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Dzień 33 (wtorek 5 maja 2020)

Szeregi potęgowe (c.d.)

Przypomnienie: Dla funkcji f mającej w zerze pochodne wszystkich rzędów, jej
szeregiem Taylora w zerze (inaczej: szeregiem Maclaurina) nazywamy szereg potęgowy

∞∑
n=0

f (n)(0)
n!
xn .

Jest to jedyny szereg potęgowy, który może sumować się do funkcji f w otoczeniu zera.
Może, ale nie musi.
Gdybyśmy chcieli rozwinąć funkcję f w szereg potęgowy wokół punktu x0, w którym f

ma pochodne wszystkich rzędów, to jedynym kandydatem jest jej szereg Taylora w x0
określony wzorem:

∞∑
n=0

f (n) (x0)
n!

(x−x0)n .

Jednak dla wygody najczęściej przesuniemy wówczas funkcję f , tzn. rozważymy funkcję
g(x)= f (x+x0) i zajmiemy się szeregiem Taylora funkcji g w zerze.

Dziś kilka przykładów funkcji, ich szeregów Taylora (w zerze) oraz związku tych funk-
cji z ich szeregami Taylora.

Przykład 1: f(x)= ex

Ponieważ f (n)(x)=ex oraz f (n)(0)=1, szeregiem Taylora funkcji f w zerze jest szereg
∞∑
n=0

xn

n!
.

Szereg ten jest zbieżny na całej prostej rzeczywistej, ale czy jego sumą jest funkcja f ?

Narzędziem, które tu wykorzystamy, jest wzór Taylora, który przypomnę w wersji
ogólnej:

f(x)=
N−1∑
n=0

f (n) (x0)
n!

(x−x0)n+RN(x)

oraz szczególnej przy x0=0:

f(x)=
N−1∑
n=0

f (n)(0)
n!
xn+RN(x) .

Składnik RN(x) jest N -tą resztą wzoru Taylora i odpowiada za błąd, jaki popełniamy
przybliżając funkcję f wielomianem. Są różne postacie reszty wzoru Taylora, ale my
używaliśmy

RN(x)=
f (N) (x0+ tx (x−x0))

N !
·(x−x0)N tx ∈ (0, 1) ,

gdzie argument x0+ tx (x−x0) jest po prostu jakimś punktem pomiędzy x0 i x.
Dla x0=0 mamy prostszą wersję:

RN(x)=
f (N) (tx ·x)
N !

·xN tx ∈ (0, 1) .
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Nie sposób nie zauważyć, że składniki we wzorze Taylora są identyczne jak w szeregu
Taylora. Nie jest to przypadek, wszak jedno i drugie usiłuje zrobić z funkcji wielomian.
Wzór Taylora mówi, że funkcję można przybliżyć wielomianem, a za błąd jaki w tym
wypadku popełniamy odpowiada reszta wzoru Taylora. Natomiast szereg Taylora jest
tymże wielomianem ze wzoru Taylora wysumowanym do nieskończoności, czyli szere-
giem potęgowym. W jednym i drugim przypadku współczynniki wielomianu odczytujemy
z pochodnych funkcji w punkcie x0, gdyż tym najlepszym wielomianem jest wielomian
mający takie same pochodne w x0 jak funkcja f .

Wróćmy do funkcji z rozważanego przykładu. Aby udowodnić, że dla każdego x szereg
∞∑
n=0

xn

n!

jest zbieżny do f(x)= ex, trzeba udowodnić, że ciąg sum częściowych
N∑
n=0

xn

n!

jest zbieżny do f(x). Ponieważ1

N∑
n=0

xn

n!
= f(x)−RN+1(x) ,

musimy dowieść, że RN+1(x) dąży2 do zera. W tym celu trzeba oszacować |RN+1(x)|
od góry przez wyrażenie dążace do 0 przy N→∞.
Wprawdzie wzór na RN+1(x) jest niezbyt precyzyjny, ale w zupełności wystarczający

do oszacowań, jeśli rozumiemy choć trochę jak wyglądają pochodne funkcji f . W naszym
przypadku

|RN+1(x)|=
∣∣∣∣∣∣f
(N+1) (tx ·x)
(N+1)!

·xN+1
∣∣∣∣∣∣=

∣∣∣∣∣ e
tx·x

(N+1)!
·xN+1

∣∣∣∣∣= etx·x

(N+1)!
·|x|N+1¬ e|x|

(N+1)!
·|x|N+1 .

W oszacowaniach skorzystaliśmy z nierówności

tx ·x¬ |tx ·x|= |tx| · |x| ¬ |x| .

Przy ustalonym x 6= 0 zbieżność ciągu
 e|x|

(N+1)!
· |x|N+1


N∈N
do zera dowodzimy

korzystając z wersji kryterium d’Alemberta dla ciągów:
e|x|

(N+2)! · |x|
N+2

e|x|

(N+1)! · |x|N+1
=
|x|
N+2

→ 0< 1 .

Tym samym udowodniliśmy, że szereg Taylora funkcji f jest do niej zbieżny na całej
prostej i bez skrępowania możemy zapisać3:

ex=
∞∑
n=0

xn

n!
= 1+x+

x2

2
+
x3

6
+
x4

24
+
x5

120
+
x6

720
+
x7

7!
+
x8

8!
+
x9

9!
+
x10

10!
+ . . . (♣)

1Jest to delikatnie przekształcony wzór Taylora z poprzedniej strony w wersji x0=0 iN+1 zamiastN .
2Przy ustalonym x, gdy N→∞.
3I koniecznie zapamiętać !!!
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Płynie stąd w szczególności wniosek4, że

e=
∞∑
n=0

1
n!
= 1+1+

1
2
+
1
6
+
1
24
+
1
120
+
1
720
+
1
7!
+
1
8!
+
1
9!
+
1
10!
+ . . .

Nie sposób oprzeć się następującej uwadze: Funkcja wykładnicza określona wzorem ex

ma tę własność, że jest sama swoją pochodną. Także otrzymany przez nas szereg ma tę
własność, że różniczkując go formalnie wyraz za wyrazem otrzymujemy ten sam szereg.
Nic dziwnego, jeśli zważymy, że funkcja przedstawia się jako suma tego szeregu. Uwaga
ta może być jednak poczyniona bez żadnych oszacowań korzystających ze wzoru Tay-
lora. Oczywiście bez oszacowań pozwala ona tylko wysnuć hipotezę, że między funkcją
wykładniczą f(x)= ex i szeregiem ze wzoru (♣) jest jakiś związek.

Przykład 2: f(x)= sinx

Ponieważ

f (n)(x)=

 (−1)n/2 ·sinx dla n parzystych
(−1)(n−1)/2 ·cosx dla n nieparzystych

oraz

f (n)(0)=

 0 dla n parzystych

(−1)(n−1)/2 dla n nieparzystych

szeregiem Taylora funkcji f w zerze jest szereg5
∞∑
n=0

(−1)n ·x2n+1

(2n+1)!
.

Udowodnienie, że szereg ten jest zbieżny do funkcji f sprowadza się, podobnie jak w po-
przednim przykładzie, do wykazania, że przy ustalonym x reszty wzoru Taylora dążą
do zera6:

|RN+1(x)|=
∣∣∣∣∣∣f
(N+1) (tx ·x)
(N+1)!

·xN+1
∣∣∣∣∣∣=

∣∣∣∣∣ jsin(tx ·x)(N+1)!
·xN+1

∣∣∣∣∣= | jsin(tx ·x)|(N+1)!
· |x|N+1¬ |x|

N+1

(N+1)!
.

Przy ustalonym x 6= 0 zbieżność ciągu
( |x|N+1
(N+1)!

)
N∈N
do zera dowodzimy korzystając

z wersji kryterium d’Alemberta dla ciągów:
|x|N+2/(N+2)!
|x|N+1/(N+1)!

=
|x|
N+2

→ 0< 1 .

Udowodniliśmy więc, że dla każdej liczby rzeczywistej x zachodzi równość

sinx=
∞∑
n=0

(−1)n ·x2n+1

(2n+1)!
=x− x

3

6
+
x5

120
− x

7

7!
+
x9

9!
− x

11

11!
+ . . .

4Jeśli we wzorze (♣) przyjmiemy x=1.
5Po odpowiednim przenumerowaniu wyrazów.
6W międzyczasie posiłkujemy się oznaczeniem jsin dla funkcji ”jakiś sinus”, którą może być ±sin

lub ±cos.
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Analogicznie można wykazać, że dla każdego x prawdziwy jest wzór

cosx=
∞∑
n=0

(−1)n ·x2n

(2n)!
= 1− x

2

2
+
x4

24
− x

6

720
+
x8

8!
− x

10

10!
+ . . .

Do kompletu przypomnijmy też dwa rozwinięcia z wczorajszego wykładu:

ln(1+x)=
∞∑
n=1

(−1)n+1 ·xn

n
=x− x

2

2
+
x3

3
− x

4

4
+
x5

5
− x

6

6
+ . . . dla x∈ (−1, 1]

arctgx=
∞∑
n=0

(−1)n ·x2n+1

2n+1
=x− x

3

3
+
x5

5
− x

7

7
+
x9

9
− x

11

11
+ . . . dla x∈ [−1, 1]

Przykład 3: f(x)= ex2

Wypisanie szeregu Taylora tej funkcji przez obliczenie jej pochodnych w zerze byłoby
trochę skomplikowane, bo trudno od ręki podać wzór na pochodną funkcji f dalekiego
rzędu.
Jednak z równości

ex=
∞∑
n=0

xn

n!

wynika7, że dla każdej liczby rzeczywistej x zachodzi równość

f(x)= ex
2
=
∞∑
n=0

x2n

n!
.

Skoro f jest przedstawiona w postaci sumy szeregu potęgowego, to jest to jej szereg
Taylora. W szczególności możemy z tego szeregu odczytać pochodne funkcji f w zerze:

f (n)(0)=


n!
(n/2)!

dla n parzystych

0 dla n nieparzystych

A teraz kilka zdań komentarza dotyczącego materii wykraczającej poza ramy tego
wykładu.

Z jednej strony widzieliśmy, że szereg Taylora funkcji nieskończenie8 różniczkowalnej
nie musi być zbieżny do samej funkcji. Z drugiej zaś zobaczyliśmy przykłady, w któ-
rych tak jest: funkcja wyraża się przy pomocy szeregu potęgowego, czyli swojego szeregu
Taylora. Procedura dowodzenia takiej zbieżności9 jest dość żmudna. Okazuje się jednak,
że wsród funkcji można wyróżnić tak zwane funkcje analityczne. Z definicji są to funk-
cje o dziedzinie będącej przedziałem otwartym10, które wokół każdego punktu swojej
dziedziny wyrażają się przy pomocy sumy szeregu potęgowego. Funkcja analityczna jest

7Po podstawieniu x2 w miejsce x.
8”Funkcja nieskończenie różniczkowalna” to skrócona forma od ”funkcja nieskończenie wiele razy

różniczkowalna”, czyli mająca pochodne wszystkich rzędów. Czasami używa się też krótszego sformuło-
wania ”funkcja gładka”, ale nie jest to sformułowanie uniwersalne, bo czasami mówi się o funkcji, że jest
gładka, gdy ma tyle pochodnych, ile wynika z kontekstu — na przykład dwie, pięć lub siedemnaście.
9Na przykład z wykorzystaniem wzoru Taylora.
10Może mieć końce w ±∞.
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więc lokalnie sumą swojego szeregu Taylora. Póki co wygląda to trochę na masło maśla-
ne, bo skoro definiujemy funkcje analityczne jako będące sumami szeregów potęgowych,
to cóż to za rewelacja, że okazują się one być sumami szeregów potęgowych. Przecież
to właśnie założyliśmy w definicji.
Okazuje się, że analityczne są podstawowe funkcje, które znamy: wielomiany, funkcje

wykładnicze, logarytmiczne, potęgowe w (0, ∞), trygonometryczne, odwrotne do try-
gonometrycznych. Ponadto wykonywanie czterech działań na funkcjach analitycznych
oraz składanie funkcji analitycznych prowadzi do funkcji analitycznych. Także funkcja
odwrotna do funkcji analitycznej o pochodnej różnej od zera11 jest analityczna.

Morał12 z tej opowiastki płynie następujący: każda funkcja zdefiniowana ”ładnym
wzorkiem” jest analityczna, czyli lokalnie jest sumą swojego szeregu Tayora. Trzeba
tu jednak uważać na konstrukcje typu |x|=

√
x2, co jest w pewnym sensie ”ładnym

wzorkiem”, ale definiuje funkcję nieróżniczkowalną, a więc nieanalityczną. Aby uniknąć
tego typu niespodzianek, trzeba używać funkcji określonych na przedziałach otwartych.
Tu problem wziął się z zera pod pierwiastkiem— pierwiastek nie jest określony na zbiorze
otwartym zawierającym zero w swoim wnętrzu.

Funkcja
f(x)=

 e
−1/x2 dla x 6=0
0 dla x=0

omawiana na wczorajszym wykładzie nie jest analityczna, bo wokół zera nie jest sumą
swojego szeregu Taylora13. Żeby skonstruować taką funkcję, musiałem użyć klamerek,
gdyż nie da się takiej funkcji zapisać ”ładnym wzorkiem”. Jednak funkcja ta jest anali-
tyczna w przedziale (−∞, 0) i jest też analityczna w przedziale (0,∞).

Na koniec jeszcze jedna własność funkcji analitycznych. Otóż funkcje nieskończenie
różniczkowalne są giętkie14 w tym sensie, że jeśli znam funkcję f ∈C∞(R) na przedziale15
(0,1), to nie mam bladego pojęcia16, jak wygląda ona na przedziale (2,3).

Funkcje analityczne natomiast są sztywne, to znaczy, że funkcja analityczna na R jest
jednoznacznie wyznaczona17 przez swoje wartości na przedziale (0,1).

11To znaczy: o pochodnej, która nigdzie się nie zeruje.
12Morał ten ma jedynie charakter informacyjny, ponieważ teoria funkcji analitycznych wykracza poza
program wykładu.
13Przypominam, że szereg Taylora tej funkcji w zerze to szereg zerowy.
14Widzieliśmy to na przykładach w pierwszym semestrze.
15Tu i dalej podane przedziały są przykładowe.
16Jeśli np. wiem, że f ∈C∞(R) oraz f(x)= sinx dla x∈ (0,1), to mogę mieć

f(x)= ex dla x∈ (2,3)

albo mogę mieć
f(x)=

√
x dla x∈ (2,3)

albo jak mnie poniesie fantazja, równie dobrze mogę mieć

f(x)= cos
(
ex
π

+
√
17
)

dla x∈ (2,3) .
17Innymi słowy: Jeśli funkcje f i g są analityczne na R oraz f(x) = g(x) dla x∈ (0,1), to wówczas
f(x)= g(x) dla każdego x∈R.
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