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Compacta from almost disjoint families

1 Let A ⊆ P(ω) be an almost disjoint family, that is A∩B is
finite for different A,B ∈ A .

2 We assume that A is infinite and consists of infinite sets.

3 Write ΨA for ω ∪A and define a topology on ΨA by
declaring that points in ω are isolated while basic
neighbourhoods of A ∈ ΨA are of the form {A}∪A\ I , with
I ⊆ ω finite.

4 Write KA for ΨA ∪{∞}, the one-point compactification.

Remark

KA may be seen as the Stone space of all ultrafilters on the
algebra generated by A and finite sets.

There is a lot of research done on the interplay between
combinatorial properties of A and topology of ΨA (or KA ), see
Hrušák [2014].
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Banach spaces

Given a compact space K , C (K ) is the Banach space of real-valued
continuous functions on K (with the usual supremum norm).

The subject of this talk

an almost disjoint family A

versus

the isomorphic structure of the Banach space C (KA )

C (KA ) may be seen as the subspace of ℓ∞ spanned by χB ,
B ∈ A ∪fin∪ω.
C (KA ) spaces were considered already by Johnson &
Lindenstrauss [1974].
They also introduced another type of spaces defined by A
denoted JL2(A ), see e.g. Avilés, Mart́ınez Cervantes and
Rodŕıguez [2018].
See also Magidor & P. [2017] for applications of almost
disjoint families on ω2 to Banach space theory.
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Distinguishing C (KA ) spaces

If C (K ) and C (L) are isometric then K and L are homeomorphic
(Banach-Stone).
However, C (2ω ) is isomorphic to C [0,1], C (2ω ) ≃ C [0,1] (by
Miljutin’s theorem).

Natural question

For which AD families A and A ′ C (KA ) ≃ C (KA ′)?

Marciszewski & Pol [2009]

If A and A ′ are AD families of branches of 2<ω and ω<ω ,
respectively, then C (KA ) ̸≃ C (KA ′).
There are 2c pairwise nonisomorphic Banach spaces of the form
C (KA ), |A | = c.

For the second assertion: Every isomorphism
T : C (KA ) → C (KA ′) is determined by a sequence of measures µn

on KA , where
∫
g dµn = Tg(n).
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Distinguishing C (KA ) spaces 2

Marciszewski [1989]

1 Given a separable compactum K , write ri(K ) = ω1 if
{g |D : g ∈ C (K )} is a Borel subset of RD for no countable
dense D ⊆ K . Otherwise, ri(K ) is the least α < ω1 such that
{g |D : g ∈ C (K )} is in Σ0

1+α
∪Π0

1+α
.

2 If C (K ) ≃ C (L) then ri(K ) ≤ ri(L) + 1.

3 Given Z ⊆ 2ω , write A (Z ) for the AD family of branches
B(x) = {x |n : n ∈ ω}, where x ∈ Z .

4 The Borel complexity of Z is reflected by ri(KA (Z)) so there
are AD families A (Zξ ) for ξ < ω1 such that C (KA (Zξ )

) are
pairwise nonisomorphic.
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Only one C (KA ) small space

See Cabello Sanchez, Castillo, Marciszewski,
Salguero-Alarcón and P. [2020] for further applications of ri and
for the following.

Theorem.

Under MA(ω1), C (KA ) ≃ C (KA ′) whenever AD families A ,A ′

satisfy |A | = |A ′| = ω1.
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Complemented subspaces

A subspace Y of a Banach space X is complemented if there is a
closed subspace Z ⊆ X such that X = Y ⊕Z .
Equivalently, there is a projection P : X → X (a bounded linear
operator such that P ◦P = P) mapping X onto Y .
Recall that c0 is the classical Banach space of sequences in Rω

converging to 0 (with the supremum norm).
The space c0 is separably injective, that is any copy of c0 is
complemented in any separable superspace.

Koszmider [2005] under MA, Koszmider & Laustsen [2021]

There is an uncountable AD family A such that

Every operator T : C (KA ) → C (KA ) is of the form
T = c · I +S , where the range of S is contained in a subspace
isomorphic to c0;

C (KA ) ≃ c0⊕C (KA ) is essentially the unique decomposition
into a direct sum of infinitely dimensional summands.
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isomorphic to c0;

C (KA ) ≃ c0⊕C (KA ) is essentially the unique decomposition
into a direct sum of infinitely dimensional summands.



Twisted sums

An exact sequence of Banach spaces is a diagram

0 −−−−→ A
j−−−−→ X

ρ−−−−→ B −−−−→ 0

formed by Banach spaces and linear continuous operators in which
the kernel of each arrow coincides with the image of the preceding
one. Such a sequence, or the middle space X alone, is usually
called a twisted sum of A and B.
Given A,B, we can always take X = A⊕B to form a trivial twisted
sum of A,B.

Definition.

The exact sequence above is nontrivial if j [A] is not complemented
in X .
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CCKY Problem

Problem (Cabello Sánchez, Castillo, Kalton, Yost)

Let K be a nonmetrizable compact space. Does c0 admit a
nontrivial twisted sum with C (K )?
Can we find a Banach space X and embed c0 onto an
uncomplemented subspace Y of X so that X/Y ≃ C (K )?

Some partial solutions

Sobczyk: ‘No’ if K is metrizable.

Cabello Sánchez & Castillo: ‘Yes’, for K = βω.

Castillo: ‘Yes’ under CH, for K nonmetrizable scattered of
finite height.

Correa & Tausk: Yes, if K contains a copy of 2c.
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Two answers to CCKY

CCKY asks whether there are nontrivial solutions to
0 → c0 →? → C (K ) → 0.

1 Marciszewski & P. [2018]: Under MA(ω1), no for K = 2ω1

and for K = KA , where |A | = ω1. (Consistently, Problem
CCKY has a negative solution).

2 Avilés, Marciszewski & P. [2019]: Under CH, ‘yes’ for
every nonmetrizable compactum K . (Consistently, Problem
CCKY has a positive solution).
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How to find 0→ c0 →?→ C (K )→ 0

Form a compact space of the form K ∪ω.

Then 0 → c0 → C (K ∪ω) → C (K ) → 0.

Such an exact sequence is nontrivial (c0 is not complemented
inside C (K ∪ω) iff there is no bounded extension operator
C (K ) → C (K ∪ω) (in particular, there is no retraction
K ∪ω → L).
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How to construct a suitable K ∪ω

For some ω < κ ≤ c find in K a copy of κ ∪{∞}.

Take an AD A of size κ and consider KA .

Form K ∪ω by identifying (KA )′ with κ ∪{∞}.

Such a space K ∪ω is suitable (gives a nontrivial twisted sum) if
A satisfies the following (in the spirit of multiple gaps investigated
by Avilés and Todorčević):

Nonseparated parts

For every n ≥ 2, A can be decomposed into A1, . . . ,An pairwise
disjoint parts that cannot be separated, that is if S∗

i ⊇ A for every
A ∈ Ai , i = 1, . . . ,n then

⋂
i≤n Si ̸= /0.

One can find such a family A of cardinality ≤ non(E ), where E is
the σ -ideal of subsets of [0,1] generated by closed measure zero
sets (see Bartoszyński & Shelah [1992]).
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The complemented subspace problem

Definition.

Say that a Banach space X is a C -space if it is isomorphic to
C (K ), the space of continuous functions on a compact space K .

Problem.

Suppose that X is a complemented subspace of a C -space; must
X be a C -space?

Rosenthal [1972]

Suppose that X is a complemented subspace of C [0,1] and X ∗ is
not separable. Then X ≃ C [0,1].
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The complemented subspace problem: No!

Let θ : L→ K be a continuous surjection between compact spaces
and let θ ◦ be the corresponding isometric embedding
θ ◦ : C (K ) → C (L) given by θ ◦(g) = g ◦θ .

Salguero-Alarcón & P. [2022]

There are two separable scattered compacta K and L and a
continuous surjection θ : L→ K such that C (L) ≃ θ ◦[C (K )]⊕X
and the Banach space X is not a C -space.

Pe lczyński: Suppose that ϕx is a probability measure on
θ−1(x), x ∈ K and K ∋ x → ϕx ∈ C (L)∗ is weak∗ continuous.
Then C (L) = θ ◦[C (K )]⊕X because Tf (x) =

∫
L f dϕx defines

T : C (L) → C (K ) and Pf = (Tf )◦θ is a projection.

If X is a C -space then the ball in X ∗ contains a closed set F
such that X ∋ x → x |F ∈ C (F ) is an isomorphism.
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The framework

We work in
∆ = {(n,k) ∈ ω

2 : k ≤ n},

and consider the sticks Sn = {(n,k) : k ≤ n} and the measures
ϕn = 1

n+1 ·∑k≤n δ(n,k).
By a cylinder C ⊆ ∆ we mean a set of the form (A×ω)∩∆.
Define

1 an almost disjoint family A of cylinders and let B1 be the
algebra of subsets of ∆ generated by A and all the sticks Sn;

2 split every A ∈ A into B0
A,B

1
A and let B2 be the algebra of

subsets of ∆ generated by all B0
A,B

1
A and finite subsets;

3 be sure that limn∈A0 ϕn(B0
A) = 1/2 for every A ∈ A ,

A = (A0×ω)∩∆;

4 Put K = ult(B1), L = ult(B2); θ : L→ K is the obvious
surjection.
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Remark

Salguero-Alarcón & P. [2021]

There is

0 −−−−→ c0
j−−−−→ X

ρ−−−−→ c0(c) −−−−→ 0

where X is not a C -space.
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Jesús M.F. Castillo,

Witold Marciszewski,

Alberto Salguero-Alarcón

for our collaboration convincing me that the scattered compacta of
height 3 are so mysterious and charming.
My word of admiration for Ukrainians

for their brave hearts.


