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Indukcja matematyczna

271. Dowieść, że dla każdej liczby naturalnej n zachodzi równość
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272. Zgadnąć, a następnie udowodnić wzór na sumę (skończoną, bo wyrazy poza
trójkątem Pascala są zerami)(
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We wzorze mają prawo pojawić się wyrazy znanego ciągu liczbowego.

273. Dowieść, że dla każdej liczby naturalnej n zachodzi nierówność
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Wskazówka: 5/4−1/(2n(n+1)).

274. Dowieść, że dla dowolnej liczby naturalnej n­ 256 zachodzi nierówność
n32¬ 2n .

275. Dowieść, że dla dowolnej liczby naturalnej n­ 6 kwadrat (figurę geometryczną)
można podzielić na n kwadratów.

276. Dowieść, że dla każdej liczby naturalnej n zachodzi nierówność

1000000n< 2n+19000000 .

277. Dowieść, że dla każdej liczby naturalnej n zachodzi nierówność(
2n+4
n

)
< 22n+1.

278. Dowieść, że dla dowolnej liczby naturalnej n zachodzi nierówność

9 ·(3n)! ·n.............2 ·(3n ·n!)3 .
W miejsce kropek wstawić jeden ze znaków: >, <, =, ­, ¬.

279. Dowieść, że dla każdej liczby naturalnej n­ 200 sześcian można podzielić na
n sześcianów. Postarać się zastąpić liczbę 200 liczbą mniejszą.

280. Wskazać sensowne liczby rzeczywiste A, B, C, D i dowieść, że dla dowolnej
liczby naturalnej n zachodzą oszacowania
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281. Dowieść, że dla każdej liczby naturalnej n zachodzą nierówności
2
3
·n ·
√
n+1 <

√
1+
√
2+
√
3+
√
4+
√
5+ ...+

√
n−1+

√
n <

2
3
·
√
n ·(n+1) .

- 6 - Jarosław Wróblewski Blok Olimpijski 2017/18, klasy 2A, 3A


