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Zadanie 11. (10 punktów)

Rozstrzygnąć, czy szereg
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Rozwiązanie:
Korzystamy z kryterium porównawczego, a następnie z kryterium d’Alemberta:
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a zatem na mocy kryterium d’Alemberta szereg
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jest rozbieżny, a stąd na mocy

kryterium porównawczego rozbieżny jest także szereg
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Odpowiedź: Podany szereg jest rozbieżny.

Uwaga: Jeżeli konkluzja jest błędna (szereg zbieżny) lub brak jest konkluzji co do
zbieżności szeregu, ocena za zadanie nie może być wyższa niż 4 punkty.
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Zadanie 12. (5+5=10 punktów)
a) Rozstrzygnąć, czy szereg

∞∑
n=1

(√
n20+n8−n10

)
jest zbieżny.

Rozwiązanie:
Korzystamy ze wzoru skróconego mnożenia (na różnicę kwadratów), a następnie wyko-
nujemy szacowanie, aby skorzystać z kryterium porównawczego:
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Odpowiedź: Podany szereg jest zbieżny.

b) Rozstrzygnąć, czy szereg
∞∑
n=1
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)
jest zbieżny.

Rozwiązanie:
Korzystamy ze wzoru skróconego mnożenia (na różnicę kwadratów), a następnie wyko-
nujemy szacowanie, aby skorzystać z kryterium porównawczego:
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Odpowiedź: Podany szereg jest rozbieżny.
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