Zarzadzenie projektami

Cel: krétki opis typowych praktyk pomagajacych w zespotowej pracy nad (wiekszymi)
projektami, a nastepnie utrzymywaniu projektéw.
Typowy cykl zycia projektu:
Eksperymenty — praca nad projektem — utrzymywanie projektu

Typowe problemy:

o Brakujace zaleznosci.

@ Zmieniajace sie wersje uzywanych bibliotek.

o Sledzenie (i commitowanie) niechcianych plikéw.

@ ,,U mnie dziata”.

Podstawowy warsztat Al 2025/2026 Wyktad 12

Zarzadzenie projektami

Typowa struktura katalogéw dla matego/$redniego projektu z ML w Pythonie.
Zatozenie: uzywamy gita do kontroli wersji.

src/ # Zrddta
main . py
utils .py

data/ # dane
samples.csv
metadata. txt

tests/ # testy sprawdzajace poprawnosé
test.py

README . md
.gitignore
requirements . txt

Podstawowy warsztat Al 2025/2026 Wyktad 12

Zarzadzenie projektami

Przypomnienie: systemy kontroli wersji (konkretnie git):

Katalog roboczy z projektem (lokalny)
} add/rm
Poczekalnia (lokalna)
| commit
Repozytorium lokalne
| push
Repozytorium zdalne

Komunikacja w druga strone: checkout, pull.

Podstawowy warsztat Al 2025/2026 Wyktad 12

Zarzadzenie projektami

Dobra praktyka — kazdy commit jako snapshot (migawka) dziatajacego projektu (a nie
po prostu robocza kopia zapasowa).

o Wymédg mozna ostabié dla gatezi, ktére nie sg gtéwne.

@ Mozna zignorowa¢ dla commitéw w repozytorium lokalnym, pod warunkiem ze
zostang Scisniete (squash) przed pushem (wystaniem commitéw do zdalnego
repozytorium).

@ GitHub pozwala na SciSniecie commitéw z gatezi przed scaleniem tej gatezi —
squash and merge (tutaj live demo).

o Sciéniecie commitéw lokalnych (przed pushem) wymaga linii polecen (np.
git reset --soft ...).

Podstawowy warsztat Al 2025/2026 Wyktad 12

Niechciane pliki

Praca nad projektem zazwyczaj prowadzi do istnienia plikéw i katalogdéw, ktére nie
powinny stawac sie czescig repozytorium, np.
e Skompilowany kod, linkowane obiekty etc. (Python: katalog __pycache__, pliki
.pyc, .pyd, .pyo; C++: .a, .0, .0bj, .exe, .dll).

Pliki edytora (PyCharm: katalog .idea, VS Code: katalog .vscode, Jupyter:
katalog .ipynb_checkpoints).

Rézne pliki generowane lokalnie przez uruchomiony projekt (np. pliki z
konfiguracja, pliki robocze).

e Wirtualne $rodowisko (o tym pdzniej): katalogi typowo nazwane venv lub .venv
@ Inne specyficzne pliki (MacOS/iOS: .DS_Store, Windows: Thumbs.db)
e itp.

git pozwala na utworzenie list wykluczen dla catego projektu (.gitignore — tu live
demo) lub dla pojedynczego uzytkownika.

Podstawowy warsztat Al 2025/2026 Wyktad 12

Wirtualne srodowisko

Klasyczny problem: projekty maja zaleznosci (np. biblioteki typu numpy). Biblioteki
(jak kazdy inny projekt) sa rozwijane: w starszych wersjach bedzie brakowac pewnych
funkcjonalnosci. Niektére elementy funkcjonalnosci moga zostaé wycofywne (brak
wstecznej kompatybilnosci).

W konsekwencji projekt moze wymagaé konkretnych wersji (lub konkretnego uktadu
wersji) danych bibliotek.

Rozwigzanie: wirtualne Srodowisko — minimalistyczna kopia interpretera wraz z
niezaleznym uktadem bibliotek, po jednej kopii na projekt (krétkie live demo).

Podstawowy warsztat Al 2025/2026 Wyktad 12

Wirtualne srodowisko

Repozytorium przechowuje informacje o bibliotekach uzywanych przez modut, ale nie
przechowuje samych bibliotek. Typowy schemat pracy (live demo):

@ Klonowanie repozytorium.

@ Utworzenie Srodowiska standardowymi narzedziami (venv, conda, etc.).
© Aktywacja srodowiska.

@ Zautomatyzowana instalacja bibliotek.

O Dezaktywacja Srodowiska.

Podstawowy warsztat Al 2025/2026 Wyktad 12

