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Zadanie 29« (10 punktéw)
Wyznaczyé (wraz z uzasadnieniem) kresy zbioru

1
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Rozwigzanie:

Kazdy dodatni element zbioru jest postaci 1/k, gdzie k =5™ — 3" > 0. Najwiekszy element
otrzymamy dla najmniejszej mozliwej dodatniej liczby k. Poniewaz liczba k jest catkowita
dodatnia i parzysta, musi zachodzi¢ k > 2. Zauwazmy przy tym, ze dla m =n =1 w istocie
k=2. Zatem liczba 1/2 jest najwickszym elementem zbioru.

Podobnie, kazdy ujemny element zbioru jest postaci 1/k, gdzie k =5™ —3" <0. Naj-
mniejszy element otrzymamy dla najwigkszej mozliwej ujemne;j liczby k. Poniewaz licz-
ba k jest catkowita ujemna i parzysta, musi zachodzi¢ k < —2. Zauwazmy przy tym, ze dla
m =2, n=3w istocie k =25—27= —2. Zatem liczba —1/2 jest najmniejszym elementem
zbioru.

Odpowiedz: Kres dolny danego zbioru jest réwny —1/2, a kres gorny 1/2.



Zadanie 20 . (10 punktéw)
Wyznaczyé¢ (wraz z uzasadnieniem) sume szeregu
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Rozwigzanie:
Szukamy takich liczb A i B, ze
1 1 A B

= .
n?+4n  n(n+4) n n+4
Po wymnozeniu prawej réwnosci stronami przez n(n-+4) otrzymujemy
1=A(n+4)+Bn.

Dla n=0 otrzymujemy A =1/4, natomiast przyjecie n = —4 daje B=—1/4.
Zatem N-ta suma czesciowa danego szeregu wyraza sie¢ wzorem
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Odpowiedz: Dany w zadaniu szereg ma sume réwna 25/48.



Zadanie 27 (10 punktéw)
Obliczy¢ granice
hnl¢n1+1+vqn1+1+y@nl+1+Vﬂ6n1+1+vﬁ&ﬂ+&+wﬁ%nl+l+“,+vn4+1

ns00 k
dla tak dobranej wartosci naturalnej parametquu k, aby granica ta byta liczba rzeczywista
dodatnig.

Rozwigzanie:

Oznaczmy sume wystepujaca pod znakiem granicy przez b,. Zamierzamy skorzystac
z twierdzenia o trzech ciagach, co wymaga oszacowania b,, od gory i od dotu przez ciagi
zbiezne do wspoélnej granicy.

Zauwazmy, ze sktadniki sumy wystepujacej w liczniku bardzo sie réznig — iloraz pierw-
szego sktadnika do ostatniego dazy do 0 przy n dazacym do nieskonczonosci. Nalezy
zatem oczekiwaé, ze oszacowanie sumy poprzez wspélne oszacowanie sktadnikow (i prze-
mnozenie tego oszacowania przez liczbe sktadnikéow), bedzie prowadzi¢ do oszacowan
majacych rézne granice, co uniemozliwi skorzystanie z twierdzenia o trzech ciggach.

Staramy sie wiec tak oszacowaé poszczegdlne sktadniki, aby po pierwsze oszacowanie
nie byto zbyt grube, a po drugie, aby mozna byto si¢ pozby¢ pierwiastkow.

I tak, delikatne szacowanie od dotu prowadzi do sumy postepu arytmetycznego w licz-
niku:
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przy n— oo dla k=3.

Oszacowanie od gory przeprowadzamy wedtug schematu va2 +1 < vVa2 + 2z + 1 otrzy-
mujac kolejno:
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przy n— oo dla k=3.
Poniewaz dla dowolnej liczby naturalnej n zachodzg nieréwnosci
an S by <y,

a ponadto
! 1
D)
oraz
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=7,

na mocy twierdzenia o trzech ciggach otrzymujemy

Odpowiedz: Wartosé granicy podanej w tresci zadania jest rowna 1/2 dla k= 3.



Zadanie 28 . (10 punktéw)
Dana jest taka funkcja f:R — R, ze dla dowolnych liczb rzeczywistych z, y spetniony

jest warunek
[f(2) = )l < (x—y)*.
Dowies¢, ze wowcezas dla dowolnych liczb rzeczywistych z, y zachodzi nieréwnosé
[f(2) = )l < (x—y)*.
Rozwigzanie:
Wykazemy, ze jedynymi funkcjami spetniajacymi zalozenia zadania sa funkcje state.
Stad bezposrednio wynika nieréwnos$é¢ podana w tezie zadania, gdyz jej lewa strona jest
rowna 0, a prawa jest nieujemna.

Ustalmy dowolne liczby rzeczywiste x, y. Dla dowolnej liczby naturalnej n przyjmijmy
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Powyzsze punkty dzielg odcinek osi liczbowej od x do y na n rownych czedci.
Wowczas na mocy zatozenia o funkeji f zachodza nieréwnosci
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Korzystajac z nieréwnosci trojkata oraz z powyzszych nieréwnosci otrzymujemy

|f (@)= f(y)|=
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prawdziwa dla dowolnej liczby naturalnej n. Poniewaz lewa strona tej nierownosci jest
nieujemna i nie zalezy od n, a prawa moze osiagga¢ dowolnie mate wartosci dodatnie,

otrzymujemy |f(x)— f(y)|=0. Stad wynika, ze f(x)= f(y), a w konsekwencji f jest
funkcja stata.




Zadanie 29. (10 punktéw)
Ciag (a,) o wyrazach rzeczywistych spelia dla kazdej liczby naturalnej n nieréwnosé

|ay, — api1| < —.
n

Rozstrzygnaé, czy stad wynika, ze ciag (a,) jest zbiezny.
Rozwigzanie:
Odpowiedz: Nie wynika.

Rozwazmy bowiem cigg sum czeSciowych szeregu harmonicznego
"1
Ap = Z % .
k=1

Woéwezas dla dowolnej liczby naturalnej n zachodzi nieréwnosé
1 1
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a przy tym ciag (a,) jest rozbiezny.



Zadanie 30 (10 punktéw)

Przy kazdym z ponizszych 26 zdan w miejscu kropek postaw jedna z liter P, F, N:

P - jest Prawda (tzn. musi by¢ prawdziwe)
F - jest Falszem (tzn. musi by¢ falszywe)

N - moze by¢ prawdziwe lub fatszywe (tzn. Nie wiadomo, czasem bywa prawdziwe,

a czasem falszywe)

Za podanie n poprawnych odpowiedzi otrzymasz max (0, n —16) punktow.

O zdaniu T'(n) wiadomo, ze

e T(1) jest prawdziwe,

e dla kazdej liczby naturalnej n zachodzi implikacja T'(n) = T'(2n),
e dla kazdej liczby naturalnej n > 7 zachodzi implikacja T'(n) =T (n—7).

Co mozna wywnioskowaé¢ o prawdziwosci zdania:

a) T(770) N

c) T(772) P

e) T(774) P

g) T(776) N

i) T(71)=T(772) P
k) T(73) = T(774) P
m) 7(75) = T(776) P
0) T(73) = T(775) P
Q) T(77)=T(777) P
s) T(77) = T(775) N
u) T(72) = T(777) N
w) T(71)=T(773) N

y) T(75) = T(773) P

b) T(771) P
d) T(773) N
f) T(775) N
h) T(777) N
j) T(72)=>T(773) N
1) T(74) = T(775) N
n) T(76) = T(777) N
p) T(73) = T(776) P
r) T(77) = T(774) P
t) T(77) = T(776) N
v) T(73) = T(777) N
x) T(74) = T(773) N

z) T(76)=>T(773) P



