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PODCZAS KOLOKWIUM NIE WOLNO UZYWAC KALKULATOROW

Zadanie 1 2. (5 punktéw za oba szeregi, 2 punkty za jeden szereg)
Rozstrzygnac zbieznosé szeregoéw
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Rozwigzanie:
Zastosujemy kryterium porownawcze, szacujac pierwszy szereg od gory, a drugi od dotu.
Otrzymujemy
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Odpowiedz: Pierwszy szereg jest zbiezny, a drugi rozbiezny.



Zadanie 1 3. (5 punktéw)
Dowiesé¢, ze dla kazdej liczby catkowitej dodatniej n zachodzi nieréwnosé
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Rozwigzanie:

Zamierzamy przeprowadzi¢ dowdd indukeyjny.

1° (w tej chwili wydaje nam sie, ze jest to pierwszy krok indukecyjny) Dla n =1 mamy
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a zatem dana w zadaniu nieré6wnos¢ przyjmuje postac¢ 2 > 1, jest wiec prawdziwa.
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2° Niech teraz n bedzie taka liczba naturalng, ze
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Wychodzac od lewej strony powyzszej nierownosci otrzymujemy
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Chcemy wykazacé, ze
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Powyzsza nieré6wnosé jest rownowazna kolejnym nieréwnosciom:
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\Y

3.

n

Drugi krok indukeyjny zostat wiec przeprowadzony tylko dla n > 3.

Dla kompletno$ci dowodu nalezy sprawdzi¢ dang w tresci zadania nieréwnos¢ dla
n =2 oraz dla n = 3. Sprawdzenie dla n = 3 okazuje si¢ przejmowac role pierwszego kroku
indukcyjnego, a sprawdzenie dla n =2 weryfikuje dowodzona nieréwnos¢ w przypadku,
ktory dotad nie zostal sprawdzony, ani tez nie wynika z dowodu indukcyjnego.
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Dla n =2 otrzymujemy
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1° (to okazuje sie by¢ pierwszym krokiem indukcyjnym) Dla n =3 otrzymujemy
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3° Na mocy zasady indukcji matematycznej dana w zadaniu nieréwno$c¢ zostata udo-

wodniona dla kazdej liczby naturalnej n > 3, a ponadto wykonaliSmy bezposrednie spraw-
dzenie dla n=1 oraz dla n=2.

Uwagi:

Sprawdzenie dla n =3 nie wydaje sie wymaga¢ wiele pracy, jednak brak $wiadomosci
koniecznosci wykonania tego sprawdzenia jest bardzo powaznym btedem.
Jesli zamiast nieréwnosci
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W rozwigzaniu pojawi sie ostra nieréwnoscé
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to w konsekwencji drugi krok indukeyjny zostanie przeprowadzony dla n > 3. Tym samym
konieczne bedzie takze sprawdzenie dowodzonej nieréwnosci dla n =4.

Maksymalna mozliwa ocena za rozwigzanie, w ktérym brak jest swiado-
mosci koniecznos$ci wykonania sprawdzenia dla n=3, to 2 punkty. To samo,
gdy brak jest $wiadomosci koniecznosci wykonania sprawdzenia dla n=4, jezeli z roz-
wiazania nie wynika (np. z powodu uzycia ostrej nieréwnosci #), ze zostata udowodniona
implikacja T'(3) = T'(4), gdzie T'(n) jest dowodzona nieréwnoscia.



