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41. Udowodnij, że nie istnieje dodatnia liczba całkowita n, dla której liczba (92n)!
jest podzielna przez liczbę (95!)n.

42. Udowodnij, że dla każdej dodatniej liczby całkowitej n liczba
(
n2
)
! jest podzielna

przez (n!)n+1.

43. Udowodnij, że istnieje nieskończenie wiele dodatnich liczb całkowitych n, dla któ-
rych liczba

(
n2
)
! nie jest podzielna przez (n!)n+2.

44. Udowodnij, że istnieje nieskończenie wiele dodatnich liczb całkowitych n, dla któ-
rych liczba

(
n2
)
! jest podzielna przez (n!)n+2.

45. Udowodnij, że dla każdej dodatniej liczby całkowitej n liczba (2n)! jest podzielna
przez n! ·(n+1)!.

46. Udowodnij, że istnieje nieskończenie wiele dodatnich liczb całkowitych n, dla któ-
rych liczba (2n)! jest podzielna przez n! ·(n+2)!.

47. Udowodnij, że istnieje nieskończenie wiele dodatnich liczb całkowitych n, dla któ-
rych liczba (2n)! nie jest podzielna przez n! ·(n+2)!.

48. Udowodnij, że w dowolnym czworościanie odcinki łączące środki przeciwległych
krawędzi przecinają się w jednym punkcie.

49. Udowodnij, że w dowolnym ostrosłupie o podstawie będącej czworokątem wypu-
kłym odcinki łączące środki ciężkości ścian bocznych ze środkami przeciwleglych krawę-
dzi podstawy przecinają się w jednym punkcie. W jakiej proporcji odcinki te są dzielone
przez punkt przecięcia?

50. Dany jest czworościan foremny ABCD o krawędzi długości 4. Na krawędziach
AB, AC i AD wybrano odpowiednio takie punkty E, F i G, że AE=1, AF =2 oraz
AG=3. Wskazać (podając odległości od wierzchołków) takie punkty P , Q i R leżące
odpowiednio na krawędziach CD, BD i BC, że odcinki EP , FQ i GR przecinają się
w jednym punkcie.
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