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Abstract. We consider definable topological dynamics for NIP groups ad-
mitting certain decompositions in terms of specific classes of definably amenable

groups. For such a group, we find a description of the Ellis group of its universal

definable flow. This description shows that the Ellis group is of bounded size.
Under additional assumptions, it is shown to be independent of the model,

proving a conjecture proposed by Newelski. Finally we apply the results to

new classes of groups definable in o-minimal structures, generalizing all of the
previous results for this setting.

In this paper we work within the framework of definable topological dynamics.
The reader is referred to [11] and [10] as the seminal papers. Familiarity with the
subject will be assumed throughout the paper, but we will recall the necessary
notions in the preliminaries. The main motivation for this research comes from
an open problem in definable topological dynamics regarding the model-theoretic
aspects of the Ellis group of a definable flow. Given a model M and an M -definable
group G, we consider the category of definable G-flows over M . These flows are
GpMq-flows in the sense of classic topological dynamics. The category contains
a universal object Sext,GpMq, the space of external types in G over M . In the
studies of this flow, a conection has been found relating its Ellis group to the
model-theoretic connected components of G.

In [11], Newelski conjectured that (at least under some “tame” assumptions),
the Ellis group of the universal flow of a group G is isomorphic to the quotient
G{G00, and that in particular it does not depend on the model. This was proved
to be the case in stable theories [12] and for definably compact groups definable
in o-minimal structures [10]. This result was later extended to definably amenable
groups definable in o-minimal structures [14] and finally to all definably amenable
groups in NIP theories [5]. Partial results also hold in the general case. It was
proven that in general the Ellis group factors through G{G00 whenever G00 exists
[10]. Indeed, this result holds also with G000 in place of G00. On the other hand,
there are examples of groups definable in a relatively tame o-minimal setup where
the conjecture fails.

A related, weaker conjecture states that the Ellis group does not depend on the
choice of the model. More precisely, given an M -definable group G and N ą M ,
one can consider the GpMq-flow Sext,GpMq as well as the GpNq-flow Sext,GpNq.
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The conjecture asserts that the Ellis groups calculated for each of the flows are
isomorphic, and that the witnessing isomorphism can be constructed in some de-
finable way. This is the case whenever the original conjecture holds as the quotient
G{G00 depends only on G.

A large part of the study of definable topological dynamics has been conducted
in the o-minimal setup. A study of SLp2,Rq in [6] provided a counterexample to
the original Ellis group conjecture. In [9], a wide range of counterexamples have
been produced by calculating the Ellis groups for the flows of groups definable in
o-minimal expansions of the reals admitting definable compact-torsion-free decom-
position. These results have been generalized in [16] to allow the calculation of
the Ellis groups over larger models, establishing the isomorphism with groups cal-
culated over the reals. A tangent case of definably amenable groups definable in
o-minimal expansions of arbitrary real closed fields have been solved in [14]. The
methods used to determine the Ellis groups have been progressively less specific to
the o-minimal setting.

In this paper, we replace the notions specific to the o-minimal setting with more
robust, model-theoretic ones, using the research done by Chernikov and Simon on
definably amenable NIP groups. We provide a way of computing the Ellis groups
for NIP groups that either contain a definable, definably extremely amenable nor-
mal subgroup, or admit a definable decomposition into an fsg and a definably
extremely amenable subgroup. We then apply our results to the o-minimal case,
generalizing all the previously obtained results. We finally discuss other general-
izations or applications. Our main results for the o-minimal case is the following:

Theorem 0.1. Let G be a definably connected group definable in an o-minimal
expansion of a real closed field. Then over any model M the Ellis group of the flow
Sext,GpMq is abstractly isomorphic to a subgroup of a compact Lie group.

In some cases we also note definability of this isomorphism, establishing the
weaker Ellis group conjecture there.

The paper is divided into six sections. In the first section we recall the usual
notions of definable topological dynamics and some general model theory, and cite
some of the more important results that we use. In the second section we discuss the
notion of definable amenability and its specific cases. In Section 3, we prove results
regarding the Ellis group of the universal definable flow of a definable group in a
NIP theory that has a normal, definable, definably extremely amenable subgroup.
In Section 4, again assuming NIP , we consider the dynamics of a group admitting a
definable decomposition into an fsg and a definably extremely amenable subgroups.
In Section 5, we apply the results to the case of groups definable in o-minimal
setting. In Section 6, we discuss generalizations and further applications.

1. Preliminaries

Throughout the paper, we use standard model-theoretic notations. Working over
a fixed model of an ambient theory, we will write C to denote a sufficiently saturated
and homogeneous elementary extension. We assume the reader’s familiarity with
the basics of model theory, including heirs, coheirs and the notion of definability
of types. By “definable” we always mean “definable with parameters”. In the
following subsections we discuss the notion of NIP groups, recall the basic notions
of both classic and definable topological dynamics, and the notion of definably
amenable groups and their specific subclasses.
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1.1. NIP theories and external definability. In our investigations, we will be
dealing with the notion of externally definable subsets and external types. Let M
be a structure. Recall that an externally definable subset of Mn is a trace in Mn

of a formula with parameters from an elementary extension N ą M . The set of
all externally definable subsets of Mn forms a boolean algebra Defext,npMq. The
set Sext,npMq “ SpDefext,npMqq of ultrafilters on Defext,npMq carries the Stone
topology, and we call its elements external types. If X is an M -definable subset,
we write Sext,XpMq for the closed subset of elements of Sext,npMq that contain X.

Working with external types in arbitrary theories is rather difficult. An assump-
tion on the ambient first-order theory makes their structure more easily understood.
Recall the following definition:

Definition 1.1. A complete theory T has NIP if it contains no formula φpx̄, ȳq
with the following property: for every model M |ù T , for each n P ω there are tuples
b0, . . . , bn´1 PM such that for each subset X of t0, . . . , n´1u there is a tuple a PM
such that M |ù φpa, biq ðñ i P X.

Now assume that T is a NIP theory in the language L and M its model. For
each externally definable set X P DefextpMq (for all n), let DX be a new predicate
interpreted in M such that DXpMq “ X. Let Lext,M “ LYtDX : X P DefextpMqu
be a new language and let Mext be the structure with the universe M considered
in the language Lext,M . Shelah proved in [15] that:

Proposition 1.2. Assume that T has NIP and M |ù T . Then the first order
Lext,M -structure Mext has elimination of quantifiers and all types over Mext are
definable.

As a consequence of definability of types over Mext, every type p P SpMextq has
a unique heir and a unique coheir over any set of parameters A Ą M . We will
denote the unique heir of p over A by p|A. For brevity, if ā is a finite tuple, we
will write p|ā instead of p|Mā. We will also employ the following notation, used for
example in [7], to easily express the heir and coheir relationships of elements:

Definition 1.3. Let pp0, . . . , pn´1q be a sequence of definable types. We write

pa0, . . . , an´1q |ù p0 b p1 b . . .b pn´1

to denote that for each i ă n, ai |ù pi|aăi.

By the elimination of quantifiers, the standard space of types SnpM
extq naturally

identifies with the space of quantifier-free types Sqf,npM
extq. Thus they can both

be identified with the space Sext,npMq of external types in the original language.
In the later subsections, and in the paper in general, we will often start with a

model M of a NIP theory and consider objects definable in the original language.
Then in order to consider external types, we will pass to Mext where they can
be identified with the standard types in SpMextq. Since the universe of M and
Mext is the same, we will make no distinction between XpMq and XpMextq for an
L-definable X.

Finally, we will use the following notation. Assume that p is a global type finitely
satisfiable in some model M . Then we write

pM “ tφpMq : φ P pu.

This is a external type in SextpMq.
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1.2. Definable topological dynamics. First we briefly recall some basic notions
and results of classic topological dynamics. Let G be a group. A G-flow is a (left)
action of G on a compact, Hausdorff topological space X by homeomorphisms. A
G-flow is called point-transitive if it contains a dense G-orbit. A subflow Y Ă X
is a nonempty, closed G-invariant subset of X. A subflow is called minimal if it
contains no proper subflows. With any g P G we can associate the corresponding
function πg : X Ñ X. Consider the space XX with pointwise convergence topology.
The (compact) set clptπg : g P Guq Ă XX is a point-transitive G-flow. Equipped
with the function composition operation ˚, it is a semigroup. It is called the Ellis
semigroup of the flow X, denoted EpXq. This semigroup operation is continuous
on the first coordinate. We have that EpEpXqq is naturally isomorphic to EpXq.

Let I be a minimal subflow of EpXq. Then I is a minimal ideal of the semigroup
pEpXq, ˚q. Likewise, any minimal ideal of pEpXq, ˚q is a minimal subflow. Let JpIq
denote the set of idempotent elements of I. Then by general theory of compact
semigroups,

I “
ď

uPJpIq

u ˚ I.

Each u ˚ I is a group that we will call an ideal subgroup. The isomorphism class
of an ideal subgroup does not depend on u and the choice of the minimal ideal I.
We call this isomorphism class the Ellis group of the flow X.

Turning now to the definable setting, we let M be an arbitrary first-order struc-
ture and let G “ pG, ¨q be an M -definable group. The space Sext,GpMq is naturally
acted upon by GpMq by left translations and carries the Stone topology that makes
it a compact, Hausdorff topological space. The set of all principal ultrafilters in
Sext,GpMq forms a dense orbit, making this Stone space a point-transitive GpMq-
flow in the sense of classic topological dynamics. It is the universal definable flow
of G over M in the sense of [11]. By [11], this flow is naturally isomorphic to its
own Ellis semigroup. As such, Sext,GpMq is equipped with a semigroup operation.

Now assume that we work with a NIP theory. We identify Sext,GpMq with
SGpM

extq. Due to definability of types, the semigroup operation on SGpM
extq has

the following, explicit definition. For p, q P SGpM
extq,

p ˚ q “ tppa ¨ b{Mextq,

where a |ù p and b |ù q|a. Equivalently, b |ù q and a satisfies the unique finitely
satisfiable extension of p over b; or simply pa, bq |ù p b q. In general, whenever
pa0, . . . , anq |ù p0 b . . .b pn, we have a0 ¨ . . . ¨ an |ù p0 ˚ . . . ˚ pn.

1.3. Ellis group conjectures. Let G be an M -definable group. Recall that the
model-theoretic connected component G00 is the smallest type-definable subgroup
of G of bounded index. It is a normal subgroup of G. It is well-known that G00

exists assuming NIP . Note that this is not true in general. Furthermore, by [1]

Fact 1.4. Let T has NIP . Then G00 calculated for Lext,M exists and equals to
G00 calculated in L.

Newelski conjectured [11] that under some relatively “tame” assumptions (gen-
erally understood to include NIP ), the following holds:

Conjecture 1.5. The Ellis group of Sext,GpMq is isomorphic to G{G00.

Another conjecture, generally found in [10] states:
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Conjecture 1.6. Let N ą M . The Ellis group of Sext,GpMq and the Ellis group
of Sext,GpNq are isomorphic.

The stipulation of the second conjecture is that the isomorphism can be found in
some definable way. Note that in general there is no obvious relationship between
the types in Sext,GpNq and Sext,GpMq since there is no natural way in which the
externally definable subsets of M should be interpreted in N . Newelski [10] pro-
posed the following solution to this problem. Let N 1 be an elementary extension of
Mext in the language Lext,M . Then N “ N 1|L is an elementary extension of M in
the original language such that every externally definable subset of M has a natural
interpretation in N . Extension of this kind is called ˚-elementary extension, and
we write M ă˚ N to denote it. Note that in this case types in Sext,GpNq extend
types in Sext,GpMq since the language Lext,N extends Lext,M . One can then state
the following:

Conjecture 1.7. There is an ideal subgroup in Sext,GpNq whose restriction to M
is an ideal subgroup in Sext,GpMq.

Note that in general, the restriction map r : Sext,GpNq Ñ Sext,GpMq is not
a semigroup homomorphism, so it is not known whether the image of an ideal
subgroup by r is an ideal subgroup, or whether an ideal subgroup in Sext,GpMq is
an epimorphic image of an ideal subgroup in some extension.

2. Definable amenability

In this section we recall facts about definably amenable groups and their specific
cases. We also consider them from the point of view of topological dynamics.

The following definition appears for example in [2]:

Definition 2.1. Let G be a definable group. We say that G is definably amenable
if there is a finitely additive probabilistic measure on the algebra of the definable
subsets of G invariant under the group action.

The measure stipulated in the definition is called a Keisler measure. Definably
amenable NIP groups are one of the large classes for which topological dynamics
have been described in detail. Chernikov and Simon showed that the Ellis group
conjecture holds in this setup [2]:

Theorem 2.2. Let M be a model of a NIP theory and G be a definably amenable
M -definable group. Let I Ă Sext,GpMq be a minimal subflow and u P I an idempo-
tent. Then the quotient map GÑ G{G00 restricted to u ˚ I is an isomorphism.

In this paper, we will consider groups described in terms of subgroups being
specific cases of definably amenable groups. The group themselves will usually not
be definably amenable. The motivation for the particular decompositions comes
from the study of groups definable in o-minimal setting. The two particular cases
we are interested in are fsg groups and definably extremely amenable groups.

2.1. Finitely satisfied generics. The following definition can be found in [8]:

Definition 2.3. G admits finitely satisfied generics (in short: “G has fsg”) if
there is a global type ppxq in G and a small model M such that every G-translate
of p is finitely satisfiable in M .
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In [2], the fsg groups are characterized as possessing a unique generic Keisler
measure. In particular, fsg groups are definably amenable. Examples of such
groups are definably compact groups definable in o-minimal expansions of real
closed fields, or over the field of p-adic numbers.

Recall that a subset X Ă G is called generic if finitely many of its translates
cover G. A type in G is generic if it only contains formulas defining generic subsets.
Likewise an external type in G is generic if it only contains generic external subsets
of G. The following properties of fsg groups can be found in [8]:

Fact 2.4. Let G be fsg and M any small model. Then there is a generic global
type p P SGpCq. Moreover, for any such a type:

(1) Every left and right translate of p is generic and finitely satisfiable in M .
(2) G00 exists and is both the left and the right stabilizer of p.

Clearly, any generic type is a finitely satisfiable extension (a coheir) of its own
restriction to any submodel.

Let p be a global type in G finitely satisfiable in some small model M . Then the
set pM “ tφpMq : φ P pu is an element of SGpM

extq. It is easy to see the following:

Fact 2.5. Let G be fsg. Let p P SGpCq be a global type. The following are equiva-
lent:

(i) p is generic.
(ii) For some small model M , pM P SGpM

extq is generic.
(iii) For any small model M , pM P SGpM

extq is generic.

The above fact allows us to identify the set of generic types in SGpM
extq (for

any M) with the set of global generic types. For a definable group G, denote by
GenGpM

extq the set of (left) generic types in Sext,GpMq. From the dynamical point
of view, Newelski proves in [11]:

Proposition 2.6. Let G be a group and assume that there is a generic p P Sext,GpMq.
Then the set GenGpM

extq is the unique minimal subflow of Sext,GpMq.

Now letG be anM -definable fsg group in aNIP theory. Combining Proposition
2.6 with Theorem 2.2, we easily see the following:

Fact 2.7. The minimal flow GenGpM
extq decomposes into ideal subgroups of the

form q ˚GenGpM
extq where q is a generic with q $ G00.

We will need the following:

Lemma 2.8. Let q P GenGpM
extq. Then for any p P Sext,GpMq, q ˚ p is generic

and both q and q ˚ p belong to the same ideal subgroup.

Proof. Write q “ rM for some global generic r and assume q P u ˚GenGpM
extq for

some idempotent u. Let b |ù p and a |ù rN for some N ą M containing b. Then
a ¨ b |ù q ˚ p. Since G00pNq “ StabRpr

N q, we have a ¨ b ”M a ¨ b1 for any b1 with
b1{G00pNq “ b{G00pNq provided that tppa{Mb1q is finitely satisfiable. In particular
b1 can be found satisfying a generic type. Thus q ˚ p “ q ˚ p1 “ u ˚ q ˚ p1 for some
generic p1 and so q ˚ p P u ˚GenGpM

extq. �

Corollary 2.9. The flow GenGpM
extq is a two-sided ideal of Sext,GpMq.
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2.2. Definable extreme amenability. We now turn to discuss definably ex-
tremely amenable groups. We will use the following definition:

Definition 2.10. A group G is definably extremely amenable if it is definably
amenable witnessed by a Keisler measure with the image t0, 1u.

It is easy to see that measures as in the definition correspond to complete global
G-invariant types in SGpCq. Thus:

Fact 2.11. Let G be definably extremely amenable. Then there is a G-invariant
type p P SGpCq. Moreover, for any such type and any model M , the restriction
pæM P SGpMq is GpMq-invariant.

We first note that the property of having an invariant type is preserved when
passing to Lext,M . By [1]:

Proposition 2.12. Let G be definable and M a model of a NIP theory. Let
p P SGpMq be GpMq-invariant. Then there is a GpMq-invariant p1 P Sext,GpMq
extending p.

By for example [9]:

Lemma 2.13. Assume that p P SGpMq is a GpMq-invariant definable type. Then
for any N ą M , the unique heir p|N is GpNq-invariant. In particular, the global
heir of p is G-invariant.

Corollary 2.14. Let G be definable and M a model of a NIP theory. Assume
that p P Sext,GpMq is GpMq-invariant. Then for any M ă˚ N the type p|N (the
heir of p over N in Lext,M ) is GpNq-invariant and extends to a GpNq-invariant
p1 P Sext,GpNq.

Topological dynamics for definably extremely amenable groups is straightfor-
ward, as any GpMq-invariant type forms a one-point minimal flow that is its own
unique ideal subgroup.

3. Groups with normal definably extremely amenable subgroup

Assume that we work in a NIP theory. Let G be a definable group and H CG
a definable normal subgroup. We will show that topological dynamics of G is fully
explained by dynamics of the quotient G{H.

Let M be a model and assume that there is an HpMq-invariant type in SGpMq.
By Proposition 2.12 we may assume there is an HpMq-invariant external type
p P Sext,GpMq. For the remainder of the section, we fix M , G, H and p.

The canonical quotient map πH : G Ñ G{H naturally extends to a map from
the space of (external) types in G over M to the space of (external) types in G{H
over M . For a type q, write q{H for its projection.

Lemma 3.1. With the notation above,

(i) Let q P Sext,GpMq. Then the type q ˚ p depends only on q{H.
(ii) The set Sext,GpMq ˚ p is a subflow of Sext,GpMq isomorphic to Sext,G{N pMq

via the projection map.
(iii) There is a minimal subflow of Sext,GpMq ˚ p that projects isomorphically to a

minimal subflow of Sext,G{N pMq.
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Proof. (i) Let a P G and h P H. If h1 |ù p|a, h, then ahh1 |ù tppah{Mq ˚ p. Since
hh1 |ù p|a, h by Lemma 2.13, we also have ahh1 |ù tppa{Mq ˚ p.

(ii) Clearly SGpMq ˚ p is an ideal of Sext,GpMq. Let q1, q2 P G and a |ù q1,
h |ù p|a, b |ù q2|a, h and h1 |ù p|a, h, b. Then ahbh1 |ù q1 ˚ p ˚ q2 ˚ p, but ahbh1 “
abh2h1 for some h2 P H since N is normal in G. As h2h1 |ù p|a, b, h, we have
abh2h |ù q1 ˚ q2 ˚ p as needed.

(iii) follows from (ii). �

Whenever a minimal flow projects isomorphically onto a minimal flow, idempo-
tents map to idempotents and their associated ideal subgroups also map isomor-
phically. As a corollary we obtain

Proposition 3.2. Let H C G be definably extremely amenable. Then the Ellis
groups of pGpMq, Sext,GpMqq and pGpMq{HpMq, Sext,G{HpMqq are isomorphic.

4. fsg-definably extremely amenable decomposition

In this section we consider the case of a group that properly decomposes into fsg
and definably extremely amenable subgroups. The motivation for this decomposi-
tion comes from the theory of definable Lie groups and represent a certain abstract
definable version of Iwasawa decomposition. We will make this connection more
clear in a later section. All throughout this section, we assume to work in a NIP
theory. We begin with a suitable ad hoc definition.

Definition 4.1. Let G be M -definable. We say that G has a good decomposition
if there are M -definable subgroups K,H ă G such that:

(1) G “ KH and F XH “ t1Gu.
(2) K has fsg.
(3) H is definably extremely amenable.

In this case we will also say that G “ KH is a good decomposition.

Remark 4.2. The condition (1) in the above definition is saying precisely that
G “ KH is a Zappa-Szép decomposition.

We will aim to describe the topological dynamics of G admitting a good decom-
position. Since we do not assume that the definably extremely amenable subgroup
is normal, there is no straightforward reduction to dynamics of the quotient.

Assume that pG, ¨q is M -definable group in a NIP theory and that G “ KH is a
definable decomposition with KXH “ t1Gu. The description of dynamical objects
in Sext,GpMq will involve a natural action of H on K induced by the decomposition.
Let g P G be any element. Since the intersection of K and H is trivial, g can be
uniquely written as a product kh with k P K,h P H, and likewise as a product h1k1

with h1 P H, k1 P K. The pairs pk, hq, ph1, k1q and g are all interdefinable. Define an
action of H on K as follows:

h ¨1 k “ k1 ðñ hk “ k1h1 for some h1 P H.

A direct computation shows this action is well-defined.
The action ¨1 lifts to an action ˚1 of the semigroup of types Sext,HpMq on the

space of types Sext,KpMq in the following way:

p ˚1 q “ tpph ¨ k{Mq
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for h |ù p, k |ù q|h. The fact this is a well-defined semigroup action follows from
a more general variant of definable topological dynamics that we omitted in the
introduction. We will instead show it directly.

Lemma 4.3. Let p1, p P Sext,HpMq and q P Sext,KpMq. Then p1 ˚1 pp ˚1 qq “
pp1 ˚ pq ˚1 q.

Proof. Simply observe that if ph1, h, kq |ù p1bpb q, then h1 ¨1 ph ¨1 kq |ù p1 ˚1 pp˚1 qq
and also ph1 ¨ hq ¨1 k |ù pp

1 ˚ pq ˚1 q. �

We will also use the following:

Lemma 4.4. Assume that p P Sext,HpMq is an pMq-invariant type. Then for any
q P Sext,KpMq, p

1 P Sext,HpMq, we have p1 ˚ q ˚ p “ pp1 ˚1 qq ˚ p.

Proof. Let ph1, k, hq |ù p1 b q b p. Then h1kh “ ph1 ¨1 kqh
2h for some h2 P H. Then

by Lemma 2.13 h2h |ù p|h1k and so

ph1 ¨1 kqh
2h |ù tpph1 ¨1 k{Mq ˚ p “ pp

1 ˚1 qq ˚ p,

as required. �

We are now ready to approximate a minimal flow in the setting discussed.

Proposition 4.5. Let G “ KH be a definable (not necessarily good) decomposition
with K X H “ t1Gu and let p P Sext,GpMq be HpMq-invariant. Then there is
I Ă Sext,KpMq such that I ˚ p is a minimal subflow of Sext,GpMq.

Proof. It is sufficient to show that the set Sext,KpMq ˚ p is a subflow. Let q ˚ p P
Sext,KpMq ˚ p and k P KpMq, h P HpMq. Let also pk1, h1q |ù q b p. Then

khk1h1 |ù kh ¨ pq ˚ pq.

We have khk1h1 “ kph ¨1 k
1q ¨ h2h for some h2 P H. The triples pk, h, k1q and

pk, h ¨1 k
1, k2q are interdefinable over M , so h |ù p|k, h ¨1 k

1, k2. By Lemma 2.13,
also h2h |ù p|k, h ¨1 k

1, k2 and so

khk1h1 “ kph ¨1 k
1q ¨ h2h |ù tppk ¨ ph ¨1 k

1q{Mq ˚ p.

Therefore we have

GpMq ¨ q ˚ p Ă Sext,KpMq ˚ p.

Since the semigroup operation is continuous on the first coordinate, this also implies

clpGpMq ¨ q ˚ pq Ă Sext,KpMq ˚ p.

This shows that Sext,KpMq ˚ p is closed. The same argument also shows it is
GpMq-invariant. �

Proposition 4.6. Let G “ KH be a good decomposition and let p P Sext,GpMq be
HpMq-invariant. Let I ˚ p be a minimal subflow as in Proposition 4.5. Then I is
unique and GenKpM

extq Ă I.

Proof. First we show that GenKpM
extq Ă I. Let q P I. Then the closure of the

orbit KpMqq contains GenKpM
extq by Proposition 2.6. Similarly, the closure of

the orbit KpMq ¨ pq ˚ pq “ pKpMq ¨ qq ˚ p contains GenKpM
extq ˚ p. For uniqueness,

note that I ˚ p “ clpGpMq ¨GenKpM
extq ˚ pq. �
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For the remainder of this section, fix an M -definable group G and its good
decomposition G “ KH, as well as an HpMq-invariant type p P Sext,HpMq. Let
I Ă Sext,KpMq be the unique set such that I ˚p is a minimal subflow of Sext,GpMq.
By general topological dynamics, I ˚ p decomposes into the disjoint union of its
ideal subgroups. The set GenKpM

extq ˚ p Ă I ˚ p is usually not closed. However:

Proposition 4.7. GenKpM
extq ˚ p is a disjoint union of ideal subgroups of I ˚ p.

Moreover, if q, q1 are generic such that q˚p and q1 ˚p are in the same ideal subgroup
of I ˚ p, then q and q1 and in the same ideal subgroup of GenKpM

extq in the sense
of the KpMq-flow Sext,KpMq.

Proof. Let q P GenKpM
extq. The type q ˚ p belongs to an ideal subgroup H Ă I ˚ p

and naturally q ˚ p ˚ H “ H. Therefore H Ă q ˚ p ˚ I ˚ p. So let r P I and let
pk, h, k1, h1q |ù qb pb rb p. Then khk1h1 “ kph ¨1 k

1qh2h for some h2 P H. Arguing
as in the proof of Proposition 4.5, we have

kph ¨1 k
1qh2h |ù q ˚ pp ˚1 rq ˚ p.

By Lemma 2.8, q1 “ q˚pp˚1rq is generic and q, q1 belong to the same ideal subgroup
of GenKpM

extq. �

Using Lemma 4.4 we, give the following description on the semigroup operation
in the minimal flow I ˚ p:

Fact 4.8. Let q, q1 P I. Then pq ˚ pq ˚ pq1 ˚ pq “ q ˚ pp ˚1 q
1q ˚ p.

Lemma 4.9. There is an ideal subgroup of I ˚ p of the form J ˚ p where J “
q0 ˚ pp ˚1 GenKpM

extqq for some q0 P GenKpM
extq. Moreover, q0 can be chosen

such that q0 ˚ p is an idempotent.

Proof. Take any J Ă GenKpM
extq such that J ˚ p is an ideal subgroup. By Propo-

sition 4.7 we may in fact assume that J Ă u ˚ GenKpM
extq for some idempotent

u P GenKpM
extq. Let q0 P u˚GenKpM

extq such that q0 ˚p P J ˚p is an idempotent.
Then J ˚ p “ q0 ˚ p ˚ J ˚ p. We have

q0 ˚ p ˚ J ˚ p Ă q0 ˚ p ˚GenKpM
extq ˚ p “ q0 ˚ pp ˚1 GenKpM

extqq ˚ p.

On the other hand,

J ˚ p “ q0 ˚ p ˚ I ˚ p Ą q0 ˚ p ˚GenKpM
extq ˚ p.

Thus J has the desired form. �

Remark 4.10. Note that by Lemma 2.8, the elements of J are generic and by
Proposition 4.7 belong to the same ideal subgroup of GenKpM

extq.

Now fix an ideal subgroup of I ˚p the form J ˚p as in Lemma 4.9 with an idempo-
tent q0˚p. Recall that the quotient map π : K Ñ K00 is a group epimorphism. This
epimorphism extends to the semigroup epimorphism π : Sext,KpMq Ñ K{K00 and
by Theorem 2.2, the restriction of π to any ideal subgroup of GenKpM

extq is a group
isomorphism. For q P GenKpM

extq, write q{K00 to denote πpqq. Consequently:

Lemma 4.11. Let i : J ˚ pÑ K{K00 be defined as follows:

ipq ˚ pq “ q{K00.

Then i is injective.
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We now show that the group operation in J ˚ p can be described in terms of
group operation in K{K00. Define πK : G Ñ K as follows: πKpgq “ k iff g “ kh
for some h P H. This function naturally lifts to πK : Sext,GpMq Ñ Sext,KpMq. For
any q P Sext,KpMq, q

1 P Sext,HpMq we have πKpq ˚ q
1q “ q.

With this notation, the map from Lemma 4.11 is of the form π ˝ πK .

Lemma 4.12. Let k0 “ q0{K
00 P K{K00. Then for any q P J , pp ˚1 qq{K

00 “

k´1
0 ¨ q{K00.

Proof. We have q˚p “ q0˚p˚q˚p “ q0˚pp˚1qq˚p. Thus q{K00 “ pq0˚pp˚1qqq{K
00 “

q0{K
00 ¨ pp ˚1 qq{K

00. �

Fix k0 “ q0{K
00. We show the following:

Proposition 4.13. Let K 1 “ irJ ˚ ps Ă K{K00 be equipped with the operation
a ˝ b “ a ¨ k´1 ¨ b with ¨ denoting the group operation in K{K00. Then pK 1, ˝q is a
group isomorphic with J ˚ p via i.

Proof. It suffices to show that i is a homomorphism. Let q, q1 P J . Then

ipq ˚ p ˚ q1 ˚ pq “ ipq ˚ pp ˚1 q
1q ˚ pq “ pq ˚ pp ˚1 q

1qq{K00 “ q{K00 ¨ pp ˚1 q
1q{K00.

Now by Lemma 4.12,

q{K00 ¨ pp ˚1 q
1q{K00 “ q{K00 ¨ k´1 ¨ q1{K00 “ ipq ˚ pq ¨ k´1 ¨ ipq1 ˚ pq.

�

Finnaly, note that pK 1, ˝q is isomorphic to the group pK 1k´1, ¨q by sending a to
ak´1. Thus we prove

Theorem 4.14. Let G “ KH be a good decomposition. Then the Ellis group of
the universal definable flow Sext,GpMq is isomorphic to a subgroup of K{K00.

We now discuss how much our results depend on the chosen model M . We
managed to describe the Ellis group as the object of the form q0˚pp˚1GenKpM

extqq˚

p and showed how it maps to a subgroup ofK{K00. Particularly, this group depends
on the K00 cosets to which the operation q ÞÑ p ˚1 q sends generic types in K.

Let M ă˚ N and let p|N be the unique heir. It is a type in H in the language
Lext,M over N . By Proposition 2.12 there is some p1 P Sext,HpNq extending p|N .

Question 4.15. Let q be a global generic in K. Is it true that p ˚1 q
M and p1 ˚ qN

belong to the same coset of K00?

Observe that if the above is true for all global generic types q, then the Ellis
group does not depend on the model, that is p ˚1 GenKpM

extq intersects the same
cosets of K00 as p1 ˚1 GenKpN

extq and qM ˚p is an idempotent if and only if qN ˚p1

is. We do not know the answer to that question, or whether the negative answer
implies that the Ellis group depends on the model. Here we list some examples of
situations where the answer is positive:

– Whenever the action of H on K is trivial, p ˚1 q is simply q for any type.
This is the case precisely when K normalizes H, that is when G “ K ˙H.

– If G is definable over an o-minimal expansion of the field of reals. In this
case, over any extension R, pp1 ˚1 q

Rq{K00 depends only on q{K00. See [16]
for more details.
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– If every global generic in K is definable over a small model, then each qN is
the unique external generic extending the unique heir of qM . In this case,
the K00 coset of p1 ˚ qN is a definable property of the pair pp, qq.

– If K is stable and stably embedded in G, then every global generic in K is
definable and the preceding case holds.

We have the following specific result when the action of p1 on Sext,KpNq respects
the cosets of K00, as is the case for groups definable in an o-minimal expansion of
the reals.

Proposition 4.16. Assume that pp1˚1q
N q{K00 depends only on qN{K00p“ q{K00q.

Then the Ellis group of the universal definable flow of G over N contains pNGpHqX
Kq{K00 as a subgroup.

Proof. If k P NGpHqXK, then H fixes k under the action ¨1. Thus for any external
type q such that q{K00 “ k{K00 we have pp1 ˚1 qq{K

00 “ q{K00. In particular, this
holds for a generic q. This shows that the set p1 ˚1 GenKpN

extq meets k{K00. �

5. The o-minimal case

In this section we apply the previous results to the case of groups definable in
an o-minimal expansion of a real closed field. We refer the reader to [13] for classic
results on such groups, including the definition of definable compactness. Here,
we use the established results to prove Theorem 0.1 and consider classes of groups
where we can prove that the Ellis group does not depend on the model.

Let R “ pR,`, ¨,ă, 0, 1, . . .q be an o-minimal expansion of a real closed field. Let
G be an R-definable group. We recall the following result from [8]:

Proposition 5.1. If G is definably compact, then it is fsg.

Another result comes from [5]:

Proposition 5.2. If G is torsion-free, then it is definably extremely amenable.

We now turn to the structural theory developed by Conversano in [3] and [4] to
describe an arbitrary group G.

Definition 5.3. We say that G has a definable compact-torsion-free decomposition
if there are definable subgroups K,H ă G with K X H “ t1Gu such that K is
definably compact, and H is torsion-free.

Clearly a definable compact-torsion-free decomposition is a good decomposition
in the sense of Definition 4.1.

Not every group has a definable compact-torsion-free decomposition. However,
for any definably connected group G it is possible to find a canonical quotient that
admits a decomposition. After [3]:

Proposition 5.4. Let G be a definable definably connected group. Then there
exists a definable torsion-free ApGqCG such that G{ApGq has a definable compact-
torsion-free decomposition, and it is the maximal definable quotient of G with a
definable compact-torsion-free decomposition.

Since torsion-free groups are definably extremely amenable, this is the case we
considered in Section 3.

Corollary 5.5. Theorem 0.1 is true.
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Proof. Let ApGq C G be as in Proposition 5.4 and let G{ApGq “ KH be a de-
finable compact-torsion-free decomposition. By Proposition 3.2 the Ellis group of
Sext,GpRq is isomorphic to the Ellis group of Sext,G{ApGqpRq. Since G{ApGq “ KH
is a good decomposition, by Theorem 4.14 the Ellis group is isomorphic to a sub-
group of K{K00. By the classic theorem of Pillay, K{K00 with logic topology is is
a compact Lie group. �

If G{ApGq is definably isomorphic to a group definable over the reals, this result
can be improved. We have the following result by Yao [16]:

Proposition 5.6. Let G be definable over the reals with a compact-torsion-free
decomposition G “ KH. Then over any model the Ellis group of its universal
definable flow is isomorphic to NGpHq XKpRq.

Notice that over the reals, NGpHq X KpRq can be identified with the group
pNGpHq XKq{K

00. Compare this result with Proposition 4.16.

6. Generalizations

In this section we discuss some possible generalizations of our results. The mo-
tivation to consider the case of groups admitting a good decomposition comes from
the compact-torsion-free decomposition theorem that allowed us to consider groups
definable in o-minimal setting. Definable extreme amenability and fsg are the ab-
stract model-theoretic properties of the corresponding torsion-free and definably
compact groups that allowed us to solve these cases. Generally, when trying to
describe definable topological dynamics of a group G decomposed into G “ KH
using the induced action of H on K (in a way described in Section 4), we are forced
to work with both left and right translations of types (and their coheirs) in K, but
only left translations of types (and their heirs) in H. Assumption of fsg for K
guarantees the existence of two-sided minimal ideals (over any model) that are all
finitely satisfiable extensions of their restrictions. Assumption of definable extreme
amenability of H can likely be weakened.

The fsg property can be viewed as a model-theoretic abstraction of compactness
for definable groups, and is related to the notion of compact domination. Consider
that compact-torsion-free decomposition in the o-minimal setting is the model-
theoretic analog of Iwasawa decomposition for semisimple Lie groups. The classic
theorem states that a semisimple real Lie group G decomposes as G “ KAN with K
compact, A abelian and N nilpotent such that H “ AN is also a group. Variants
of Iwasawa decomposition exist in other contexts. For instance, for a local non-
Archimedean field F with discrete valuation, the group GLnpF q can be decomposed
into GLnpOF qUnpF q, where OF is the ring of integers of F and Un the group of
upper-triangular matrices. In this case, the group GLnpOF q is a maximal compact
subgroup of GLnpF q. The field Qp of p-adic numbers has been studied model-
theoretically. Particularly, the theory of Qp in the so-called Macintyre language
has been shown to have many nice properties (NIP , elimination of quantifiers,
definable choice). A notion of definable compactness for definable sets exists, and
definably compact groups are shown to have fsg.

Consider the group GLnpQpq with the decomposition GLnpZpqUnpQpq. The
group GLnpZpq is fsg, and while in this case the intersection of GLnpZpq and
UnpQpq is not trivial, it is also fsg, giving hope it can be easily dealt with.
The group UnpQpq is not definably extremely amenable. It is however definably
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amenable. Attempting to generalize our result to the case where G “ KH for K
fsg and H definably amenable (with possibly nontrivial intersection) to tackle the
p-adic setting may require additional assumptions. In the general case of definably
amenable groups, the role of almost periodic types is assumed by so-called f -generic
types. Since, the dynamical analysis of Sext,GpMq involves translations of heirs of
types in H, a reasonable assumption on H might be that it contains an f -generic
external type such that for any N ą M with |N | “ |M |, p|N is also f -generic. This
is the case for the group UnpQpq.
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