
EGZAMIN, ANALIZA 1A, 5.02.2014
12 zadań po 5 punktów, progi: 30=3.0, 36=3.5, 42=4.0, 48=4.5, 54=5.0

Zadanie1.
W każdym z zadań 1.1-1.5 podaj (w postaci uproszczonej) kresy zbioru oraz napisz,

czy kresy należą do zbioru (napisz TAK lub NIE).
Kres może być liczbą rzeczywistą lub może być równy −∞ albo +∞=∞.
Za każde zadanie, w którym podasz bezbłędnie oba kresy i poprawnie określisz ich

przynależność do zbioru, otrzymasz 1 punkt.
Za każde zadanie, w którym podasz bezbłędnie oba kresy i poprawnie określisz przyna-
leżność jednego z nich do zbioru, otrzymasz 0.5 punktu.
Za podanie kresu w postaci rażąco nieuproszczonej stracisz 0.2 punktu.
Za pozostałe zadania nie otrzymasz punktów.

N= {1,2,3,4,5,...} oznacza zbiór liczb naturalnych (całkowitych dodatnich).

1.1. A=
{ 1
n2−20n+108

: n∈N
}

Ocena .......

infA=0 supA=1/8

Czy kres dolny należy do zbioru A NIE Czy kres górny należy do zbioru A TAK

1.2. B=
{ 1
n2−20n+98

: n∈N
}

Ocena .......

infB=−1 supB=1/2

Czy kres dolny należy do zbioru B TAK Czy kres górny należy do zbioru B TAK

1.3. C =
{ 1
n2−20n+88

: n∈N
}

Ocena .......

infC =−1/3 supC =1/4

Czy kres dolny należy do zbioru C TAK Czy kres górny należy do zbioru C TAK

1.4. D=
{
m

n
: m,n∈N ∧ 2 ·n2¬ (m+n)2¬ 3 ·n2

}
Ocena .......

infD=
√
2−1 supD=

√
3−1

Czy kres dolny należy do zbioru D NIE Czy kres górny należy do zbioru D NIE

1.5. E=
{
m

n
: m,n∈N ∧ 16 ·n2¬ (m+n)2¬ 36 ·n2

}
Ocena .......

infE=3 supE=5

Czy kres dolny należy do zbioru E TAK Czy kres górny należy do zbioru E TAK
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Zadanie2.
Przy każdym z poniższych 12 zdań w miejscu kropek postaw jedną z liter P, F, N:
P - jest Prawdą (tzn. musi być prawdziwe)
F - jest Fałszem (tzn. musi być fałszywe)
N - może być prawdziwe lub fałszywe (tzn. Nie wiadomo, czasem bywa prawdziwe,

a czasem fałszywe)
Za podanie n poprawnych odpowiedzi otrzymasz max(0, n−7) punktów.

O zdaniu T (n) wiadomo, że
• T (1) jest prawdziwe,
• dla każdej liczby naturalnej n 6=2 zachodzi implikacja T (n)⇒T (n+1).
Co można wywnioskować o prawdziwości zdania:

a) T (2) P b) T (3) N

c) T (4) N d) T (2)⇒T (666) N

e) T (3)⇒T (666) P f) T (4)⇒T (666) P

g) T (666)⇒T (2) P h) T (666)⇒T (3) N

i) T (666)⇒T (4) N j) T (4)⇒T (3) N

k) T (4)⇒T (2) P l) T (3)⇒T (2) P
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Zadanie3.
W każdym z dziewięciu poniższych zadań podaj wartość granicy ciągu (liczba rzeczy-

wista) lub granicy niewłaściwej (+∞ lub −∞).
Wpisz literkę R, jeśli granica nie istnieje (tzn. gdy ciąg występujący pod znakiem

granicy jest rozbieżny, ale nie jest to rozbieżność do +∞ ani do −∞).
Za udzielenie n poprawnych odpowiedzi otrzymasz max(0, n−4) punktów.

3.1. lim
n→∞
log3(n+9)
log3n

= 1

3.2. lim
n→∞(log3(n+9)− log3n)= 0

3.3. lim
n→∞logn(n+9)= 1

3.4. lim
n→∞
log3(9n+1)
log3n

= 1

3.5. lim
n→∞(log3(9n+1)− log3n)= 2

3.6. lim
n→∞logn(9n+1)= 1

3.7. lim
n→∞
log3

(
n9+1

)
log3n

= 9

3.8. lim
n→∞

(
log3

(
n9+1

)
− log3n

)
= +∞

3.9. lim
n→∞logn

(
n9+1

)
= 9
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Zadanie4.
Za udzielenie n poprawnych odpowiedzi otrzymasz max(0, n−1) punktów.

Niech f :R→R będzie funkcją określoną wzorem

f(x)= a ·{2x}+b ·{x}+c ·
{
x+
1
2

}
,

gdzie {y} oznacza część ułamkową liczby y.
W każdym z podpunktów uzupełnij brakujące liczby rzeczywiste tak, aby funkcja f

zdefiniowana powyższym wzorem była ciągła. Wpisz NIE, jeśli uważasz, że liczby rze-
czywiste o żądanej własności nie istnieją.

a) a=1, b= -1, c= -1

b) a= -2, b=2, c=2

c) a= -3, b=3, c=3

d) a=4, b= -4, c= -4

e) a= -5, b=5, c=5

f) a= -6, b=6, c=6
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Zadanie5.
W każdym z poniższych 7 pytań w miejscu kropek wpisz liczbę rzeczywistą lub postaw

jedną z liter Z, R, N:
Liczba S - podany szereg jest zbieżny i jego suma musi być równa S
Z - jest Zbieżny (tzn. musi być zbieżny), ale na podstawie podanych informacji nie

można wyznaczyć jego sumy
R - jest Rozbieżny (tzn. musi być rozbieżny)
N - może być zbieżny lub rozbieżny (tzn. Nie wiadomo, czasem jest zbieżny, a czasem

rozbieżny)

Za udzielenie n poprawnych odpowiedzi otrzymasz max(0, n−2) punktów.

Wiadomo, że szereg
∞∑
n=1

an jest zbieżny, jego suma jest równa 123, a pierwszy wyraz

jest równy 10. Co można wywnioskować o zbieżności poniższego szeregu i o jego sumie

5.1.
∞∑
n=1
a2n= N

5.2.
∞∑
n=1
(an+a1) = R (uznajemy też +∞)

5.3.
∞∑
n=1
(an ·a1) = 1230

5.4.
∞∑
n=1

√
a2n+1= R (uznajemy też +∞)

5.5.
∞∑
n=1

(√
a2n+1+1−

√
a2n+1

)
= 1−√101

5.6.
∞∑
n=1

(√
a2n+1+4−

√
a2n+1

)
= R (uznajemy też +∞)

5.7.
∞∑
n=1

(√
a2n+1+4−

√
a2n+4

)
= 2−√104
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Zadanie6.
Na każde z poniższych 12 pytań udziel odpowiedzi TAK/NIE.

Za udzielenie n poprawnych odpowiedzi otrzymasz max(0, n−7) punktów.

Czy zespolony szereg potęgowy
∞∑
n=1

zn

n
jest zbieżny dla

6.1. z=1 NIE 6.2. z=−1 TAK

6.3. z= i TAK 6.4. z=
3+4i
5

TAK

6.5. z=

√
3+ i
2

TAK 6.6. z=

√
3− i
2

TAK

6.7. z=
5+5i
7

NIE 6.8. z=
7−4i
8

NIE

6.9. z=
2+2i
3

TAK 6.10. z=
4
√
5
9
TAK

6.11. z=3i · log263 NIE 6.12. z=2i · log265 TAK
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Zadanie7.
Wyznaczyć promień zbieżności szeregu potęgowego

∞∑
n=1

((3n)!)2n ·x6n2

((2n)!)3n
.

Rozwiązanie:
Stosujemy kryterium Cauchy’ego do danego w zadaniu szeregu:

n

√√√√((3n)!)2n ·x6n2
((2n)!)3n

=
((3n)!)2 ·x6n

((2n)!)3
= bn .

Następnie stosujemy kryterium d’Alemberta do ciągu (bn), przy założeniu x 6=0:
bn+1
bn
=
((3n+3)!)2 ·x6n+6

((2n+2)!)3
· ((2n)!)

3

((3n)!)2 ·x6n
=
((3n+3)!)2

((3n)!)2
· ((2n)!)

3

((2n+2)!)3
·x6=

=
(3n+3)2 ·(3n+2)2 ·(3n+1)2

(2n+2)3 ·(2n+1)3
·x6=

(
3+ 3

n

)2
·
(
3+ 2

n

)2
·
(
3+ 1

n

)2
(
2+ 2

n

)3
·
(
2+ 1

n

)3 ·x6→ 3
6 ·x6

26

przy n→∞.

Jeżeli
36 ·x6

26
< 1, czyli

|x|< 2
3
,

to na podstawie kryterium d’Alemberta zastosowanego do ciągu (bn) otrzymujemy

lim
n→∞
bn=0< 1 ,

skąd w oparciu o kryterium Cauchy’ego zastosowane do szeregu potęgowego danego
w treści zadania wnioskujemy, że szereg ten jest zbieżny.

Jeżeli zaś
36 ·x6

26
> 1, czyli

|x|> 2
3
,

to lim
n→∞
bn=+∞> 1, skąd wynika, że szereg potęgowy jest rozbieżny.

Zatem szereg potęgowy ma promień zbieżności 2/3.

Odpowiedź: Promień zbieżności danego szeregu potęgowego jest równy 2/3.

Punktacja za częściowe rozwiązania:
2 punkty za zastosowanie kryterium Cauchy’ego do danego szeregu potęgowego i po-

prawne wyliczenie bn.
3-ci punkt za rozpoczęcie stosowania kryterium d’Alemberta do ciągu (bn).
4-ty punkt za wyliczenie

lim
n→∞

bn+1
bn
=
36 ·x6

26
.
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Zadanie8.
Dowieść, że dla każdej liczby całkowitej dodatniej n zachodzi nierówność(

2n+2
n

)
>
(15
4

)n
.

Rozwiązanie:
Zamierzamy przeprowadzić dowód indukcyjny.

1◦ (w tej chwili wydaje nam się, że jest to pierwszy krok indukcyjny) Dla n=1 mamy(
2n+2
n

)
=
(
4
1

)
=4

oraz (15
4

)n
=
(15
4

)1
=
15
4
,

a zatem dana w zadaniu nierówność przyjmuje postać 4> 15/4, jest więc prawdziwa,
gdyż 4=16/4.

2◦ Niech teraz n będzie taką liczbą naturalną, że(
2n+2
n

)
>
(15
4

)n
.

Chcemy wykazać, że (
2n+4
n+1

)
>
(15
4

)n+1
.

Wychodząc od lewej strony powyższej nierówności otrzymujemy(
2n+4
n+1

)
=

(2n+4)!
(n+1)!(n+3)!

=
(2n+2)!(2n+3)(2n+4)
n!(n+1)(n+2)!(n+3)

=
(
2n+2
n

)
· (2n+3)(2n+4)
(n+1)(n+3)

>

>
(15
4

)n
· (2n+3)(2n+4)
(n+1)(n+3)

­
(15
4

)n
· 15
4
=
(15
4

)n+1
,

o ile udowodnimy, że
(2n+3)(2n+4)
(n+1)(n+3)

­ 15
4
.

Powyższa nierówność jest równoważna kolejnym nierównościom:

4(2n+3)(2n+4)­ 15(n+1)(n+3) ,

4
(
4n2+14n+12

)
­ 15

(
n2+4n+3

)
,

16n2+56n+48­ 15n2+60n+45 ,

n2−4n+3­ 0 ,

(n−1)(n−3)­ 0 ,

co jest prawdą dla wszystkich liczb całkowitych n 6=2.
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Drugi krok indukcyjny został więc przeprowadzony tylko dla n=1 oraz n­ 3.

Dla kompletności dowodu należy sprawdzić daną w treści zadania nierówność dla
n=3. Sprawdzenie dla n=3 okazuje się przejmować rolę pierwszego kroku indukcyjne-
go. Sprawdzenie dla n=2 nie jest konieczne, gdyż drugi krok indukcyjny został prze-
prowadzony także dla n=1, dowodząc tym samym implikacji T (1)⇒T (2), gdzie T (n)
jest dowodzoną nierównością. Jednak bezpośrednie sprawdzenie danej w treści zadania
nierówności dla n=2 może być uznane za prostsze, niż powoływanie się na mini-dowód
indukcyjny działający dla n¬ 2.
1◦ (to okazuje się być pierwszym krokiem indukcyjnym w dowodzie dla n­ 3) Dla

n=3 dana w treści zadania nierówność przyjmuje postać:(
8
3

)
>
(15
4

)3
,

co jest kolejno równoważne nierównościom:

56>
153

43
,

56 ·64> 153 ,

28 ·128> 33 ·53 ,

28 ·128> 27 ·125 ,

a ta nierówność jest prawdziwa, gdyż czynniki w iloczynie po jej lewej stronie są większe
od odpowiednich czynników po stronie prawej.

3◦ Na mocy zasady indukcji matematycznej dana w zadaniu nierówność została udo-
wodniona w jednym dowodzie indukcyjnym dla każdej liczby naturalnej n­ 3, a w drugim
dowodzie indukcyjnym dla n¬ 2.

Uwagi:

Sprawdzenie dla n=3 nie wydaje się wymagać wiele pracy, jednak brak świadomości
konieczności wykonania tego sprawdzenia jest bardzo poważnym błędem.
Jeśli zamiast nierówności

(2n+3)(2n+4)
(n+1)(n+3)

­ 15
4

w rozwiązaniu pojawi się ostra nierówność
(2n+3)(2n+4)
(n+1)(n+3)

>
15
4
, ♠

to w konsekwencji drugi krok indukcyjny zostanie przeprowadzony dla n> 3. Tym samym
konieczne będzie także sprawdzenie dowodzonej nierówności dla n=4.

Maksymalna możliwa ocena za rozwiązanie, w którym brak jest świado-
mości konieczności wykonania sprawdzenia dla n=3, to 2 punkty. To samo,
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gdy brak jest świadomości konieczności wykonania sprawdzenia dla n=4, jeżeli z roz-
wiązania nie wynika (np. z powodu użycia ostrej nierówności ♠), że została udowodniona
implikacja T (3)⇒T (4), gdzie T (n) jest dowodzoną nierównością.
Jeżeli jedyną usterką rozwiązania jest nierozważenie przypadku n=2 – brak spraw-

dzenia i brak powołania się na mini-indukcję z implikacją T (1)⇒T (2) – rozwiązanie
powinno być ocenione na 4 punkty.
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Zadanie9.
Skonstruować przykład takiego szeregu zbieżnego

∞∑
n=1
an o wyrazach rzeczywistych,

że szeregi
∞∑
n=1
a2n oraz

∞∑
n=1
a4n są zbieżne, a ponadto zachodzą równości

∞∑
n=1

an=
∞∑
n=1

a2n=
1
2
oraz

∞∑
n=1

a4n=
1
5
.

Rozwiązanie:
Spróbujemy znaleźć szereg geometryczny o żądanych własnościach.

W tym celu załóżmy, że an= cqn−1, pamiętając, aby |q|< 1. Wówczas
∞∑
n=1

an=
∞∑
n=1

cqn−1=
c

1−q
,

∞∑
n=1

a2n=
∞∑
n=1

c2
(
q2
)n−1
=
c2

1−q2
oraz

∞∑
n=1

a4n=
∞∑
n=1

c4
(
q4
)n−1
=
c4

1−q4
,

co po uwzględnieniu warunków zadania prowadzi do układu równań

c

1−q
=
1
2

c2

1−q2
=
1
2

c4

1−q4
=
1
5
,

(♠)

czyli 
2c = 1−q
2c2 = 1−q2
5c4 = 1−q4 .

Z pierwszego równania otrzymujemy

c=
1−q
2
,

co po podstawieniu do drugiego równania i uwzględnieniu, że 1−q 6=0, daje kolejno

2 · (1−q)
2

22
=1−q2 ,

(1−q)2

2
= (1−q) ·(1+q) ,

1−q
2
=1+q ,

1−q=2+2q ,

−1=3q ,

q=−1/3 , c=2/3 .
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Para (c, q)= (2/3,−1/3) jest jedyną parą liczb spełniającą pierwsze dwa równania
układu (♠). Należy sprawdzić, że spełnia ona także trzecie równanie tego układu:

c4

1−q4
=

(
2
3

)4
1−

(
−1
3

)4 = 16/8180/81
=
1
5
.

Otrzymane rozwiązanie q=−1/3, c=2/3 prowadzi do

an= cqn−1=
2 ·(−1)n−1

3n
.

Odpowiedź: Przykładem szeregu spełniającego warunki zadania jest szereg
∞∑
n=1

2 ·(−1)n−1

3n
.

Uwaga: Nie istnieje szereg o wyrazach nieujemnych spełniający warunki zadania,
gdyż dla dowolnego szeregu zbieżnego

∞∑
n=1
an o wyrazach nieujemnych zachodzi nierów-

ność
∞∑
n=1

a2n¬
( ∞∑
n=1

an

)2
.

Punktacja:
Punktacja częściowych rozwiązań wykorzystujących zaprezentowaną wyżej metodę kon-
strukcji przykładu:
Za uzyskanie dwóch równań układu (♠) - 1 punkt.
Za uzyskanie układu trzech równań (♠) - razem 2 punkty.
Za poprawne wyliczenie (c, q)= (2/3,−1/3) przy wykorzystaniu co najmniej dwóch

równań - razem 3 punkty.
Za sprawdzenie, że para (c, q)= (2/3,−1/3) spełnia także trzecie równanie - razem

4 punkty.
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Zadanie10.
Rozstrzygnąć zbieżność szeregu

∞∑
n=1

(−1)n ·(3n−2) ·(3n+1)
(2n+1) ·(2n+3) ·(2n+5)

.

Rozwiązanie:
Szereg jest zbieżny. Aby to udowodnić, skorzystamy z kryterium Leibniza o szeregach
naprzemiennych.
W tym celu musimy zweryfikować prawdziwość trzech założeń tego kryterium.

1◦ W szeregu na przemian występują wyrazy dodatnie i ujemne - oczywiste.

2◦ Ciąg wartości bezwzględnych wyrazów jest zbieżny do zera.
Sprawdzamy to następująco:

lim
n→∞

(3n−2) ·(3n+1)
(2n+1) ·(2n+3) ·(2n+5)

= lim
n→∞

(
3− 2

n

)
·
(
3+ 1

n

)
· 1
n(

2+ 1
n

)
·
(
2+ 3

n

)
·
(
2+ 5

n

) = 3 ·3 ·0
2 ·2 ·2

=0 .

3◦ Ciąg wartości bezwzględnych wyrazów jest nierosnący.
Ten warunek jest najmniej oczywisty. Aby go udowodnić, powinniśmy wykazać, że dla

dowolnej liczby naturalnej n zachodzi nierówność
(3n−2) ·(3n+1)

(2n+1) ·(2n+3) ·(2n+5)
­ (3n+1) ·(3n+4)
(2n+3) ·(2n+5) ·(2n+7)

,

co kolejno jest równoważne nierównościom
3n−2
2n+1

­ 3n+4
2n+7

,

(3n−2) ·(2n+7)­ (3n+4) ·(2n+1) ,

6n2+21n−4n−14­ 6n2+3n+8n+4 ,

6n2+17n−14­ 6n2+11n+4 ,

6n­ 18 ,

n­ 3 .

Zatem dowodzona nierówność jest prawdziwa dla wszystkich liczb naturalnych n­ 3.

Oznacza to, że dany w zadaniu szereg nie spełnia założeń kryterium Leibniza, ale
spełnia je szereg

∞∑
n=3

(−1)n ·(3n−2) ·(3n+1)
(2n+1) ·(2n+3) ·(2n+5)

,

który wobec tego jest zbieżny. Ponieważ zbieżność szeregu nie zależy od zmiany lub
pominięcia skończenie wielu wyrazów, zbieżny jest także szereg dany w treści zadania.

Punktacja:

Rozwiązania wykazujące brak świadomości, że należy oprzeć rozwiązanie na kryte-
rium Leibniza o szeregach naprzemiennych i sprawdzić monotoniczność ciągu wartości
bezwzględnych wyrazów szeregu - 0 punktów.
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Sformułowanie warunków kryterium Leibniza, stwierdzenie, że warunek 1◦ jest speł-
niony oraz sprawdzenie warunku 2◦ - 1 punkt.

Udowodnienie, że ciąg wartości bezwzględnych wyrazów jest nierosnący od wyrazu
3-go (lub od jakiegokolwiek dalszego - przy wyborze innej metody dowodu) - kolejne
2 punkty.

Końcowe uzasadnienie, że dany w zadaniu szereg jest zbieżny (z powołaniem się na nie-
zależność zbieżności od zmiany lub pominięcia skończenie wielu wyrazów) - kolejne
2 punkty.
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Zadanie11.
Dana jest funkcja f :R→R określona wzorem

f(x)= 4
√
x4+1 .

Dowieść, że dla dowolnych liczb rzeczywistych x, y zachodzi nierówność

|f(x)−f(y)| ¬ |x−y| .

Rozwiązanie:
Skorzystamy ze wzoru skróconego mnożenia

a4−b4=
(
a2−b2

)
·
(
a2+b2

)
=(a−b) ·(a+b) ·

(
a2+b2

)
,

który przy założeniu a+b 6=0 można zapisać w postaci

a−b= a4−b4

(a+b) ·(a2+b2)
.

Przyjmując a= 4
√
x4+1 oraz b= 4

√
y4+1, zauważamy, że a+b> 0 i przekształcamy lewą

stronę dowodzonej nierówności:

|f(x)−f(y)|=
∣∣∣∣ 4√x4+1− 4√y4+1∣∣∣∣=

=

∣∣∣∣∣∣ (x4+1)−(y4+1)(
4√x4+1+ 4

√
y4+1

)
·
(√
x4+1+

√
y4+1

)
∣∣∣∣∣∣= (1)

=
|x4−y4|(

4√x4+1+ 4
√
y4+1

)
·
(√
x4+1+

√
y4+1

) =
=

|x2−y2| ·(x2+y2)(
4√x4+1+ 4

√
y4+1

)
·
(√
x4+1+

√
y4+1

) =
=

|x−y| · |x+y| ·(x2+y2)(
4√x4+1+ 4

√
y4+1

)
·
(√
x4+1+

√
y4+1

) . (2)

Korzystając z nierówności trójkąta i wykorzystując równość |x|= 4
√
x4 otrzymujemy:

|x+y| ¬ |x|+ |y|= 4
√
x4+ 4

√
y4<

4√
x4+1+ 4

√
y4+1 ,

skąd
|x+y|

4√x4+1+ 4
√
y4+1

< 1 . (3)

Podobnie, wykorzystując równość x2=
√
x4 otrzymujemy:

x2+y2=
√
x4+

√
y4<
√
x4+1+

√
y4+1 ,

skąd
x2+y2√

x4+1+
√
y4+1

< 1 . (4)
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Połączenie tych nierówności pozwala dokończyć oszacowania:
|x−y| · |x+y| ·(x2+y2)(

4√x4+1+ 4
√
y4+1

)
·
(√
x4+1+

√
y4+1

) =
= |x−y| · |x+y|

4√x4+1+ 4
√
y4+1

· x2+y2√
x4+1+

√
y4+1

¬ |x−y| ·1 ·1= |x−y| .

Punktacja za poszczególne elementy rozwiązania:
Doprowadzenie przekształceń do (1) - 1 punkt
Doprowadzenie przekształceń do (2) - 1 punkt
Otrzymanie nierówności (3) - 1 punkt
Otrzymanie nierówności (4) - 1 punkt
Dokończenie rozwiązania - 1 punkt
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Zadanie12.
Obliczyć wartość granicy

lim
n→∞


(
n
0

)
√
4n+1

+

(
n
1

)
√
4n+3

+

(
n
2

)
√
4n+9

+

(
n
3

)
√
4n+27

+ ...+

(
n
n−1

)
√
4n+3n−1

+

(
n
n

)
√
4n+3n

 .
Rozwiązanie:

Oznaczmy sumę występującą pod znakiem granicy przez bn. Zamierzamy skorzystać
z twierdzenia o trzech ciągach, co wymaga oszacowania bn od góry i od dołu przez ciągi
zbieżne do wspólnej granicy.
Zauważmy, że składniki tej sumy bardzo się różnią – ilorazy środkowych składników

do skrajnych dążą do nieskończoności przy n dążącym do nieskończoności. Należy zatem
oczekiwać, że oszacowanie sumy poprzez wspólne oszacowanie składników (i przemnoże-
nie tego oszacowania przez liczbę składników), będzie prowadzić do oszacowań mających
różne granice, co uniemożliwi skorzystanie z twierdzenia o trzech ciągach.
Zauważmy też, że za tak znaczną różnicę wielkości składników odpowiadają liczniki,

podczas gdy mianowniki mają zbliżoną wielkość. Liczniki tworzą jednak n-ty wiersz trój-
kąta Pascala, a więc ich sumę bez problemu możemy obliczyć. W konsekwencji będziemy
szacować mianowniki przez wspólną wielkość, nie zmieniając liczników, a następnie do-
damy składniki powstałe w wyniku tego oszacowania.

I tak, szacowanie od góry (czyli szacowanie mianowników od dołu) prowadzi do

bn¬

(
n
0

)
√
4n+0

+

(
n
1

)
√
4n+0

+

(
n
2

)
√
4n+0

+

(
n
3

)
√
4n+0

+ ...+

(
n
n−1

)
√
4n+0

+

(
n
n

)
√
4n+0

=

=

(
n
0

)
+
(
n
1

)
+
(
n
2

)
+
(
n
3

)
+ ...+

(
n
n−1

)
+
(
n
n

)
2n

= cn

Z kolei szacowanie od dołu (czyli szacowanie mianowników od góry) prowadzi do

bn­

(
n
0

)
√
4n+3n

+

(
n
1

)
√
4n+3n

+

(
n
2

)
√
4n+3n

+

(
n
3

)
√
4n+3n

+ ...+

(
n
n−1

)
√
4n+3n

+

(
n
n

)
√
4n+3n

=

=

(
n
0

)
+
(
n
1

)
+
(
n
2

)
+
(
n
3

)
+ ...+

(
n
n−1

)
+
(
n
n

)
√
4n+3n

= an .

Ze wzoru na sumę wyrazów n-tego wiersza trójkąta Pascala otrzymujemy(
n

0

)
+
(
n

1

)
+
(
n

2

)
+
(
n

3

)
+ ...+

(
n

n−1

)
+
(
n

n

)
=2n .

Wobec tego

cn=
2n

2n
=1→ 1

przy n→∞ i podobnie

an=
2n√
4n+3n

=
1√
1+

(
3
4

)n → 1 .
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Ponieważ dla dowolnej liczby naturalnej n zachodzą nierówności

an¬ bn¬ cn ,
a ponadto

lim
n→∞
cn=1

oraz
lim
n→∞
an=1 ,

na mocy twierdzenia o trzech ciągach otrzymujemy

lim
n→∞
bn=1 .

Odpowiedź: Wartość granicy podanej w treści zadania jest równa 1.

Punktacja za częściowe rozwiązania:
0 punktów za próbę szacowania sumy przez liczbę składników razy wspólne szaco-

wanie składników, przy braku świadomości, aby najpierw szacować tylko mianowniki.
2 punkty za wykonanie oszacowań przez an i cn (bez wysumowania współczynników

dwumianowych).

18


