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5. Catki wielokrotne.

Obliczyé calki wielokrotne
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131. ffye””d:t:dy 132. fffq:y—l—zdxdydz 133. [ [ylnxdxdy
23

272w
134. ff(smy) Vededy  135. ff dxdy 136. [ [xsin?(zy)dzdy
00

Dokonac zmiany kolejnosci calkowanla. Obliczy¢ obydwie calki i po-
rowna¢ wyniki
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Obliczy¢ catki
145. [ [e"dw, K - wnetrze trapezu o wierzchotkach (0,0), (1,1), (2,1) i
K

(3,0)
146. [ [zydw, L - wnetrze trojkata o wierzchotkach (0,0), (1,1) i (2,—1)
L

147. [ [23dw, M = {(z,y);42* +y? < 4}
M

148. [ [ [2* +ydw, N ={(z,y,2);7,y,2 € R, U{0}, o +y+2 < 1}
N
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149. [[[1dw, O={(z,y,2);x* +y*+2°< 1,2 >0}
0

150. [ [z%dw, P - wnetrze czworokata krzywoliniowego o wierzchotkach
P

(0,0), (2,4), (8,1) i (—2,—2) ograniczonego parabola y = z?, hiperbola
xy =8 i dwoma odcinkami prostoliniowymi

151. [ [/ydw, @ - obszar ograniczony paraboly y = 2% iprostay=x+6
Q

152. [ [|z* —y|dw, R=0,1] x [0,1]

Wy};naczyé srodki ciezkosci nastepujacych figur
153. K 154. L 155. N 156. 0 157. P 158.Q
159. S={(z,y);x*+y*<l,x+y<1}

160. Srodek ciezkoéci wnetrza czworokata o wierzchotkach (—1,0),
(0,1), (1,0) 1 (0,a) lezy w (0,a) . Czy $rodek ciezkosci obwodu tego czwo-
rokata znajduje sie w jego wnetrzu? A $rodek ciezkosci wierzchotkdw?

11
161. Obliczy¢ ffez—_ldxdy
0y

162. Powszechnie wiadomo jak litrowym naczyniem w ksztatcie wal-
ca odmierzy¢ pot litra - wystarczy przechyli¢ je tak, aby ptyn zakrywat
cale dno i jego poziom byt styczny do obwodu dna. A ile ptynu zosta-
nie w naczyniu jesli przechylimy je tak, aby ptaszczyzna poziomu ptynu
przechodzita przez srednice dna?

6. Zmiana zmiennych caltkowania,
wspolrzedne biegunowe, sferyczne, walcowe.

Wyrazi¢ catki w podanych wspotrzednych. Obliczy¢ w nowych wspot-
rzednych.

dydx biegunowe
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10 x2—l—y2

2 2zx—x2 9
164. / / yidydx biegunowe
x2+y2
0 3 a?
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3 V9—2z2
165. / / |z +y|dydz biegunowe
0 _\/9—z2

11—z
1
166. / / / PR R dzdydx sferyczne
1=z | /22 4y2

167. Obliczy¢ objetosé obszaru ograniczonego plaszczyzna z=4 i
paraboloidg eliptyczng x? +4y% = 2.
Wyrazi¢ catki w podanych wspotrzednych. Obliczy¢ w nowych wspot-
rzednych.
1zv3 2 V-
168. / / xydydx + / / xydydx biegunowe
1

1
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/ 22+ 1?4 22dzdydx sferyczne
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|z +y|dydz wspétrzedne (x,r), r=+/z?+y?
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7. Wzor Greena.

Oznaczenia:
K jest krzywa skierowang przeciwzegarowo ograniczajaca obszar €).

X = (P,Q) jest polem wektorowym.

WzOR GREENA (wersja rotacyjna):

// <8Q_8P> d(ay) = [ Pdw+Qay
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WzOR GREENA (wersja dywergencyjna):

//(ap aQ)dw(m y) = /—Qda:+de

K

Dla podanego pola wektorowego oraz obszaru {) na plaszczyznie za-
stosowaé wzér Greena w podanej wersji (rot, div lub obydwie) i spraw-
dzi¢ jego prawdziwo$é¢ przez bezposrednie obliczenie catek wystepuja-
cych po obu stronach wzoru

171. (z,y), Q={(z,y);2* <y <1}, (rot, div)

172. (y*,2%), Q=10,1]?, (div)

173. (ex Ve V), Q={(x,y);z,y >0, x+2y <2}, (div)
174. (z,—y), Q={(z,y);1+¢* —l—x <2z+2y}, (rot, div)
175. (zy,0), Q@={(z,y);z,y €[0,1], 22 +y* <1}, (rot, div)
176. (2 yer ) Q={(z,y);22 +3> <1}, (rot, div)
177. (m2+y2,x2+y ), Q={(x,y);1 <2*+y* <4}, (rot)

Wsk. Brzeg () sktada si¢ z 2 okregdéw, zewnetrzny jest skierowany prze-
ciwzegarowo, wewnetrzny zegarowo.

178. Zastosowaé wzor Greena do obliczenia catki

f x1998€1999yd1. + x199961999ydy7
K

gdzie K = {(z,y);2*+5y*> =17} jest skierowana preciwzegarowo.

179. Zastosowaé wzor Greena do obliczenia calki
I{‘e(x+y)7dx+€(x+y)7dy7

gdzie K = {(z,y);2'9% +4%°% =1} jest skierowana preciwzegarowo.
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8. Pola wektorowe w przestrzeni. Potencjal.

Oznaczenia:
X =(P,Q,R) jest polem wektorowym w przestrzeni.

ot X = (O _0Q 0P OR 0Q 0P
“\oy 02’0z 0x’'0x Oy

oP 0Q OR
X = 7%t
div oz * oy + 0z

Potencjalem pola wektorowego (na ptaszczyznie lub w przestrzeni)
nazywamy funkcje, ktérej to pole jest gradientem. O ile pole wektorowe
jest okredlone w obszarze "bez dziur”, potencjal istnieje wtedy i tylko
wtedy, gdy pole jest bezwirowe. Potencjal jest jedyny, z dokladnoscia
do statego sktadnika.

Rozstrzygnaé, czy dla dowolnej funkeji f:R* — R i pola wektorowe-
go X :R* — R? (rézniczkowalnych w sposob ciagly tyle razy, ile trzeba)
zachodza ponizsze réwnosci (podaé uzasadnienie réwnosci lub kontr-
przyklad). 0 w zaleznosci od kontekstu oznacza funkcje liczbowa réwna
0 lub zerowe pole wektorowe.

180. rotgrad f =0 181. divrot X =0 182. rotrot X =0
183. graddiv X =0 184. rot grad f =divrotgrad f

185. rot (fX)=grad f x X + frot X  186. divgrad f =0
187. div (fX)=grad foX + fdivX

Zmalez¢ potencjaly pol wektorowych (o ile posiadaja potencjal)
188. (z,y) 189. (y,z) 190. (z%,y?) 191. (y*,2?%)

192. (zy?,2%y+v3) 193. (ye*,e”) 194. (e ,1+y)
195. (z%,9%,2%)  196. (2zy,z%y) 197. (ye™, ze™, )
198. <1+ 2+y271+$2+y ) 199. ($9y20>2$10y19)

200. ((y+1)e*’ ze” 20(y+1)ze*)
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9. Calki powierzchniowe (niezorientowane).

201. Obliczy¢ [ [|z]dS, gdzie
T

T ={(Rcosa+rcosacos(3, Rsina+rsinacos3,rsin3);a, 3 € [0,27] }
jest torusem o promieniach r < R.
202. Obliczy¢ [ [zydS, gdzie
9)

Q= {(z,y,2° +¢*);z,y €[0,1]} .
203. Obliczy¢ [ [2°dS, gdzie
9

Q={(2,y,2);2* +y*+ 2> =1}.
204. Obliczy¢ [ [2%+1%dS, gdzie
9

Q= {(z.y,2° = 3wy®);2* +y* <1}

jest fragmentem powierzchni zwanej matpie siodto.

205. Niech 0 <r <2R. Obliczy¢ pole powierzchni

P={(zy,2);x%+y*+22=R* | 2’4+ >+ (2 —R)*<r?}.

Opisa¢ wtasnymi stowami, co to za powierzchnia.

206. Czas staczania sie figury obrotowej €2 z réwni pochylej jest
proporcjonalny do /1-+ #Rh gdzie
m szzpdw jest masa,

p jest gestoscia,

R= sup +ax?+y? jest zewnetrznym promieniem figury - przyjmuje-
(z,y,2)EN
my, ze oS OZ jest osig obrotu,

I = [p(z*+y*)dw jest momentem bezwladnosci wzgledem osi obrotu.
Q

Uporzadkowaé nastepujace figury w/g czasu staczania si¢ z réwni:
a) sfera,
b) kula,
¢) pelny walec,
d) powierzchnia boczna walca,
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) pusty walec (z podstawami), wysokos¢ = promien podstawy,

) walec wydrazony, promien wydrazenia = % promienia walca,

) dwa pelne stozki ztaczone wierzchotkami,

) dwie powierzchnie boczne stozka ztaczone wierzchotkami,

i) dwa puste stozki (z podstawami) ztaczone wierzchotkami, wysokos$é
= promien podstawy.

e
f
g
h

Uwaga: [... dw oznacza catke podwdjna (powierzchniowa) lub po-
Q

tréjna.
10. Calki powierzchniowe (zorientowane).

Obliczy¢ calki powierzchniowe zorientowane (wybraé dowolnie orien-
tacje powierzchni)

207. [ [xdydz +ydzdz + zdzdy, S = {(z,y,2);2> +y* + 22 =2z}
208. fsfyzdzdx+zdxdy, S={(z,y,2);2*+y*=2% 2€10,2]}
209. fozdydz+y2dzdm+xdxdy, S={(z,y,z*+y?);x,y € [—1,2]}
210. fif(x+2)dydz+(y+3)dzdx,

W ={(z,y,2);2* +4x+y*+6y =0, z €[2,5]}
211. [ [xdydz+e* TV 2dzdr +dxdy, S - rownoleglobok o wierzchotkach

S
(1,0,0), (0,1,0), (0,0,1) i (1,-1,1)
11. Twierdzenie Gaussa-Ostrogradskiego.

Zastosowaé i sprawdzi¢ prawdziwo$¢ twierdzenia Gaussa dla poda-
nego pola wektorowego i obszaru €2

212. (7,z,), Q={(z,y,2);2% +y* +2* <5}

213. (1,zy,2), Q={(2,y,2);22 +9*> <322, 0< 2 <3}

214, (2.0.42), Q= {(r.y.2) iy € [11], 0< 2 < (1—a)(1—?))
215. (22 +y*+22,0,0), Q=[0,1]®

216. (2,—,0), Q={(2,y,2);V22 + 12 <z </1—22—y?}
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27 (prpre wrpre mrere ) = 1@y,2)1 < 2’4y + 27 <4}
218. (z,y,2), Q={(z,y,2);2,y,2> 0, x+y+2< 3}

219. (1,1,2z+2y), Q={(z,y,2);2* +y* < 2 < 25}

220. (z,y,2), Q= {(a:,y,z);z—z + %j + %; <1}, a,b,e>0

221. (bc,ca,ab), Q={(z,y,2);2,y,2>0, L+¥+2<1}, a,b,c>0. Jaki
kat tworzy pole wektorowe z najwicksza $ciang? Jak sie majg strumienie
pola przez poszczegblne sciany do kwadratéw ich powierzchni?

12. Twierdzenie Stokes’a.

Zastosowaé i sprawdzi¢ prawdziwo$é¢ twierdzenia Stokes’a dla poda-
nej catki krzywoliniowej i powierzchni

222. [ 2?y+yide— 2P —xyPdy+edz, S={(z,y,2);x% +y? =2<4}
223. (}qydx—l—%dy—l—?)xdz, S={(x,y,2);2°+y*+22=4, 2> 1}
224. d;xyzdz, S={(z,y,2);2° +y* =z <x+2}

225. 8;a:yzdz, S={(z,y,2);x*+y*<z=x+2}

226. (}qydx—l—zdy—ydz, S={(z,y,2);2° +y? =2<4}
227. dffgydyc—l—zdy—yal,z7 S={(z,y,2);x* +y* < z=4}
228. é}qydx—l—zdy—ydz, S={(z,y,2);2vVx% +y2=2<4}
229. Zfzydx—irzdy—ydz,

S={(z,y,2);2° +y° <20, V20— 27—y’ =z > 4}
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