Main Publications Talks Research Teaching Art Other
  • [1] B. H. Jasiulis, J. K. Misiewicz, On the connection between weakly stable and pseudo-isotropic distributions, Statistics & Probability Letters, 78(16), 2751-2755, 2008. pdf
  • [2] B. H. Jasiulis, Limit properties for Regular and Weak Generalized Convolutions, Journal of Theoretical Probability, 23(1), 315-327, 2010. pdf
  • [3] B. H. Jasiulis-Go³dyn, J. K. Misiewicz, On the uniqueness of the Kendall generalized convolution, Journal of Theoretical Probability, 24(3), 746-755, 2011. pdf
  • [4] B. H. Jasiulis-Go³dyn, J.K. Misiewicz , Weak Lévy-Khintchne representation for weak infinite divisibility, Theory Probab. Appl., 60(1) 45-61, 2016. pdf
  • [5] M. Borowiecka-Olszewska, B.H. Jasiulis-Go³dyn, J.K. Misiewicz, J. Rosiński, Lévy processes and stochastic integral in the sense of generalized convolution, Bernoulli, 21(4), 2513--2551, 2015. pdf
  • [6] B. H. Jasiulis-Go³dyn, The distributions and processes connected with weak stability and generalized convolutions-doctoral dissertation, 2010.
  • [7] B. H. Jasiulis-Go³dyn, Kendall random walks , Probab. Math. Stat., 36(1), 165-185, 2016. pdf
  • [8] B. H. Jasiulis-Go³dyn, A. Kula, The Urbanik generalized convolutions in the non-commutative probability and a forgotten method of constructing generalized convolution, Proceedings of the Indian Academy of Science - Math. Sc., 122(3), 437-458, 2012. pdf
  • [9] B. H. Jasiulis-Go³dyn, J.K. Misiewicz , Classical definitions of the Poisson process do not coincide in the case of weak generalized convolutions, Lith. Math. J., 55(4), 518-542, 2015. pdf.
  • [10] B. H. Jasiulis-Go³dyn, J.K. Misiewicz, Kendall random walk, Williamson transform and the corresponding Wiener-Hopf factorization, in press: Lith. Math. J., 2017. pdf
  • [11] M. Arendarczyk, B. H. Jasiulis-Go³dyn, W. Szczotka Asymptotic properties of Kendall random walks, in preparation, 2017.
  • [12] B. H. Jasiulis-Go³dyn, A. Lechańska, J.K. Misiewicz, Cramer-Lundberg model for Kendall random walk , in preparation, 2017.
  • [13] B. H. Jasiulis-Go³dyn, K. £ukaszewicz, J.K. Misiewicz, Renewal theory for Kendall random walks , in preparation, 2017.
  • [14] B. H. Jasiulis-Go³dyn, M. Staniak, Spitzer identity for Kendall random walks , in preparation, 2017.