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Zadanie 5. (10 punktów)
Obliczyć wartość całki oznaczonej
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Rozwiązanie:
Przekształcamy mianownik funkcji podcałkowej
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a następnie wykonujemy podstawienie
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3
, x= t ·

√
3−1

i formalnie
dx=
√
3 dt.

Ponadto x=−2 odpowiada t=−1/
√
3, a x=2 odpowiada t=

√
3, przy czym zależność

t od x jest monotoniczna. Stąd wynika, że przedział całkowania x∈ [−2, 2] odpowiada
przedziałowi t∈ [−1/

√
3,
√
3].
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Odpowiedź: Podana całka oznaczona ma wartość
ln 3
2
− π
2
√
3
.

Uwaga: W prawidłowo uproszczonym wyniku nie może pojawić się arctg, a π oraz
ln mogą wystąpić tylko raz.

Uwaga do zadania 6:W prawidłowo uproszczonym wyniku ln może wystąpić tylko
raz.

Kolokwium 4 - 1 - Odpowiedzi i rozwiązania
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Zadanie 6. (10 punktów)
Obliczyć wartość całki oznaczonej
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.

Rozwiązanie:
Przekształcamy mianownik funkcji podcałkowej, a następnie dzielimy przedział całko-
wania na dwa przedziały:
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W pierwszej całce ostatniej sumy wzoru (♠) wykonujemy podstawienie
t=
√
−x−1, t2=−x−1, t­ 0, x=−t2−1, t­ 0

i formalnie
dx=−2t dt.

Ponadto x=−2 odpowiada t=1, a x=−1 odpowiada t=0, przy czym zależność t od x
jest monotoniczna. Stąd wynika, że przedział całkowania x∈ [−2,−1] odpowiada prze-
działowi t∈ [0, 1].
Otrzymujemy
−1∫
−2

dx

1+
√
−x−1
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t=0

=2−2 ·(ln 2− ln 1)= 2−2 · ln 2 .
Z kolei w drugiej całce ostatniej sumy wzoru (♠) wykonujemy podstawienie

t=
√
x+1, t2=x+1, t­ 0, x= t2−1, t­ 0

i formalnie
dx=2t dt.

Ponadto x=−1 odpowiada t=0, a x=8 odpowiada t=3, przy czym zależność t od x jest
monotoniczna. Stąd wynika, że przedział całkowania x∈ [−1, 8] odpowiada przedziałowi
t∈ [0, 3].
Otrzymujemy
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=6−2 ·(ln 4− ln 1)= 6−4 · ln 2 .
Odpowiedź: Podana całka oznaczona ma wartość 8−6 · ln 2.
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