THE ELLIS GROUP CONJECTURE AND VARIANTS OF
DEFINABLE AMENABILITY

GRZEGORZ JAGIELLA

ABSTRACT. We consider definable topological dynamics for NIP groups ad-
mitting certain decompositions in terms of specific classes of definably amenable
groups. For such a group, we find a description of the Ellis group of its universal
definable flow. This description shows that the Ellis group is of bounded size.
Under additional assumptions, it is shown to be independent of the model,
proving a conjecture proposed by Newelski. Finally we apply the results to
new classes of groups definable in o-minimal structures, generalizing all of the
previous results for this setting.

In this paper we work within the framework of definable topological dynamics.
The reader is referred to [I1] and [I0] as the seminal papers. Familiarity with the
subject will be assumed throughout the paper, but we will recall the necessary
notions in the preliminaries. The main motivation for this research comes from
an open problem in definable topological dynamics regarding the model-theoretic
aspects of the Ellis group of a definable flow. Given a model M and an M-definable
group (G, we consider the category of definable G-flows over M. These flows are
G(M)-flows in the sense of classic topological dynamics. The category contains
a universal object Seq,c(M), the space of external types in G over M. In the
studies of this flow, a conection has been found relating its Ellis group to the
model-theoretic connected components of G.

In [11], Newelski conjectured that (at least under some “tame” assumptions),
the Ellis group of the universal flow of a group G is isomorphic to the quotient
G/GY, and that in particular it does not depend on the model. This was proved
to be the case in stable theories [12] and for definably compact groups definable
in o-minimal structures [I0]. This result was later extended to definably amenable
groups definable in o-minimal structures [14] and finally to all definably amenable
groups in NIP theories [5]. Partial results also hold in the general case. It was
proven that in general the Ellis group factors through G/G% whenever G exists
[10]. Indeed, this result holds also with G% in place of G°. On the other hand,
there are examples of groups definable in a relatively tame o-minimal setup where
the conjecture fails.

A related, weaker conjecture states that the Ellis group does not depend on the
choice of the model. More precisely, given an M-definable group G and N > M,
one can consider the G(M)-flow Sey (M) as well as the G(N)-flow Segr,q (V).
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The conjecture asserts that the Ellis groups calculated for each of the flows are
isomorphic, and that the witnessing isomorphism can be constructed in some de-
finable way. This is the case whenever the original conjecture holds as the quotient
G/G® depends only on G.

A large part of the study of definable topological dynamics has been conducted
in the o-minimal setup. A study of SL(2,R) in [6] provided a counterexample to
the original Ellis group conjecture. In [9], a wide range of counterexamples have
been produced by calculating the Ellis groups for the flows of groups definable in
o-minimal expansions of the reals admitting definable compact-torsion-free decom-
position. These results have been generalized in [16] to allow the calculation of
the Ellis groups over larger models, establishing the isomorphism with groups cal-
culated over the reals. A tangent case of definably amenable groups definable in
o-minimal expansions of arbitrary real closed fields have been solved in [14]. The
methods used to determine the Ellis groups have been progressively less specific to
the o-minimal setting.

In this paper, we replace the notions specific to the o-minimal setting with more
robust, model-theoretic ones, using the research done by Chernikov and Simon on
definably amenable NIP groups. We provide a way of computing the Ellis groups
for NIP groups that either contain a definable, definably extremely amenable nor-
mal subgroup, or admit a definable decomposition into an fsg and a definably
extremely amenable subgroup. We then apply our results to the o-minimal case,
generalizing all the previously obtained results. We finally discuss other general-
izations or applications. Our main results for the o-minimal case is the following:

Theorem 0.1. Let G be a definably connected group definable in an o-minimal
expansion of a real closed field. Then over any model M the Ellis group of the flow
Sest,c(M) is abstractly isomorphic to a subgroup of a compact Lie group.

In some cases we also note definability of this isomorphism, establishing the
weaker Ellis group conjecture there.

The paper is divided into six sections. In the first section we recall the usual
notions of definable topological dynamics and some general model theory, and cite
some of the more important results that we use. In the second section we discuss the
notion of definable amenability and its specific cases. In Section 3, we prove results
regarding the Ellis group of the universal definable flow of a definable group in a
NIP theory that has a normal, definable, definably extremely amenable subgroup.
In Section 4, again assuming NI P, we consider the dynamics of a group admitting a
definable decomposition into an fsg and a definably extremely amenable subgroups.
In Section 5, we apply the results to the case of groups definable in o-minimal
setting. In Section 6, we discuss generalizations and further applications.

1. PRELIMINARIES

Throughout the paper, we use standard model-theoretic notations. Working over
a fixed model of an ambient theory, we will write € to denote a sufficiently saturated
and homogeneous elementary extension. We assume the reader’s familiarity with
the basics of model theory, including heirs, coheirs and the notion of definability
of types. By “definable” we always mean “definable with parameters”. In the
following subsections we discuss the notion of N1P groups, recall the basic notions
of both classic and definable topological dynamics, and the notion of definably
amenable groups and their specific subclasses.
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1.1. NIP theories and external definability. In our investigations, we will be
dealing with the notion of externally definable subsets and external types. Let M
be a structure. Recall that an externally definable subset of M™ is a trace in M™
of a formula with parameters from an elementary extension N > M. The set of
all externally definable subsets of M™ forms a boolean algebra Defeyy n(M). The
set Segt,n (M) = S(Defegt n(M)) of ultrafilters on Defeyyn (M) carries the Stone
topology, and we call its elements external types. If X is an M-definable subset,
we write Seqt, x (M) for the closed subset of elements of Seyt (M) that contain X.

Working with external types in arbitrary theories is rather difficult. An assump-
tion on the ambient first-order theory makes their structure more easily understood.
Recall the following definition:

Definition 1.1. A complete theory T has NIP if it contains no formula ¢(z,7)
with the following property: for every model M =T, for each n € w there are tuples
bo, ..., bn_1 € M such that for each subset X of {0,... ,n—1} there is a tuple a € M
such that M = ¢(a,b;)) < i€ X.

Now assume that T is a NIP theory in the language £ and M its model. For
each externally definable set X € Defe.:(M) (for all n), let Dx be a new predicate
interpreted in M such that Dx (M) = X. Let Legi.m = LU{Dx : X € Defer (M)}
be a new language and let M“** be the structure with the universe M considered
in the language Ly pr. Shelah proved in [15] that:

Proposition 1.2. Assume that T has NIP and M = T. Then the first order
Lt pr-structure Mt has elimination of quantifiers and all types over M are
definable.

As a consequence of definability of types over M¢*  every type p € S(M¢*?) has
a unique heir and a unique coheir over any set of parameters A > M. We will
denote the unique heir of p over A by p|A. For brevity, if a is a finite tuple, we
will write p|a instead of p|Ma. We will also employ the following notation, used for
example in [7], to easily express the heir and coheir relationships of elements:

Definition 1.3. Let (po,...,pn—1) be a sequence of definable types. We write

(a07' . 7an—1) )ZPO ®p1 ® . '®pn—1
to denote that for each i < n, a; = pila<;.

By the elimination of quantifiers, the standard space of types S, (M“**) naturally
identifies with the space of quantifier-free types Sy, (M¢**). Thus they can both
be identified with the space Seztn (M) of external types in the original language.

In the later subsections, and in the paper in general, we will often start with a
model M of a NIP theory and consider objects definable in the original language.
Then in order to consider external types, we will pass to M¢®" where they can
be identified with the standard types in S(M¢**). Since the universe of M and
Me*t is the same, we will make no distinction between X (M) and X (M¢*?) for an
L-definable X.

Finally, we will use the following notation. Assume that p is a global type finitely
satisfiable in some model M. Then we write

pM = {¢(M): ¢ € p}.
This is a external type in Se.:(M).
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1.2. Definable topological dynamics. First we briefly recall some basic notions
and results of classic topological dynamics. Let G be a group. A G-flow is a (left)
action of G on a compact, Hausdorff topological space X by homeomorphisms. A
G-flow is called point-transitive if it contains a dense G-orbit. A subflow ¥ < X
is a nonempty, closed G-invariant subset of X. A subflow is called minimal if it
contains no proper subflows. With any g € G we can associate the corresponding
function w4 : X — X. Consider the space X X with pointwise convergence topology.
The (compact) set cl({r, : g € G}) = XX is a point-transitive G-flow. Equipped
with the function composition operation x*, it is a semigroup. It is called the Ellis
semigroup of the flow X, denoted E(X). This semigroup operation is continuous
on the first coordinate. We have that E(E(X)) is naturally isomorphic to E(X).

Let I be a minimal subflow of F(X). Then I is a minimal ideal of the semigroup
(E(X),*). Likewise, any minimal ideal of (E(X), %) is a minimal subflow. Let J(I)
denote the set of idempotent elements of I. Then by general theory of compact
semigroups,

I = TENR
ueJ(I)
Each u = I is a group that we will call an ideal subgroup. The isomorphism class
of an ideal subgroup does not depend on u and the choice of the minimal ideal I.
We call this isomorphism class the Ellis group of the flow X.

Turning now to the definable setting, we let M be an arbitrary first-order struc-
ture and let G = (G, -) be an M-definable group. The space Sey+ (M) is naturally
acted upon by G(M) by left translations and carries the Stone topology that makes
it a compact, Hausdorff topological space. The set of all principal ultrafilters in
Sest,c(M) forms a dense orbit, making this Stone space a point-transitive G(M)-
flow in the sense of classic topological dynamics. It is the universal definable flow
of G over M in the sense of [II]. By [I1I], this flow is naturally isomorphic to its
own Ellis semigroup. As such, Seyt,¢(M) is equipped with a semigroup operation.

Now assume that we work with a NIP theory. We identify Sey: (M) with
Sc(Me®t). Due to definability of types, the semigroup operation on Sg(M¢**) has
the following, explicit definition. For p,q € Sg (M),

p*q=tp(a-b/M),

where a = p and b = gla. Equivalently, b = ¢ and o satisfies the unique finitely
satisfiable extension of p over b; or simply (a,b) = p ® ¢. In general, whenever

(agy---san) Epo® ... Q®pp, we have ag « ... ap Epo * ... % Dp.

1.3. Ellis group conjectures. Let G be an M-definable group. Recall that the
model-theoretic connected component G° is the smallest type-definable subgroup
of G of bounded index. It is a normal subgroup of G. It is well-known that G°°
exists assuming NIP. Note that this is not true in general. Furthermore, by [I]

Fact 1.4. Let T has NIP. Then G° calculated for Legt. v exists and equals to
GO calculated in L.

Newelski conjectured [II] that under some relatively “tame” assumptions (gen-
erally understood to include NTP), the following holds:

Conjecture 1.5. The Ellis group of Sext.c(M) is isomorphic to G/G.

Another conjecture, generally found in [I0] states:
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Conjecture 1.6. Let N > M. The Ellis group of Sezt.c(M) and the Ellis group
of Sext,c(IN) are isomorphic.

The stipulation of the second conjecture is that the isomorphism can be found in
some definable way. Note that in general there is no obvious relationship between
the types in Sezt,¢(N) and Sezt,¢(M) since there is no natural way in which the
externally definable subsets of M should be interpreted in N. Newelski [10] pro-
posed the following solution to this problem. Let N’ be an elementary extension of
M.y in the language Lepear. Then N = N'|L is an elementary extension of M in
the original language such that every externally definable subset of M has a natural
interpretation in N. Extension of this kind is called *-elementary extension, and
we write M <* N to denote it. Note that in this case types in Seqi,c(IN) extend
types in Sz (M) since the language Loz v extends Lege ps. One can then state
the following:

Conjecture 1.7. There is an ideal subgroup in Sez,c(N) whose restriction to M
is an ideal subgroup in Seyt,c(M).

Note that in general, the restriction map r : Sezr,g(N) — Sewt,c(M) is not
a semigroup homomorphism, so it is not known whether the image of an ideal
subgroup by r is an ideal subgroup, or whether an ideal subgroup in Sez¢ ¢ (M) is
an epimorphic image of an ideal subgroup in some extension.

2. DEFINABLE AMENABILITY

In this section we recall facts about definably amenable groups and their specific
cases. We also consider them from the point of view of topological dynamics.
The following definition appears for example in [2]:

Definition 2.1. Let G be a definable group. We say that G is definably amenable
if there is a finitely additive probabilistic measure on the algebra of the definable
subsets of G invariant under the group action.

The measure stipulated in the definition is called a Keisler measure. Definably
amenable NIP groups are one of the large classes for which topological dynamics
have been described in detail. Chernikov and Simon showed that the Ellis group
conjecture holds in this setup [2]:

Theorem 2.2. Let M be a model of a NIP theory and G be a definably amenable
M -definable group. Let I € Sept.c(M) be a minimal subflow and u € I an idempo-
tent. Then the quotient map G — G/G°° restricted to u = I is an isomorphism.

In this paper, we will consider groups described in terms of subgroups being
specific cases of definably amenable groups. The group themselves will usually not
be definably amenable. The motivation for the particular decompositions comes
from the study of groups definable in o-minimal setting. The two particular cases
we are interested in are fsg groups and definably extremely amenable groups.

2.1. Finitely satisfied generics. The following definition can be found in [g]:

Definition 2.3. G admits finitely satisfied generics (in short: “G has fsg”) if
there is a global type p(z) in G and a small model M such that every G-translate
of p is finitely satisfiable in M.
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In [2], the fsg groups are characterized as possessing a unique generic Keisler
measure. In particular, fsg groups are definably amenable. Examples of such
groups are definably compact groups definable in o-minimal expansions of real
closed fields, or over the field of p-adic numbers.

Recall that a subset X < G is called generic if finitely many of its translates
cover G. A type in G is generic if it only contains formulas defining generic subsets.
Likewise an external type in G is generic if it only contains generic external subsets
of G. The following properties of fsg groups can be found in [g]:

Fact 2.4. Let G be fsg and M any small model. Then there is a generic global
type p € Sa(€). Moreover, for any such a type:

(1) Every left and right translate of p is generic and finitely satisfiable in M.
(2) G exists and is both the left and the right stabilizer of p.

Clearly, any generic type is a finitely satisfiable extension (a coheir) of its own
restriction to any submodel.

Let p be a global type in G finitely satisfiable in some small model M. Then the
set pM = {p(M) : ¢ € p} is an element of Sg(M*?). It is easy to see the following:

Fact 2.5. Let G be fsg. Let p € Sg(€) be a global type. The following are equiva-
lent:

(i) p is generic.

(ii) For some small model M, p™ € Sq(M®*) is generic.

(iii) For any small model M, pM € Sq (M) is generic.

The above fact allows us to identify the set of generic types in Sg (M) (for
any M) with the set of global generic types. For a definable group G, denote by
Geng (M**) the set of (left) generic types in Sezt (M). From the dynamical point
of view, Newelski proves in [T1]:

Proposition 2.6. Let G be a group and assume that there is a generic p € Seqr,c(M).
Then the set Geng (M) is the unique minimal subflow of Seqt,c:(M).

Now let G be an M-definable fsg group in a NIP theory. Combining Proposition
with Theorem we easily see the following:

Fact 2.7. The minimal flow Geng (M) decomposes into ideal subgroups of the
form q * Geng(Me*') where q is a generic with q - G.

We will need the following:

Lemma 2.8. Let q € Geng(M®™). Then for any p € Sext,.c(M), q = p is generic
and both q and q * p belong to the same ideal subgroup.

Proof. Write ¢ = r™ for some global generic r and assume q € u * Geng (M ***) for
some idempotent u. Let b = p and a = rV for some N > M containing b. Then
a-b = qxp. Since GY(N) = Stabg(r"), we have a-b =y a -V for any b’ with
b /GP(N) = b/G"(N) provided that tp(a/M¥V') is finitely satisfiable. In particular
b’ can be found satisfying a generic type. Thus ¢*p = q*p’ = u=* g = p’ for some
generic p’ and so ¢ * p € u * Geng(Met). a

Corollary 2.9. The flow Geng (M) is a two-sided ideal of Sext.c(M).
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2.2. Definable extreme amenability. We now turn to discuss definably ex-
tremely amenable groups. We will use the following definition:

Definition 2.10. A group G is definably extremely amenable if it is definably
amenable witnessed by a Keisler measure with the image {0, 1}.

It is easy to see that measures as in the definition correspond to complete global
G-invariant types in Sg(€). Thus:

Fact 2.11. Let G be definably extremely amenable. Then there is a G-invariant
type p € Sg(€). Moreover, for any such type and any model M, the restriction
pIM € S¢(M) is G(M)-invariant.

We first note that the property of having an invariant type is preserved when
passing to Leyea. By [1:

Proposition 2.12. Let G be definable and M a model of a NIP theory. Let
p € Sg(M) be G(M)-invariant. Then there is a G(M)-invariant p’ € Sepi,c(M)
extending p.

By for example [9]:

Lemma 2.13. Assume that p € Sg(M) is a G(M)-invariant definable type. Then
for any N > M, the unique heir p|N is G(N)-invariant. In particular, the global
heir of p is G-invariant.

Corollary 2.14. Let G be definable and M a model of a NIP theory. Assume
that p € Sezr.c(M) is G(M)-invariant. Then for any M <* N the type p|N (the
heir of p over N in Legi ) is G(N)-invariant and extends to a G(N)-invariant
p/ € Seact,G(N)-

Topological dynamics for definably extremely amenable groups is straightfor-
ward, as any G(M)-invariant type forms a one-point minimal flow that is its own
unique ideal subgroup.

3. GROUPS WITH NORMAL DEFINABLY EXTREMELY AMENABLE SUBGROUP

Assume that we work in a NIP theory. Let G be a definable group and H < G
a definable normal subgroup. We will show that topological dynamics of G is fully
explained by dynamics of the quotient G/H.

Let M be a model and assume that there is an H (M )-invariant type in Sq(M).
By Proposition we may assume there is an H(M)-invariant external type
P € Sext,c(M). For the remainder of the section, we fix M, G, H and p.

The canonical quotient map 7y : G — G/H naturally extends to a map from
the space of (external) types in G over M to the space of (external) types in G/H
over M. For a type ¢, write g/H for its projection.

Lemma 3.1. With the notation above,

(i) Let q € Sepr,c(M). Then the type q * p depends only on q/H.
(ii) The set Sext,c(M) * p is a subflow of Sexs,(M) isomorphic to Sepe.cyn(M)
via the projection map.
(i1i) There is a minimal subflow of Seqtr,c(M) = p that projects isomorphically to a
minimal subflow of Sezs,q/n(M).
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Proof. (i) Let a € G and h € H. If b/ |= pla, h, then ahh’ = tp(ah/M) * p. Since
hh' |= pla, h by Lemma [2.13] we also have ahh’ |= tp(a/M) = p.

(ii) Clearly Sg(M) # p is an ideal of Seyr,g(M). Let g1,42 € G and a = ¢,
h = pla, b = gzla, h and W' = pla, h,b. Then ahbh’ = g1 # p # g2 * p, but ahbh’ =
abh”h’ for some h” € H since N is normal in G. As h"h = pla,b,h, we have
abh”h |= q1 * g2 * p as needed.

(iii) follows from (ii). O

Whenever a minimal flow projects isomorphically onto a minimal flow, idempo-
tents map to idempotents and their associated ideal subgroups also map isomor-
phically. As a corollary we obtain

Proposition 3.2. Let H << G be definably extremely amenable. Then the Ellis
groups of (G(M), Sewt,c(M)) and (G(M)/H (M), Sewr./u(M)) are isomorphic.

4. ng—DEFINABLY EXTREMELY AMENABLE DECOMPOSITION

In this section we consider the case of a group that properly decomposes into fsg
and definably extremely amenable subgroups. The motivation for this decomposi-
tion comes from the theory of definable Lie groups and represent a certain abstract
definable version of Iwasawa decomposition. We will make this connection more
clear in a later section. All throughout this section, we assume to work in a NI1P
theory. We begin with a suitable ad hoc definition.

Definition 4.1. Let G be M-definable. We say that G has a good decomposition
if there are M -definable subgroups K, H < G such that:

(1) G=KH and FF n H = {1¢}.

(2) K has fsg.

(8) H is definably extremely amenable.

In this case we will also say that G = KH is a good decomposition.

Remark 4.2. The condition (1) in the above definition is saying precisely that
G = KH is a Zappa-Szép decomposition.

We will aim to describe the topological dynamics of G admitting a good decom-
position. Since we do not assume that the definably extremely amenable subgroup
is normal, there is no straightforward reduction to dynamics of the quotient.

Assume that (G, ) is M-definable group in a NIP theory and that G = KH is a
definable decomposition with K n H = {1g}. The description of dynamical objects
in Segt,(M) will involve a natural action of H on K induced by the decomposition.
Let g € G be any element. Since the intersection of K and H is trivial, g can be
uniquely written as a product kh with k € K,h € H, and likewise as a product h'k’
with b/ € H, k' € K. The pairs (k,h), (', k") and g are all interdefinable. Define an
action of H on K as follows:

hk=k < hk=FKHn for some h' € H.

A direct computation shows this action is well-defined.
The action -1 lifts to an action #; of the semigroup of types Seyt, m(M) on the
space of types Seqi, k(M) in the following way:

p#1q=tp(h-k/M)
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for h = p,k = glh. The fact this is a well-defined semigroup action follows from
a more general variant of definable topological dynamics that we omitted in the
introduction. We will instead show it directly.

Lemma 4.3. Let p',p € Sepr. (M) and q € Sept,k(M). Then p' #1 (p *1 q) =

(P’ *p) *1 4.

Proof. Simply observe that if (h', h, k) =p' ®p®q, then b’ -1 (h-1 k) = p *1 (p*1q)

and also (b - h) 1 k = (p *p) #1 q. O
We will also use the following;:

Lemma 4.4. Assume that p € Sepe,m (M) is an (M)-invariant type. Then for any
q € Sext, ik (M), p" € Sear,n (M), we have p’ % qp = (p' *1q) * p.
Proof. Let (b, k,h) =p' ® ¢®p. Then h'kh = (b’ -1 k)h"h for some h” € H. Then
by Lemma [2.13| h”h |= p|W'k and so

(W' 1 k)'h = tp(h' 1 k/M) = p = (p *1q) * p,

as required. ([l
We are now ready to approximate a minimal flow in the setting discussed.

Proposition 4.5. Let G = KH be a definable (not necessarily good) decomposition
with K n H = {1g} and let p € Sept,c(M) be H(M)-invariant. Then there is
I < Seqt, k(M) such that I = p is a minimal subflow of Sezt,c(M).

Proof. 1t is sufficient to show that the set Seyt k(M) * p is a subflow. Let ¢ p €
Sest, k(M) =pand ke K(M),he H(M). Let also (K',#') = ¢ ®p. Then
khk'D = kh - (q = p).
We have khk'h' = k(h -1 k') - h”h for some h” € H. The triples (k, h, k') and
(k,h 1 k', k") are interdefinable over M, so h = plk,h 1 k', k”. By Lemma
also h"h = plk,h -1 k', k" and so
khk'n =k(h 1 k) -h"h=tplk- (b1 k')/M) = p.
Therefore we have
G(M) - q#p < Seqt, i (M) * p.
Since the semigroup operation is continuous on the first coordinate, this also implies
c(G(M) - q#p) © Sext i (M) = p.
This shows that Seysx(M) # p is closed. The same argument also shows it is

G (M )-invariant. O

Proposition 4.6. Let G = KH be a good decomposition and let p € Seye (M) be
H(M)-invariant. Let I = p be a minimal subflow as in Proposition . Then I is
unique and Geng (M) < 1.

Proof. First we show that Geng (M®**) « I. Let q € I. Then the closure of the
orbit K(M)q contains Geng (M¢*t) by Proposition Similarly, the closure of
the orbit K (M) - (q*p) = (K(M)-q) *p contains Geng (M) % p. For uniqueness,
note that I = p = cl(G(M) - Geng (M*) = p). O



10 GRZEGORZ JAGIELLA

For the remainder of this section, fix an M-definable group G and its good
decomposition G = KH, as well as an H(M)-invariant type p € Sezt. p(M). Let
I © Sept, ik (M) be the unique set such that I *p is a minimal subflow of Segt,q(M).
By general topological dynamics, I * p decomposes into the disjoint union of its
ideal subgroups. The set Geng (M) x p < I  p is usually not closed. However:

Proposition 4.7. Geng (M) « p is a disjoint union of ideal subgroups of I * p.
Moreover, if q,q' are generic such that ¢*p and ¢’ *p are in the same ideal subgroup
of I p, then q and ¢’ and in the same ideal subgroup of Geny (M¢®t) in the sense
of the K(M)-flow Seqt, i (M).

Proof. Let q € Geng (M¢*!). The type g * p belongs to an ideal subgroup H < I = p
and naturally g * p * H = H. Therefore H < g*p=* 1 *p. So let r € I and let
(k,h, K 1) Eq®p®r®p. Then khk'h’ = k(h-1 k')h"h for some h” € H. Arguing
as in the proof of Proposition we have

k(h 1 K)R'h = q* (p#17) *p.
By Lemma q = q=(p=17) is generic and ¢, ¢’ belong to the same ideal subgroup
of Geng (M), O

Using Lemma [I.4] we, give the following description on the semigroup operation
in the minimal flow I = p:

Fact 4.8. Let q,¢' € I. Then (q#p)* (¢ *p) =q*(p=*1¢)=*p.

Lemma 4.9. There is an ideal subgroup of I « p of the form J % p where J =
qo * (p *1 Geng (M**)) for some qo € Geng (M®™). Moreover, qo can be chosen
such that qo * p is an idempotent.

Proof. Take any J < Geng (M¢") such that J = p is an ideal subgroup. By Propo-
sition we may in fact assume that J < u * Geng (M*?) for some idempotent
u € Geng (M), Let qo € usGeng (M®*t) such that go*p € J*p is an idempotent.
Then J *p = qgo * p* J = p. We have
Qo*p*J#pCqoxpx Geng (M) xp = qo* (p*1 Geng (M) p.
On the other hand,
Jp=qorpxlxp>qo*pxGeng (M)« p.

Thus J has the desired form. |

Remark 4.10. Note that by Lemma [2.8, the elements of J are generic and by
Pmposition belong to the same ideal subgroup of Gen g (M¢*?).

Now fix an ideal subgroup of I #p the form Jp as in Lemma[£.9 with an idempo-
tent go*p. Recall that the quotient map 7 : K — K% is a group epimorphism. This
epimorphism extends to the semigroup epimorphism 7 : Seyt i (M) — K /K and
by Theorem|[2.2} the restriction of 7 to any ideal subgroup of Gen (M¢*) is a group
isomorphism. For ¢ € Geng (Me*), write ¢/K° to denote 7(q). Consequently:

Lemma 4.11. Leti: Jxp — K/K° be defined as follows:
i(g*p) = q/K*.

Then i is injective.
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We now show that the group operation in J % p can be described in terms of
group operation in K/K%. Define nx : G — K as follows: 7x(g) = k iff g = kh
for some h € H. This function naturally lifts to mx : Sezt, (M) — Segt,x (M). For
any q € Sept.k (M), q' € Sewt, (M) we have wx (g *q') = q.

With this notation, the map from Lemma is of the form 7 o mx.

Lemma 4.12. Let kg = qo/K% € K/K®. Then for any q € J, (p*1 q)/K®° =
ko—l _q/KOO.

Proof. We have gxp = qo*p*q*p = qo*(p*1q)*p. Thus ¢/K = (qo*(p*19))/ K" =
Q0/K - (p*1 ¢)/K*. O

Fix ko = qo/K°. We show the following:

Proposition 4.13. Let K' = i[J # p] =« K/K° be equipped with the operation
aob=a-k='-bwith - denoting the group operation in K/K°. Then (K’ o) is a
group tsomorphic with J = p via i.

Proof. Tt suffices to show that 4 is a homomorphism. Let q,¢ € J. Then
i(gxpxq xp)=ilg*(p*1d)*p) = (g (p*1d)/K” = ¢/K® - (p#1¢)/K*.
Now by Lemma [4.12,
q/KOO . (p 1 q/)/KOO _ q/KOO . kfl ‘q//KOO _ i(q*p) . kfl “i(ql *p).
(|

Finnaly, note that (K’, o) is isomorphic to the group (K’k~!,-) by sending a to
ak~1. Thus we prove

Theorem 4.14. Let G = KH be a good decomposition. Then the FEllis group of
the universal definable flow Sepi.(M) is isomorphic to a subgroup of K/K%.

We now discuss how much our results depend on the chosen model M. We
managed to describe the Ellis group as the object of the form go (p#1 Geng (M%)
p and showed how it maps to a subgroup of K /K. Particularly, this group depends
on the K cosets to which the operation ¢ — p *; ¢ sends generic types in K.

Let M <* N and let p|N be the unique heir. It is a type in H in the language
Legt,m over N. By Proposition there is some p’ € Seqy g (N) extending p|N.

Question 4.15. Let q be a global generic in K. Is it true that p 1 ¢™ and p’ + ¢™v
belong to the same coset of K02

Observe that if the above is true for all global generic types ¢, then the Ellis
group does not depend on the model, that is p *; Gen g (M*?) intersects the same
cosets of K9 as p’ %1 Geng (N°**) and ¢M #p is an idempotent if and only if ¢/ = p’
is. We do not know the answer to that question, or whether the negative answer
implies that the Ellis group depends on the model. Here we list some examples of
situations where the answer is positive:

— Whenever the action of H on K is trivial, p %7 g is simply ¢ for any type.
This is the case precisely when K normalizes H, that is when G = K x H.

— If G is definable over an o-minimal expansion of the field of reals. In this
case, over any extension R, (p’ 1 ¢*)/K°° depends only on q/K%. See [16]
for more details.
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— If every global generic in K is definable over a small model, then each ¢% is
the unique external generic extending the unique heir of ¢™. In this case,
the K9 coset of p’ * ¢V is a definable property of the pair (p, q).

— If K is stable and stably embedded in G, then every global generic in K is
definable and the preceding case holds.

We have the following specific result when the action of p’ on Seyt x (IV) respects
the cosets of K%, as is the case for groups definable in an o-minimal expansion of
the reals.

Proposition 4.16. Assume that (p'+1¢" )/ K0 depends only on ¢"¥ /K% (= q/K).
Then the Ellis group of the universal definable flow of G over N contains (Ng(H) N
K)/K® as a subgroup.

Proof. It k€ No(H)n K, then H fixes k under the action -;. Thus for any external
type g such that ¢/K = k/K" we have (p’ #; q)/ K = q/K®. In particular, this
holds for a generic g. This shows that the set p’ ; Geng (N°*!) meets k/K. O

5. THE O-MINIMAL CASE

In this section we apply the previous results to the case of groups definable in
an o-minimal expansion of a real closed field. We refer the reader to [I3] for classic
results on such groups, including the definition of definable compactness. Here,
we use the established results to prove Theorem and consider classes of groups
where we can prove that the Ellis group does not depend on the model.

Let R = (R,+,+,<,0,1,...) be an o-minimal expansion of a real closed field. Let
G be an R-definable group. We recall the following result from [8]:

Proposition 5.1. If G is definably compact, then it is fsg.
Another result comes from [5]:
Proposition 5.2. If G is torsion-free, then it is definably extremely amenable.

We now turn to the structural theory developed by Conversano in [3] and [4] to
describe an arbitrary group G.

Definition 5.3. We say that G has a definable compact-torsion-free decomposition
if there are definable subgroups K, H < G with K n H = {lg} such that K is
definably compact, and H is torsion-free.

Clearly a definable compact-torsion-free decomposition is a good decomposition
in the sense of Definition [4.1]

Not every group has a definable compact-torsion-free decomposition. However,
for any definably connected group G it is possible to find a canonical quotient that
admits a decomposition. After [3]:

Proposition 5.4. Let G be a definable definably connected group. Then there
exists a definable torsion-free A(G) <G such that G/ A(G) has a definable compact-
torsion-free decomposition, and it is the mazximal definable quotient of G with a
definable compact-torsion-free decomposition.

Since torsion-free groups are definably extremely amenable, this is the case we
considered in Section Bl

Corollary 5.5. Theorem[0.1) is true.
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Proof. Let A(G) < G be as in Proposition and let G/A(G) = KH be a de-
finable compact-torsion-free decomposition. By Proposition the Ellis group of
Sext,c(R) is isomorphic to the Ellis group of ..t /a(c)(R). Since G/A(G) = KH
is a good decomposition, by Theorem the Ellis group is isomorphic to a sub-
group of K/K%. By the classic theorem of Pillay, K /K% with logic topology is is
a compact Lie group. [l

If G/ A(G) is definably isomorphic to a group definable over the reals, this result
can be improved. We have the following result by Yao [16]:

Proposition 5.6. Let G be definable over the reals with a compact-torsion-free
decomposition G = KH. Then over any model the Ellis group of its universal
definable flow is isomorphic to Ng(H) n K(R).

Notice that over the reals, Ng(H) n K(R) can be identified with the group
(Ng(H) n K)/K®. Compare this result with Proposition m

6. GENERALIZATIONS

In this section we discuss some possible generalizations of our results. The mo-
tivation to consider the case of groups admitting a good decomposition comes from
the compact-torsion-free decomposition theorem that allowed us to consider groups
definable in o-minimal setting. Definable extreme amenability and fsg are the ab-
stract model-theoretic properties of the corresponding torsion-free and definably
compact groups that allowed us to solve these cases. Generally, when trying to
describe definable topological dynamics of a group G decomposed into G = KH
using the induced action of H on K (in a way described in Section 4), we are forced
to work with both left and right translations of types (and their coheirs) in K, but
only left translations of types (and their heirs) in H. Assumption of fsg for K
guarantees the existence of two-sided minimal ideals (over any model) that are all
finitely satisfiable extensions of their restrictions. Assumption of definable extreme
amenability of H can likely be weakened.

The fsg property can be viewed as a model-theoretic abstraction of compactness
for definable groups, and is related to the notion of compact domination. Consider
that compact-torsion-free decomposition in the o-minimal setting is the model-
theoretic analog of Iwasawa decomposition for semisimple Lie groups. The classic
theorem states that a semisimple real Lie group G decomposes as G = K AN with K
compact, A abelian and N nilpotent such that H = AN is also a group. Variants
of Iwasawa decomposition exist in other contexts. For instance, for a local non-
Archimedean field F' with discrete valuation, the group GL,, (F') can be decomposed
into GL,(Op)U,(F), where Op is the ring of integers of F' and U,, the group of
upper-triangular matrices. In this case, the group GL,(OF) is a maximal compact
subgroup of GL,(F). The field Q, of p-adic numbers has been studied model-
theoretically. Particularly, the theory of @, in the so-called Macintyre language
has been shown to have many nice properties (NIP, elimination of quantifiers,
definable choice). A notion of definable compactness for definable sets exists, and
definably compact groups are shown to have fsg.

Consider the group GL,(Q,) with the decomposition GL,(Z,)U,(Q,). The
group GL,(Z,) is fsg, and while in this case the intersection of GL,(Z,) and
Un(Qp) is not trivial, it is also fsg, giving hope it can be easily dealt with.
The group U,(Q,) is not definably extremely amenable. It is however definably
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amenable. Attempting to generalize our result to the case where G = KH for K
fsg and H definably amenable (with possibly nontrivial intersection) to tackle the
p-adic setting may require additional assumptions. In the general case of definably
amenable groups, the role of almost periodic types is assumed by so-called f-generic
types. Since, the dynamical analysis of Seyi,¢(M) involves translations of heirs of
types in H, a reasonable assumption on H might be that it contains an f-generic
external type such that for any N > M with |[N| = |M|, p|N is also f-generic. This
is the case for the group U,(Qp).
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