
Systemy kontroli wersji (VCS)

Projekt (definicja na potrzeby wykładu) – katalog z dowolną zawartością (np. kody
źródłowe, dane, . . . ), aktywnie rozwijany (np. powstająca aplikacja).

Typowe problemy związane z zarządzaniem projektem:

Konieczność tworzenia kopii zapasowych.

Utrudnione śledzenie zmian pomiędzy kopiami.

Utrudnione eksperymentowanie.

Kolaboracja: wielu użytkowników edytujących te same pliki, konfliktujące zmiany.

Rozwiązanie: system kontroli wersji/wersjonowania (version control system).
Przykłady: git, Mercurial, Subversion, CVS.

Podstawowy warsztat AI 2025/2026 Wykład 10



Systemy kontroli wersji (VCS)

Zadanie systemu kontroli wersji: systematyczne śledzenie zmian wykonanych w
projekcie (dodawania, usuwania i zmian w plikach i katalogach).

Repozytorium (w uproszczeniu) – baza danych, zawierająca kopie (snapshoty)
kolejnych� wersji projektu. Pozwala na pobranie wybranej wersji oraz zapisanie nowej.

Repozytorium może być lokalne (typowe dla projektów rozwijanych przez jedną osobę),
zdalne (z dostępem dla wielu użytkowników) lub rozproszone (każdy użytkownik ma
lokalną kopię repozytorium, wszystkie repozytoria są synchronizowane).

Podstawowy warsztat AI 2025/2026 Wykład 10



Systemy kontroli wersji (VCS)
Poglądowy rysunek dla lokalnego repozytorium z jednym użytkownikiem.

Podstawowy warsztat AI 2025/2026 Wykład 10



Systemy kontroli wersji (VCS)
Poczekalnia (staging area) – rejestracja dokonanych zmian przed wysłaniem.

Podstawowy warsztat AI 2025/2026 Wykład 10



Systemy kontroli wersji (VCS)

Przykład systemu rozproszonego z „głównym” repozytorium. Synchronizacja („w górę”
lub „w dół”) na żądanie użytkownika.

Podstawowy warsztat AI 2025/2026 Wykład 10



git

git – dominujący system kontroli wersji.

Rozproszona architektura (każdy ma lokalną kopię repozytorium).

Szybki, z efektywną reprezentacją wersji (np. jeśli plik nie zmienia się pomiędzy
wersjami, pamiętana będzie tylko jedna jego kopia; kompresja dużych plików).

Elastyczna struktura repozytorium: możliwość rozgałęziania projektu i sklejania
rozgałęzień.

GitHub (https://github.com) oraz podobne – hosting repozytoriów z dodatkową
funkcjonalnością (bug trackery, wiki projektów, „social media”, . . . ).

Podstawowy warsztat AI 2025/2026 Wykład 10

https://github.com


git

Konkretne narzędzia:

Polecenie powłoki (używane bezpośrednio lub przez pozostałe oprogramowanie)
git: dostępne pod Linuksem (typowa dystrybucja ma gotowy pakiet, niekoniecznie
od razu zainstalowany) i MacOS (pakiet). Windows: Git for Windows
(https://github.com/git-for-windows/git/releases/).

GitHub Desktop – graficzny frontend do zarządzania repozytoriami hostowanymi
na GitHubie oraz GitHub CLI (linia poleceń).

Integracja z typowymi IDE (PyCharm, VS Code, Visual Studio, . . . ). Często
obsługiwane są również Mercurial i SVN (Subversion).

. . .

(ww. narzędzia wewnętrznie używają powłokowego git lub GitHub CLI)

Podstawowy warsztat AI 2025/2026 Wykład 10

https://github.com/git-for-windows/git/releases/


git

Live demo (w przybliżeniu)

$ mkdir g i t demo && cd g i t demo
$ g i t i n i t
$ g i t c o n f i g u s e r . name me
$ g i t c o n f i g u s e r . ema i l my@mail . o rg
$ echo ” He l l o wor ld ” > a . t x t
$ g i t add a . t x t
$ g i t commit =m ”Pie rwsza we r s j a ”

$ touch b . t x t c . t x t
$ g i t add .
$ g i t commit =m ”Drug i commit”

$ rm b . t x t
$ g i t add .
$ g i t commit =m ”Usuni ę c i e b . t x t ”

Podstawowy warsztat AI 2025/2026 Wykład 10



git

Live demo (w przybliżeniu) c.d.

Integracja z PyCharmem.

GitHub (autoryzacja – więcej w materiałach do wykładu).

Klonowanie repozytorium (powłoka, PyCharm).

Repozytoria zdalne (np. publiczne repozytorium na GitHubie:
https://github.com/GJ-Demo/PWAI/):

$ g i t c l o n e h t t p s : // g i t hub . com/GJ=Demo/PWAI/
$ g i t remote =v
. . .
$ g i t push o r i g i n main

Podstawowy warsztat AI 2025/2026 Wykład 10

https://github.com/GJ-Demo/PWAI/

