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Zadanie 10. (10 punktów) Rozstrzygnąć zbieżność szeregu
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Rozwiązanie:
Stosujemy kryterium d’Alemberta do danego w zadaniu szeregu:

(n+1)! ·18n+1(
3n+3
n+1

)
·(n+1)n+1

·

(
3n
n

)
·nn

n! ·18n
=

(n+1) ·18 · (3n)!
n!·(2n)!

(3n+3)!
(n+1)!·(2n+2)! ·

(
n+1
n

)n
·(n+1)

=

=
18

(3n+1)·(3n+2)·(3n+3)
(n+1)·(2n+1)·(2n+2) ·

(
1+ 1

n

)n = 18
(3n+1)·(3n+2)·3
(n+1)·(2n+1)·2 ·

(
1+ 1

n

)n → 18
27
4 ·e
=
8
3e
=
2,(6)
e
< 1 ,

skąd na mocy kryterium d’Alemberta wynika zbieżność szeregu.
Skorzystaliśmy przy tym z nierówności e> 2,(6), która wynika albo z zapamiętanego

rozwinięcia dziesiętnego e=2,7..., albo ze wzoru
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Odpowiedź: Dany w zadaniu szereg jest zbieżny.
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Zadanie 11. (10 punktów) Wskazując odpowiednią liczbę wymierną dodatnią C
udowodnić nierówności
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Rozwiązanie:
Szacujemy dany w zadaniu szereg od dołu:
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i od góry:
∞∑
n=1

√
4n4+4n+1
12n4+n3+3

¬
∞∑
n=1

√
4n4+4n4+n4

12n4+0+0
=
∞∑
n=1

3n2

12n4
=
1
4
·
∞∑
n=1

1
n2
=
1
4
· π
2

6
=
1
24
·π2 .

Wobec równości
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udowodniliśmy żądane nierówności ze stałą C =
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