(K_{\mathscr{A}}\right),|\mathscr{A}|=\mathbf{c}$.

For the second assertion: Every isomorphism
$T: C\left(K_{\mathscr{A}}\right) \rightarrow C\left(K_{\mathscr{A}}\right)$ is determined by a sequence of measures μ_{n} on $K_{\mathscr{A}}$, where $\int g \mathrm{~d} \mu_{n}=T g(n)$.

Distinguishing $C\left(K_{\mathscr{A}}\right)$ spaces 2

Distinguishing $C\left(K_{\mathscr{A}}\right)$ spaces 2

Marciszewski [1989]

(1) Given a separable compactum K, write $\operatorname{ri}(K)=\omega_{1}$ if $\{g \mid D: g \in C(K)\}$ is a Borel subset of \mathbb{R}^{D} for no countable dense $D \subseteq K$. Otherwise, $\operatorname{ri}(K)$ is the least $\alpha<\omega_{1}$ such that $\{g \mid D: g \in C(K)\}$ is in $\Sigma_{1+\alpha}^{0} \cup \Pi_{1+\alpha}^{0}$.

Distinguishing $C\left(K_{\mathscr{A}}\right)$ spaces 2

Marciszewski [1989]

(1) Given a separable compactum K, write $\operatorname{ri}(K)=\omega_{1}$ if $\{g \mid D: g \in C(K)\}$ is a Borel subset of \mathbb{R}^{D} for no countable dense $D \subseteq K$. Otherwise, $\operatorname{ri}(K)$ is the least $\alpha<\omega_{1}$ such that $\{g \mid D: g \in C(K)\}$ is in $\Sigma_{1+\alpha}^{0} \cup \Pi_{1+\alpha}^{0}$.
(2) If $C(K) \simeq C(L)$ then $\operatorname{ri}(K) \leq \operatorname{ri}(L)+1$.

Distinguishing $C\left(K_{\mathscr{A}}\right)$ spaces 2

Marciszewski [1989]

(1) Given a separable compactum K, write $\operatorname{ri}(K)=\omega_{1}$ if $\{g \mid D: g \in C(K)\}$ is a Borel subset of \mathbb{R}^{D} for no countable dense $D \subseteq K$. Otherwise, $\operatorname{ri}(K)$ is the least $\alpha<\omega_{1}$ such that $\{g \mid D: g \in C(K)\}$ is in $\Sigma_{1+\alpha}^{0} \cup \Pi_{1+\alpha}^{0}$.
(2) If $C(K) \simeq C(L)$ then $\operatorname{ri}(K) \leq \operatorname{ri}(L)+1$.
(3) Given $Z \subseteq 2^{\omega}$, write $\mathscr{A}(Z)$ for the AD family of branches $B(x)=\{x \mid n: n \in \omega\}$, where $x \in Z$.

Distinguishing $C\left(K_{\mathscr{A}}\right)$ spaces 2

Marciszewski [1989]

(1) Given a separable compactum K, write $\operatorname{ri}(K)=\omega_{1}$ if $\{g \mid D: g \in C(K)\}$ is a Borel subset of \mathbb{R}^{D} for no countable dense $D \subseteq K$. Otherwise, $\operatorname{ri}(K)$ is the least $\alpha<\omega_{1}$ such that $\{g \mid D: g \in C(K)\}$ is in $\Sigma_{1+\alpha}^{0} \cup \Pi_{1+\alpha}^{0}$.
(2) If $C(K) \simeq C(L)$ then $\operatorname{ri}(K) \leq \operatorname{ri}(L)+1$.
(3) Given $Z \subseteq 2^{\omega}$, write $\mathscr{A}(Z)$ for the AD family of branches $B(x)=\{x \mid n: n \in \omega\}$, where $x \in Z$.
(9) The Borel complexity of Z is reflected by $\operatorname{ri}\left(K_{\mathscr{A}(Z)}\right)$ so there are AD families $\mathscr{A}\left(Z_{\xi}\right)$ for $\xi<\omega_{1}$ such that $C\left(K_{\mathscr{A}\left(Z_{\xi}\right)}\right)$ are pairwise nonisomorphic.

Only one $C\left(K_{\mathscr{A}}\right)$ small space

Only one $C\left(K_{\mathscr{A}}\right)$ small space

See Cabello Sanchez, Castillo, Marciszewski, Salguero-Alarcón and P. [2020] for further applications of ri and for the following.

Only one $C\left(K_{\mathscr{A}}\right)$ small space

See Cabello Sanchez, Castillo, Marciszewski,

 Salguero-Alarcón and P. [2020] for further applications of ri and for the following.
Theorem.

Under $\mathrm{MA}\left(\omega_{1}\right), C\left(K_{\mathscr{A}}\right) \simeq C\left(K_{\mathscr{A}^{\prime}}\right)$ whenever AD families $\mathscr{A}, \mathscr{A}^{\prime}$ satisfy $|\mathscr{A}|=\left|\mathscr{A}^{\prime}\right|=\omega_{1}$.

Complemented subspaces

Complemented subspaces

A subspace Y of a Banach space X is complemented if there is a closed subspace $Z \subseteq X$ such that $X=Y \oplus Z$.

Complemented subspaces

A subspace Y of a Banach space X is complemented if there is a closed subspace $Z \subseteq X$ such that $X=Y \oplus Z$.
Equivalently, there is a projection $P: X \rightarrow X$ (a bounded linear operator such that $P \circ P=P$) mapping X onto Y.

Complemented subspaces

A subspace Y of a Banach space X is complemented if there is a closed subspace $Z \subseteq X$ such that $X=Y \oplus Z$.
Equivalently, there is a projection $P: X \rightarrow X$ (a bounded linear operator such that $P \circ P=P$) mapping X onto Y. Recall that c_{0} is the classical Banach space of sequences in \mathbb{R}^{ω} converging to 0 (with the supremum norm).

Complemented subspaces

A subspace Y of a Banach space X is complemented if there is a closed subspace $Z \subseteq X$ such that $X=Y \oplus Z$.
Equivalently, there is a projection $P: X \rightarrow X$ (a bounded linear operator such that $P \circ P=P$) mapping X onto Y. Recall that c_{0} is the classical Banach space of sequences in \mathbb{R}^{ω} converging to 0 (with the supremum norm).
The space c_{0} is separably injective, that is any copy of c_{0} is complemented in any separable superspace.

Complemented subspaces

A subspace Y of a Banach space X is complemented if there is a closed subspace $Z \subseteq X$ such that $X=Y \oplus Z$.
Equivalently, there is a projection $P: X \rightarrow X$ (a bounded linear operator such that $P \circ P=P$) mapping X onto Y.
Recall that c_{0} is the classical Banach space of sequences in \mathbb{R}^{ω} converging to 0 (with the supremum norm).
The space c_{0} is separably injective, that is any copy of c_{0} is complemented in any separable superspace.

Koszmider [2005] under MA, Koszmider \& Laustsen [2021]

There is an uncountable AD family \mathscr{A} such that

- Every operator $T: C\left(K_{\mathscr{A}}\right) \rightarrow C\left(K_{\mathscr{A}}\right)$ is of the form $T=c \cdot I+S$, where the range of S is contained in a subspace isomorphic to c_{0};
- $C\left(K_{\mathscr{A}}\right) \simeq c_{0} \oplus C\left(K_{\mathscr{A}}\right)$ is essentially the unique decomposition into a direct sum of infinitely dimensional summands.

Twisted sums

An exact sequence of Banach spaces is a diagram

$$
0 \longrightarrow A \xrightarrow{j} X \xrightarrow{\rho} B \longrightarrow 0
$$

formed by Banach spaces and linear continuous operators in which the kernel of each arrow coincides with the image of the preceding one. Such a sequence, or the middle space X alone, is usually called a twisted sum of A and B.

An exact sequence of Banach spaces is a diagram

$$
0 \longrightarrow A \xrightarrow{j} X \xrightarrow{\rho} B \longrightarrow 0
$$

formed by Banach spaces and linear continuous operators in which the kernel of each arrow coincides with the image of the preceding one. Such a sequence, or the middle space X alone, is usually called a twisted sum of A and B.
Given A, B, we can always take $X=A \oplus B$ to form a trivial twisted sum of A, B.

An exact sequence of Banach spaces is a diagram

$$
0 \longrightarrow A \xrightarrow{j} X \xrightarrow{\rho} B \longrightarrow 0
$$

formed by Banach spaces and linear continuous operators in which the kernel of each arrow coincides with the image of the preceding one. Such a sequence, or the middle space X alone, is usually called a twisted sum of A and B.
Given A, B, we can always take $X=A \oplus B$ to form a trivial twisted sum of A, B.

Definition.

The exact sequence above is nontrivial if $j[A]$ is not complemented in X.

CCKY Problem

CCKY Problem

Problem (Cabello Sánchez, Castillo, Kalton, Yost)
Let K be a nonmetrizable compact space. Does c_{0} admit a nontrivial twisted sum with $C(K)$?

CCKY Problem

Problem (Cabello Sánchez, Castillo, Kalton, Yost)

Let K be a nonmetrizable compact space. Does c_{0} admit a nontrivial twisted sum with $C(K)$?
Can we find a Banach space X and embed c_{0} onto an uncomplemented subspace Y of X so that $X / Y \simeq C(K)$?

CCKY Problem

Problem (Cabello Sánchez, Castillo, Kalton, Yost)

Let K be a nonmetrizable compact space. Does c_{0} admit a nontrivial twisted sum with $C(K)$?
Can we find a Banach space X and embed c_{0} onto an uncomplemented subspace Y of X so that $X / Y \simeq C(K)$?

Some partial solutions

CCKY Problem

Problem (Cabello Sánchez, Castillo, Kalton, Yost)

Let K be a nonmetrizable compact space. Does c_{0} admit a nontrivial twisted sum with $C(K)$?
Can we find a Banach space X and embed c_{0} onto an uncomplemented subspace Y of X so that $X / Y \simeq C(K)$?

Some partial solutions

- Sobczyk: 'No' if K is metrizable.

CCKY Problem

Problem (Cabello Sánchez, Castillo, Kalton, Yost)

Let K be a nonmetrizable compact space. Does c_{0} admit a nontrivial twisted sum with $C(K)$?
Can we find a Banach space X and embed c_{0} onto an uncomplemented subspace Y of X so that $X / Y \simeq C(K)$?

Some partial solutions

- Sobczyk: 'No’ if K is metrizable.
- Cabello Sánchez \& Castillo: 'Yes', for $K=\beta \omega$.

CCKY Problem

Problem (Cabello Sánchez, Castillo, Kalton, Yost)

Let K be a nonmetrizable compact space. Does c_{0} admit a nontrivial twisted sum with $C(K)$?
Can we find a Banach space X and embed c_{0} onto an uncomplemented subspace Y of X so that $X / Y \simeq C(K)$?

Some partial solutions

- Sobczyk: 'No’ if K is metrizable.
- Cabello Sánchez \& Castillo: 'Yes', for $K=\beta \omega$.
- Castillo: 'Yes' under CH, for K nonmetrizable scattered of finite height.

CCKY Problem

Problem (Cabello Sánchez, Castillo, Kalton, Yost)

Let K be a nonmetrizable compact space. Does c_{0} admit a nontrivial twisted sum with $C(K)$?
Can we find a Banach space X and embed c_{0} onto an uncomplemented subspace Y of X so that $X / Y \simeq C(K)$?

Some partial solutions

- Sobczyk: 'No’ if K is metrizable.
- Cabello Sánchez \& Castillo: 'Yes', for $K=\beta \omega$.
- Castillo: 'Yes' under CH, for K nonmetrizable scattered of finite height.
- Correa \& Tausk: Yes, if K contains a copy of 2^{c}.

CCKY asks whether there are nontrivial solutions to $0 \rightarrow c_{0} \rightarrow ? \rightarrow C(K) \rightarrow 0$.

CCKY asks whether there are nontrivial solutions to
$0 \rightarrow c_{0} \rightarrow$? $\rightarrow C(K) \rightarrow 0$.
(1) Marciszewski \& P. [2018]: Under $\mathrm{MA}\left(\omega_{1}\right)$, no for $K=2^{\omega_{1}}$ and for $K=K_{\mathscr{A}}$, where $|\mathscr{A}|=\omega_{1}$. (Consistently, Problem CCKY has a negative solution).

CCKY asks whether there are nontrivial solutions to
$0 \rightarrow c_{0} \rightarrow ? \rightarrow C(K) \rightarrow 0$.
(1) Marciszewski \& P. [2018]: Under $\mathrm{MA}\left(\omega_{1}\right)$, no for $K=2^{\omega_{1}}$ and for $K=K_{\mathscr{A}}$, where $|\mathscr{A}|=\omega_{1}$. (Consistently, Problem CCKY has a negative solution).
(2) Avilés, Marciszewski \& P. [2019]: Under CH, 'yes' for every nonmetrizable compactum K. (Consistently, Problem CCKY has a positive solution).

How to find $0 \rightarrow c_{0} \rightarrow ? \rightarrow C(K) \rightarrow 0$

- Form a compact space of the form $K \cup \omega$.
- Then $0 \rightarrow c_{0} \rightarrow C(K \cup \omega) \rightarrow C(K) \rightarrow 0$.
- Such an exact sequence is nontrivial (c_{0} is not complemented inside $C(K \cup \omega)$ iff there is no bounded extension operator $C(K) \rightarrow C(K \cup \omega)$ (in particular, there is no retraction $K \cup \omega \rightarrow L)$.

How to find $0 \rightarrow c_{0} \rightarrow ? \rightarrow C(K) \rightarrow 0$

- Form a compact space of the form $K \cup \omega$.
- Then $0 \rightarrow c_{0} \rightarrow C(K \cup \omega) \rightarrow C(K) \rightarrow 0$.
- Such an exact sequence is nontrivial (c_{0} is not complemented inside $C(K \cup \omega)$ iff there is no bounded extension operator $C(K) \rightarrow C(K \cup \omega)$ (in particular, there is no retraction $K \cup \omega \rightarrow L)$.

How to find $0 \rightarrow c_{0} \rightarrow ? \rightarrow C(K) \rightarrow 0$

- Form a compact space of the form $K \cup \omega$.
- Then $0 \rightarrow c_{0} \rightarrow C(K \cup \omega) \rightarrow C(K) \rightarrow 0$.
- Such an exact sequence is nontrivial (c_{0} is not complemented inside $C(K \cup \omega)$ iff there is no bounded extension operator $C(K) \rightarrow C(K \cup \omega)$ (in particular, there is no retraction $K \cup \omega \rightarrow L$).

How to find $0 \rightarrow c_{0} \rightarrow ? \rightarrow C(K) \rightarrow 0$

- Form a compact space of the form $K \cup \omega$.
- Then $0 \rightarrow c_{0} \rightarrow C(K \cup \omega) \rightarrow C(K) \rightarrow 0$.
- Such an exact sequence is nontrivial (c_{0} is not complemented inside $C(K \cup \omega)$ iff there is no bounded extension operator $C(K) \rightarrow C(K \cup \omega)$ (in particular, there is no retraction $K \cup \omega \rightarrow L)$.

How to find $0 \rightarrow c_{0} \rightarrow ? \rightarrow C(K) \rightarrow 0$

- Form a compact space of the form $K \cup \omega$.
- Then $0 \rightarrow c_{0} \rightarrow C(K \cup \omega) \rightarrow C(K) \rightarrow 0$.
- Such an exact sequence is nontrivial (c_{0} is not complemented inside $C(K \cup \omega)$ iff there is no bounded extension operator $C(K) \rightarrow C(K \cup \omega)$ (in particular, there is no retraction $K \cup \omega \rightarrow L)$.

How to find $0 \rightarrow c_{0} \rightarrow ? \rightarrow C(K) \rightarrow 0$

- Form a compact space of the form $K \cup \omega$.
- Then $0 \rightarrow c_{0} \rightarrow C(K \cup \omega) \rightarrow C(K) \rightarrow 0$.
- Such an exact sequence is nontrivial (c_{0} is not complemented inside $C(K \cup \omega)$ iff there is no bounded extension operator $C(K) \rightarrow C(K \cup \omega)$ (in particular, there is no retraction $K \cup \omega \rightarrow L)$.

How to find $0 \rightarrow c_{0} \rightarrow ? \rightarrow C(K) \rightarrow 0$

- Form a compact space of the form $K \cup \omega$.
- Then $0 \rightarrow c_{0} \rightarrow C(K \cup \omega) \rightarrow C(K) \rightarrow 0$.
- Such an exact sequence is nontrivial (c_{0} is not complemented inside $C(K \cup \omega)$ iff there is no bounded extension operator $C(K) \rightarrow C(K \cup \omega)$ (in particular, there is no retraction $K \cup \omega \rightarrow L)$.

- For some $\omega<\kappa \leq \mathfrak{c}$ find in K a copy of $\kappa \cup\{\infty\}$.

How to construct a suitable $K \cup \omega$

- For some $\omega<\kappa \leq \mathfrak{c}$ find in K a copy of $\kappa \cup\{\infty\}$.
- Take an AD \mathscr{A} of size κ and consider $K_{\mathscr{A}}$.

How to construct a suitable $K \cup \omega$

- For some $\omega<\kappa \leq \mathfrak{c}$ find in K a copy of $\kappa \cup\{\infty\}$.
- Take an AD \mathscr{A} of size κ and consider $K_{\mathscr{A}}$.
- Form $K \cup \omega$ by identifying $\left(K_{\mathscr{A}}\right)^{\prime}$ with $\kappa \cup\{\infty\}$.

How to construct a suitable $K \cup \omega$

- For some $\omega<\kappa \leq \mathfrak{c}$ find in K a copy of $\kappa \cup\{\infty\}$.
- Take an AD \mathscr{A} of size κ and consider $K_{\mathscr{A}}$.
- Form $K \cup \omega$ by identifying $\left(K_{\mathscr{A}}\right)^{\prime}$ with $\kappa \cup\{\infty\}$.

How to construct a suitable $K \cup \omega$

- For some $\omega<\kappa \leq \mathfrak{c}$ find in K a copy of $\kappa \cup\{\infty\}$.
- Take an AD \mathscr{A} of size κ and consider $K_{\mathscr{A}}$.
- Form $K \cup \omega$ by identifying $\left(K_{\mathscr{A}}\right)^{\prime}$ with $\kappa \cup\{\infty\}$.

Such a space $K \cup \omega$ is suitable (gives a nontrivial twisted sum) if \mathscr{A} satisfies the following (in the spirit of multiple gaps investigated by Avilés and Todorčević):

- For some $\omega<\kappa \leq \mathfrak{c}$ find in K a copy of $\kappa \cup\{\infty\}$.
- Take an AD \mathscr{A} of size κ and consider $K_{\mathscr{A}}$.
- Form $K \cup \omega$ by identifying $\left(K_{\mathscr{A}}\right)^{\prime}$ with $\kappa \cup\{\infty\}$.

Such a space $K \cup \omega$ is suitable (gives a nontrivial twisted sum) if \mathscr{A} satisfies the following (in the spirit of multiple gaps investigated by Avilés and Todorčević):

Nonseparated parts

For every $n \geq 2, \mathscr{A}$ can be decomposed into $\mathscr{A}_{1}, \ldots, \mathscr{A}_{n}$ pairwise disjoint parts that cannot be separated, that is if $S_{i}^{*} \supseteq A$ for every $A \in \mathscr{A}_{i}, i=1, \ldots, n$ then $\bigcap_{i \leq n} S_{i} \neq \emptyset$.

- For some $\omega<\kappa \leq \mathfrak{c}$ find in K a copy of $\kappa \cup\{\infty\}$.
- Take an AD \mathscr{A} of size κ and consider $K_{\mathscr{A}}$.
- Form $K \cup \omega$ by identifying $\left(K_{\mathscr{A}}\right)^{\prime}$ with $\kappa \cup\{\infty\}$.

Such a space $K \cup \omega$ is suitable (gives a nontrivial twisted sum) if \mathscr{A} satisfies the following (in the spirit of multiple gaps investigated by Avilés and Todorčević):

Nonseparated parts

For every $n \geq 2, \mathscr{A}$ can be decomposed into $\mathscr{A}_{1}, \ldots, \mathscr{A}_{n}$ pairwise disjoint parts that cannot be separated, that is if $S_{i}^{*} \supseteq A$ for every $A \in \mathscr{A}_{i}, i=1, \ldots, n$ then $\bigcap_{i \leq n} S_{i} \neq \emptyset$.

One can find such a family \mathscr{A} of cardinality $\leq \operatorname{non}(\mathscr{E})$, where \mathscr{E} is the σ-ideal of subsets of $[0,1]$ generated by closed measure zero sets (see Bartoszyński \& Shelah [1992]).

The complemented subspace problem

Definition.

Say that a Banach space X is a \mathscr{C}-space if it is isomorphic to $C(K)$, the space of continuous functions on a compact space K.

The complemented subspace problem

Definition.

Say that a Banach space X is a \mathscr{C}-space if it is isomorphic to $C(K)$, the space of continuous functions on a compact space K.

Problem.

Suppose that X is a complemented subspace of a \mathscr{C}-space; must X be a \mathscr{C}-space?

The complemented subspace problem

Definition.

Say that a Banach space X is a \mathscr{C}-space if it is isomorphic to $C(K)$, the space of continuous functions on a compact space K.

Problem.

Suppose that X is a complemented subspace of a \mathscr{C}-space; must X be a \mathscr{C}-space?

Rosenthal [1972]

Suppose that X is a complemented subspace of $C[0,1]$ and X^{*} is not separable. Then $X \simeq C[0,1]$.

The complemented subspace problem: No!

Let $\theta: L \rightarrow K$ be a continuous surjection between compact spaces and let θ° be the corresponding isometric embedding $\theta^{\circ}: C(K) \rightarrow C(L)$ given by $\theta^{\circ}(g)=g \circ \theta$.

The complemented subspace problem: No!

Let $\theta: L \rightarrow K$ be a continuous surjection between compact spaces and let θ° be the corresponding isometric embedding $\theta^{\circ}: C(K) \rightarrow C(L)$ given by $\theta^{\circ}(g)=g \circ \theta$.

Salguero-Alarcón \& P. [2022]

There are two separable scattered compacta K and L and a continuous surjection $\theta: L \rightarrow K$ such that $C(L) \simeq \theta^{\circ}[C(K)] \oplus X$ and the Banach space X is not a \mathscr{C}-space.

The complemented subspace problem: No!

Let $\theta: L \rightarrow K$ be a continuous surjection between compact spaces and let θ° be the corresponding isometric embedding $\theta^{\circ}: C(K) \rightarrow C(L)$ given by $\theta^{\circ}(g)=g \circ \theta$.

Salguero-Alarcón \& P. [2022]

There are two separable scattered compacta K and L and a continuous surjection $\theta: L \rightarrow K$ such that $C(L) \simeq \theta^{\circ}[C(K)] \oplus X$ and the Banach space X is not a \mathscr{C}-space.

- Petczyński: Suppose that φ_{x} is a probability measure on $\theta^{-1}(x), x \in K$ and $K \ni x \rightarrow \varphi_{x} \in C(L)^{*}$ is weak ${ }^{*}$ continuous. Then $C(L)=\theta^{\circ}[C(K)] \oplus X$ because $T f(x)=\int_{L} f \mathrm{~d} \varphi_{x}$ defines $T: C(L) \rightarrow C(K)$ and $P f=(T f) \circ \theta$ is a projection.

The complemented subspace problem: No!

Let $\theta: L \rightarrow K$ be a continuous surjection between compact spaces and let θ° be the corresponding isometric embedding
$\theta^{\circ}: C(K) \rightarrow C(L)$ given by $\theta^{\circ}(g)=g \circ \theta$.

Salguero-Alarcón \& P. [2022]

There are two separable scattered compacta K and L and a continuous surjection $\theta: L \rightarrow K$ such that $C(L) \simeq \theta^{\circ}[C(K)] \oplus X$ and the Banach space X is not a \mathscr{C}-space.

- Petczyński: Suppose that φ_{x} is a probability measure on $\theta^{-1}(x), x \in K$ and $K \ni x \rightarrow \varphi_{x} \in C(L)^{*}$ is weak ${ }^{*}$ continuous. Then $C(L)=\theta^{\circ}[C(K)] \oplus X$ because $T f(x)=\int_{L} f \mathrm{~d} \varphi_{x}$ defines $T: C(L) \rightarrow C(K)$ and $P f=(T f) \circ \theta$ is a projection.
- If X is a \mathscr{C}-space then the ball in X^{*} contains a closed set F such that $X \ni x \rightarrow x \mid F \in C(F)$ is an isomorphism.

Shape of our construction

Shape of our construction

The framework

We work in

$$
\Delta=\left\{(n, k) \in \omega^{2}: k \leq n\right\},
$$

and consider the sticks $S_{n}=\{(n, k): k \leq n\}$ and the measures $\varphi_{n}=\frac{1}{n+1} \cdot \sum_{k \leq n} \delta_{(n, k)}$.

We work in

$$
\Delta=\left\{(n, k) \in \omega^{2}: k \leq n\right\},
$$

and consider the sticks $S_{n}=\{(n, k): k \leq n\}$ and the measures $\varphi_{n}=\frac{1}{n+1} \cdot \sum_{k \leq n} \delta_{(n, k)}$.
By a cylinder $C \subseteq \Delta$ we mean a set of the form $(A \times \omega) \cap \Delta$.

We work in

$$
\Delta=\left\{(n, k) \in \omega^{2}: k \leq n\right\},
$$

and consider the sticks $S_{n}=\{(n, k): k \leq n\}$ and the measures $\varphi_{n}=\frac{1}{n+1} \cdot \sum_{k \leq n} \delta_{(n, k)}$.
By a cylinder $C \subseteq \Delta$ we mean a set of the form $(A \times \omega) \cap \Delta$.
Define
(1) an almost disjoint family \mathscr{A} of cylinders and let \mathfrak{B}_{1} be the algebra of subsets of Δ generated by \mathscr{A} and all the sticks S_{n};

We work in

$$
\Delta=\left\{(n, k) \in \omega^{2}: k \leq n\right\},
$$

and consider the sticks $S_{n}=\{(n, k): k \leq n\}$ and the measures $\varphi_{n}=\frac{1}{n+1} \cdot \sum_{k \leq n} \delta_{(n, k)}$.
By a cylinder $C \subseteq \Delta$ we mean a set of the form $(A \times \omega) \cap \Delta$. Define
(1) an almost disjoint family \mathscr{A} of cylinders and let \mathfrak{B}_{1} be the algebra of subsets of Δ generated by \mathscr{A} and all the sticks S_{n};
(2) split every $A \in \mathscr{A}$ into B_{A}^{0}, B_{A}^{1} and let \mathfrak{B}_{2} be the algebra of subsets of Δ generated by all B_{A}^{0}, B_{A}^{1} and finite subsets;

We work in

$$
\Delta=\left\{(n, k) \in \omega^{2}: k \leq n\right\},
$$

and consider the sticks $S_{n}=\{(n, k): k \leq n\}$ and the measures $\varphi_{n}=\frac{1}{n+1} \cdot \sum_{k \leq n} \delta_{(n, k)}$.
By a cylinder $C \subseteq \Delta$ we mean a set of the form $(A \times \omega) \cap \Delta$. Define
(1) an almost disjoint family \mathscr{A} of cylinders and let \mathfrak{B}_{1} be the algebra of subsets of Δ generated by \mathscr{A} and all the sticks S_{n};
(2) split every $A \in \mathscr{A}$ into B_{A}^{0}, B_{A}^{1} and let \mathfrak{B}_{2} be the algebra of subsets of Δ generated by all B_{A}^{0}, B_{A}^{1} and finite subsets;
(3) be sure that $\lim _{n \in A_{0}} \varphi_{n}\left(B_{A}^{0}\right)=1 / 2$ for every $A \in \mathscr{A}$, $A=\left(A_{0} \times \omega\right) \cap \Delta ;$

We work in

$$
\Delta=\left\{(n, k) \in \omega^{2}: k \leq n\right\},
$$

and consider the sticks $S_{n}=\{(n, k): k \leq n\}$ and the measures $\varphi_{n}=\frac{1}{n+1} \cdot \sum_{k \leq n} \delta_{(n, k)}$.
By a cylinder $C \subseteq \Delta$ we mean a set of the form $(A \times \omega) \cap \Delta$. Define
(1) an almost disjoint family \mathscr{A} of cylinders and let \mathfrak{B}_{1} be the algebra of subsets of Δ generated by \mathscr{A} and all the sticks S_{n};
(2) split every $A \in \mathscr{A}$ into B_{A}^{0}, B_{A}^{1} and let \mathfrak{B}_{2} be the algebra of subsets of Δ generated by all B_{A}^{0}, B_{A}^{1} and finite subsets;
(3) be sure that $\lim _{n \in A_{0}} \varphi_{n}\left(B_{A}^{0}\right)=1 / 2$ for every $A \in \mathscr{A}$, $A=\left(A_{0} \times \omega\right) \cap \Delta$;
(9) Put $K=\operatorname{ult}\left(\mathfrak{B}_{1}\right), L=\operatorname{ult}\left(\mathfrak{B}_{2}\right) ; \theta: L \rightarrow K$ is the obvious surjection.

We work in

$$
\Delta=\left\{(n, k) \in \omega^{2}: k \leq n\right\},
$$

and consider the sticks $S_{n}=\{(n, k): k \leq n\}$ and the measures $\varphi_{n}=\frac{1}{n+1} \cdot \sum_{k \leq n} \delta_{(n, k)}$.
By a cylinder $C \subseteq \Delta$ we mean a set of the form $(A \times \omega) \cap \Delta$. Define
(1) an almost disjoint family \mathscr{A} of cylinders and let \mathfrak{B}_{1} be the algebra of subsets of Δ generated by \mathscr{A} and all the sticks S_{n};
(2) split every $A \in \mathscr{A}$ into B_{A}^{0}, B_{A}^{1} and let \mathfrak{B}_{2} be the algebra of subsets of Δ generated by all B_{A}^{0}, B_{A}^{1} and finite subsets;
(3) be sure that $\lim _{n \in A_{0}} \varphi_{n}\left(B_{A}^{0}\right)=1 / 2$ for every $A \in \mathscr{A}$, $A=\left(A_{0} \times \omega\right) \cap \Delta$;
(9) Put $K=\operatorname{ult}\left(\mathfrak{B}_{1}\right), L=\operatorname{ult}\left(\mathfrak{B}_{2}\right) ; \theta: L \rightarrow K$ is the obvious surjection.
(5) Property (3) enables us to define a projection from $C(L)$ onto $\theta^{\circ}[C(K)]$ so $C(L)=\theta^{\circ}[C(K)] \oplus X$.

Remark

Salguero-Alarcón \& P. [2021]

There is

$$
0 \longrightarrow c_{0} \xrightarrow{j} X \xrightarrow{\rho} c_{0}(\mathfrak{c}) \longrightarrow 0
$$

where X is not a \mathscr{C}-space.

Thanks

I thank the Organizers for their kind invitation.

I thank the Organizers for their kind invitation.
Thanks are due to

- Antonio Avilés,
- Félix Cabello Sánchez,
- Jesús M.F. Castillo,
- Witold Marciszewski,
- Alberto Salguero-Alarcón

I thank the Organizers for their kind invitation.
Thanks are due to

- Antonio Avilés,
- Félix Cabello Sánchez,
- Jesús M.F. Castillo,
- Witold Marciszewski,
- Alberto Salguero-Alarcón
for our collaboration convincing me that the scattered compacta of height 3 are so mysterious and charming.

I thank the Organizers for their kind invitation.
Thanks are due to

- Antonio Avilés,
- Félix Cabello Sánchez,
- Jesús M.F. Castillo,
- Witold Marciszewski,
- Alberto Salguero-Alarcón
for our collaboration convincing me that the scattered compacta of height 3 are so mysterious and charming. My word of admiration for Ukrainians

I thank the Organizers for their kind invitation.
Thanks are due to

- Antonio Avilés,
- Félix Cabello Sánchez,
- Jesús M.F. Castillo,
- Witold Marciszewski,
- Alberto Salguero-Alarcón
for our collaboration convincing me that the scattered compacta of height 3 are so mysterious and charming. My word of admiration for Ukrainians

I thank the Organizers for their kind invitation.
Thanks are due to

- Antonio Avilés,
- Félix Cabello Sánchez,
- Jesús M.F. Castillo,
- Witold Marciszewski,
- Alberto Salguero-Alarcón
for our collaboration convincing me that the scattered compacta of height 3 are so mysterious and charming. My word of admiration for Ukrainians

for their brave hearts.

