
Zarządzenie projektami

Cel: krótki opis typowych praktyk pomagających w zespołowej pracy nad (większymi)
projektami, a następnie utrzymywaniu projektów.

Typowy cykl życia projektu:

Eksperymenty Ñ praca nad projektem Ñ utrzymywanie projektu

Typowe problemy:

Brakujące zależności.

Zmieniające się wersje używanych bibliotek.

Śledzenie (i commitowanie) niechcianych plików.

„U mnie działa”.

Podstawowy warsztat AI 2025/2026 Wykład 12



Zarządzenie projektami

Typowa struktura katalogów dla małego/średniego projektu z ML w Pythonie.
Założenie: używamy gita do kontroli wersji.

s r c / # ź r ód ł a
main . py
u t i l s . py
. . .

data / # dane
samples . c s v
metadata . t x t
. . .

t e s t s / # t e s t y sp rawdza j ą ce poprawno ś ć
t e s t . py
. . .

README.md
. g i t i g n o r e
r e qu i r emen t s . t x t

Podstawowy warsztat AI 2025/2026 Wykład 12



Zarządzenie projektami

Przypomnienie: systemy kontroli wersji (konkretnie git):

Katalog roboczy z projektem (lokalny)

Ó add/rm

Poczekalnia (lokalna)

Ó commit

Repozytorium lokalne

Ó push

Repozytorium zdalne

Komunikacja w drugą stronę: checkout, pull.

Podstawowy warsztat AI 2025/2026 Wykład 12



Zarządzenie projektami

Dobra praktyka – każdy commit jako snapshot (migawka) działającego projektu (a nie
po prostu robocza kopia zapasowa).

Wymóg można osłabić dla gałęzi, które nie są główne.

Można zignorować dla commitów w repozytorium lokalnym, pod warunkiem że
zostaną ściśnięte (squash) przed pushem (wysłaniem commitów do zdalnego
repozytorium).

GitHub pozwala na ściśnięcie commitów z gałęzi przed scaleniem tej gałęzi –
squash and merge (tutaj live demo).

Ściśnięcie commitów lokalnych (przed pushem) wymaga linii poleceń (np.
git reset --soft ...).

Podstawowy warsztat AI 2025/2026 Wykład 12



Niechciane pliki

Praca nad projektem zazwyczaj prowadzi do istnienia plików i katalogów, które nie
powinny stawać się częścią repozytorium, np.

Skompilowany kod, linkowane obiekty etc. (Python: katalog pycache , pliki
.pyc, .pyd, .pyo; C++: .a, .o, .obj, .exe, .dll).

Pliki edytora (PyCharm: katalog .idea, VS Code: katalog .vscode, Jupyter:
katalog .ipynb checkpoints).

Różne pliki generowane lokalnie przez uruchomiony projekt (np. pliki z
konfiguracją, pliki robocze).

Wirtualne środowisko (o tym później): katalogi typowo nazwane venv lub .venv

Inne specyficzne pliki (MacOS/iOS: .DS Store, Windows: Thumbs.db)

itp.

git pozwala na utworzenie list wykluczeń dla całego projektu (.gitignore – tu live
demo) lub dla pojedynczego użytkownika.

Podstawowy warsztat AI 2025/2026 Wykład 12



Wirtualne środowisko

Klasyczny problem: projekty mają zależności (np. biblioteki typu numpy). Biblioteki
(jak każdy inny projekt) są rozwijane: w starszych wersjach będzie brakować pewnych
funkcjonalności. Niektóre elementy funkcjonalności mogą zostać wycofywne (brak
wstecznej kompatybilności).

W konsekwencji projekt może wymagać konkretnych wersji (lub konkretnego układu
wersji) danych bibliotek.

Rozwiązanie: wirtualne środowisko – minimalistyczna kopia interpretera wraz z
niezależnym układem bibliotek, po jednej kopii na projekt (krótkie live demo).

Podstawowy warsztat AI 2025/2026 Wykład 12



Wirtualne środowisko

Repozytorium przechowuje informację o bibliotekach używanych przez moduł, ale nie
przechowuje samych bibliotek. Typowy schemat pracy (live demo):
1 Klonowanie repozytorium.
2 Utworzenie środowiska standardowymi narzędziami (venv, conda, etc.).
3 Aktywacja środowiska.
4 Zautomatyzowana instalacja bibliotek.
5 (...)
6 Dezaktywacja środowiska.

Podstawowy warsztat AI 2025/2026 Wykład 12


