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5. Całki wielokrotne.

Obliczyć całki wielokrotne

131.
6∫
0

0∫
−1
yexdxdy 132.

1∫
0

2∫
1

3∫
2
xy+zdxdydz 133.

4∫
2

7∫
3
ylnxdxdy

134.
2π∫
0

e∫
1
(siny)x1/xdxdy 135.

2∫
1

2∫
1

1
x+ydxdy 136.

2π∫
0

2π∫
0
xsin2(xy)dxdy

Dokonać zmiany kolejności całkowania. Obliczyć obydwie całki i po-
równać wyniki

137.
3∫
2

√
y∫
0
x3dxdy 138.

2∫
1

y∫
1
xydxdy 139.

1∫
−1

1−|y|∫
|y|−1
x+y2dxdy

140.
1∫
0

3√x∫
x2
6x+ydydx 141.

2∫
−2

4−x2∫
0
y+2dydx 142.

2∫
0

4−x2∫
0
3xdydx

143.
2∫
1

x2∫
2−x
1dydx 144.

1∫
−1

y2∫
0
x3/2dxdy

Obliczyć całki
145.

∫ ∫
K
exdω, K - wnętrze trapezu o wierzchołkach (0,0), (1,1), (2,1) i

(3,0)
146.

∫ ∫
L
xydω, L - wnętrze trójkąta o wierzchołkach (0,0), (1,1) i (2,−1)

147.
∫ ∫
M
x3dω, M = {(x,y);4x2+y2¬ 4}

148.
∫ ∫ ∫
N
x2+ydω, N = {(x,y,z);x,y,z ∈R+∪{0},x+y+z¬ 1}
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149.
∫ ∫ ∫
O
1dω, O= {(x,y,z);x2+y2+z2¬ 1,x­ 0}

150.
∫ ∫
P
x2dω, P - wnętrze czworokąta krzywoliniowego o wierzchołkach

(0,0), (2,4), (8,1) i (−2,−2) ograniczonego parabolą y=x2, hiperbolą
xy=8 i dwoma odcinkami prostoliniowymi
151.

∫ ∫
Q

√
ydω, Q - obszar ograniczony parabolą y=x2 i prostą y=x+6

152.
∫ ∫
R
|x2−y|dω, R= [0,1]× [0,1]

Wyznaczyć środki ciężkości następujących figur
153. K 154. L 155. N 156. O 157. P 158. Q
159. S= {(x,y);x2+y2¬ 1,x+y¬ 1}
160. Środek ciężkości wnętrza czworokąta o wierzchołkach (−1,0),

(0,1), (1,0) i (0,a) leży w (0,a) . Czy środek ciężkości obwodu tego czwo-
rokąta znajduje się w jego wnętrzu? A środek ciężkości wierzchołków?

161. Obliczyć
1∫
0

1∫
y

ex−1
x
dxdy

162. Powszechnie wiadomo jak litrowym naczyniem w kształcie wal-
ca odmierzyć pół litra - wystarczy przechylić je tak, aby płyn zakrywał
całe dno i jego poziom był styczny do obwodu dna. A ile płynu zosta-
nie w naczyniu jeśli przechylimy je tak, aby płaszczyzna poziomu płynu
przechodziła przez średnicę dna?

6. Zmiana zmiennych całkowania,
współrzędne biegunowe, sferyczne, walcowe.

Wyrazić całki w podanych współrzędnych. Obliczyć w nowych współ-
rzędnych.

163.
2∫
1

x∫
0

1√
x2+y2

dydx biegunowe

164.
2∫
0

√
2x−x2∫

−
√
2x−x2

y2

x2+y2
dydx biegunowe
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165.
3∫
0

√
9−x2∫

−
√
9−x2

|x+y|dydx biegunowe

166.
1∫
−1

√
1−x2∫

−
√
1−x2

1+
√
1−x2−y2∫

√
x2+y2

1
x2+y2+z2

dzdydx sferyczne

167. Obliczyć objętość obszaru ograniczonego płaszczyzną z=4 i
paraboloidą eliptyczną x2+4y2= z.

Wyrazić całki w podanych współrzędnych. Obliczyć w nowych współ-
rzędnych.

168.
1∫
0

x
√
3∫

0

xydydx+
2∫
1

√
4−x2∫
0

xydydx biegunowe

169.
1∫
−1

√
1−x2∫

−
√
1−x2

√
2−x2−y2∫
√
x2+y2

x2+y2+z2dzdydx sferyczne

170.
3∫
2

√
25−x2∫

√
16−x2

|x+y|dydx współrzędne (x,r), r=
√
x2+y2

7. Wzór Greena.

Oznaczenia:

K jest krzywą skierowaną przeciwzegarowo ograniczającą obszar Ω.

X =(P,Q) jest polem wektorowym.

Wzór Greena (wersja rotacyjna):

∫ ∫
Ω

(
∂Q

∂x
− ∂P
∂y

)
dω(x,y)=

∫
K

Pdx+Qdy
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Wzór Greena (wersja dywergencyjna):∫ ∫
Ω

(
∂P

∂x
+
∂Q

∂y

)
dω(x,y)=

∫
K

−Qdx+Pdy

Dla podanego pola wektorowego oraz obszaru Ω na płaszczyźnie za-
stosować wzór Greena w podanej wersji (rot, div lub obydwie) i spraw-
dzić jego prawdziwość przez bezpośrednie obliczenie całek występują-
cych po obu stronach wzoru
171. (x,y), Ω= {(x,y);x2¬ y¬ 1}, (rot, div)
172. (y2,x3), Ω= [0,1]2, (div)
173. (ex−y,ex−y), Ω= {(x,y);x,y­ 0, x+2y¬ 2}, (div)
174. (x,−y), Ω= {(x,y);1+y2+x2¬ 2x+2y}, (rot, div)
175. (xy,0), Ω= {(x,y);x,y ∈ [0,1], x2+y2¬ 1}, (rot, div)
176. (xex2+y2 ,yex2+y2), Ω= {(x,y);x2+y2¬ 1}, (rot, div)
177. ( −y

x2+y2 ,
x

x2+y2 ), Ω= {(x,y);1¬x
2+y2¬ 4}, (rot)

Wsk. Brzeg Ω składa się z 2 okręgów, zewnętrzny jest skierowany prze-
ciwzegarowo, wewnętrzny zegarowo.

178. Zastosować wzór Greena do obliczenia całki∫
K
x1998e1999ydx+x1999e1999ydy,

gdzie K = {(x,y);x2+5y2=17} jest skierowana preciwzegarowo.
179. Zastosować wzór Greena do obliczenia całki∫

K
e(x+y)

7
dx+e(x+y)

7
dy,

gdzie K = {(x,y);x1998+y2000=1} jest skierowana preciwzegarowo.
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8. Pola wektorowe w przestrzeni. Potencjał.

Oznaczenia:
X =(P,Q,R) jest polem wektorowym w przestrzeni.

rotX =
(
∂R

∂y
− ∂Q
∂z
,
∂P

∂z
− ∂R
∂x
,
∂Q

∂x
− ∂P
∂y

)

divX =
∂P

∂x
+
∂Q

∂y
+
∂R

∂z

Potencjałem pola wektorowego (na płaszczyźnie lub w przestrzeni)
nazywamy funkcję, której to pole jest gradientem. O ile pole wektorowe
jest określone w obszarze ”bez dziur”, potencjał istnieje wtedy i tylko
wtedy, gdy pole jest bezwirowe. Potencjał jest jedyny, z dokładnością
do stałego składnika.

Rozstrzygnąć, czy dla dowolnej funkcji f :R3→R i pola wektorowe-
go X :R3→R3 (różniczkowalnych w sposób ciągły tyle razy, ile trzeba)
zachodzą poniższe równości (podać uzasadnienie równości lub kontr-
przykład). 0 w zależności od kontekstu oznacza funkcję liczbową równą
0 lub zerowe pole wektorowe.
180. rot grad f =0 181. div rotX =0 182. rot rotX =0
183. grad divX =0 184. rot grad f =div rot grad f
185. rot (fX)= grad f×X+frotX 186. div grad f =0
187. div (fX)= grad f ◦X+fdivX
Znaleźć potencjały pól wektorowych (o ile posiadają potencjał)

188. (x,y) 189. (y,x) 190. (x2,y2) 191. (y2,x2)
192. (xy2,x2y+y3) 193. (yex,ex) 194. (ex, 11+y2 )

195. (x2,y3,z4) 196. (2xy,x2,y) 197. (yexy,xexy,z4)
198. ( y

1+x2+y2 ,
x

1+x2+y2 ) 199. (x
9y20,2x10y19)

200. ((y+1)ez2 ,xez2 ,2x(y+1)zez2)
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9. Całki powierzchniowe (niezorientowane).

201. Obliczyć
∫ ∫
T
|z|dS, gdzie

T = {(Rcosα+rcosαcosβ,Rsinα+rsinαcosβ,rsinβ);α,β ∈ [0,2π]}
jest torusem o promieniach r <R.

202. Obliczyć
∫ ∫
Ω
xydS, gdzie

Ω= {(x,y,x2+y2);x,y ∈ [0,1]} .

203. Obliczyć
∫ ∫
Ω
z5dS, gdzie

Ω= {(x,y,z);x2+y2+z2=1} .

204. Obliczyć
∫ ∫
Ω
x2+y2dS, gdzie

Ω= {(x,y,x3−3xy2);x2+y2¬ 1}
jest fragmentem powierzchni zwanej małpie siodło.

205. Niech 0<r¬ 2R. Obliczyć pole powierzchni
P = {(x,y,z);x2+y2+z2=R2 , x2+y2+(z−R)2¬ r2} .

Opisać własnymi słowami, co to za powierzchnia.

206. Czas staczania się figury obrotowej Ω z równi pochyłej jest
proporcjonalny do

√
1+ I

mR2
, gdzie

m=
∫
Ω
ρdω jest masą,

ρ jest gęstością,
R= sup

(x,y,z)∈Ω

√
x2+y2 jest zewnętrznym promieniem figury - przyjmuje-

my, że oś OZ jest osią obrotu,
I =

∫
Ω
ρ(x2+y2)dω jest momentem bezwładności względem osi obrotu.

Uporządkować następujące figury w/g czasu staczania się z równi:
a) sfera,
b) kula,
c) pełny walec,
d) powierzchnia boczna walca,
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e) pusty walec (z podstawami), wysokość = promień podstawy,
f) walec wydrążony, promień wydrążenia = 12 promienia walca,
g) dwa pełne stożki złączone wierzchołkami,
h) dwie powierzchnie boczne stożka złączone wierzchołkami,
i) dwa puste stożki (z podstawami) złączone wierzchołkami, wysokość
= promień podstawy.
Uwaga:

∫
Ω
... dω oznacza całkę podwójną (powierzchniową) lub po-

trójną.

10. Całki powierzchniowe (zorientowane).

Obliczyć całki powierzchniowe zorientowane (wybrać dowolnie orien-
tację powierzchni)
207.

∫ ∫
S
xdydz+ydzdx+zdxdy, S= {(x,y,z);x2+y2+z2=2x}

208.
∫ ∫
S
y2dzdx+zdxdy, S= {(x,y,z);x2+y2= z2, z ∈ [0,2]}

209.
∫ ∫
S
zdydz+y2dzdx+xdxdy, S= {(x,y,x2+y2);x,y ∈ [−1,2]}

210.
∫ ∫
W
(x+2)dydz+(y+3)dzdx,

W = {(x,y,z);x2+4x+y2+6y=0, z ∈ [2,5]}
211.

∫ ∫
S
xdydz+ex+y+zdzdx+dxdy, S - równoległobok o wierzchołkach

(1,0,0), (0,1,0), (0,0,1) i (1,-1,1)

11. Twierdzenie Gaussa-Ostrogradskiego.

Zastosować i sprawdzić prawdziwość twierdzenia Gaussa dla poda-
nego pola wektorowego i obszaru Ω
212. (x,z,y), Ω= {(x,y,z);x2+y2+z2¬ 5}
213. (1,xy,z), Ω= {(x,y,z);x2+y2¬ 3z2, 0¬ z¬ 3}
214. (x,0,y2), Ω= {(x,y,z);x,y ∈ [−1,1], 0¬ z¬ (1−x2)(1−y2)}
215. (x2+y2+z2,0,0), Ω= [0,1]3

216. (x,−y,0), Ω= {(x,y,z);
√
x2+y2¬ z¬

√
1−x2−y2}
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217. ( x
x2+y2+z2 ,

y
x2+y2+z2 ,

z
x2+y2+z2 ), Ω= {(x,y,z);1¬x

2+y2+z2¬ 4}
218. (x,y,z), Ω= {(x,y,z);x,y,z­ 0, x+y+z¬ 3}
219. (1,1,2x+2y), Ω= {(x,y,z);x2+y2¬ z¬ 25}
220. (x,y,z), Ω= {(x,y,z); x2

a2
+ y

2

b2
+ z

2

c2
¬ 1}, a,b,c> 0

221. (bc,ca,ab), Ω= {(x,y,z);x,y,z­ 0, x
a
+ y
b
+ z
c
¬ 1}, a,b,c> 0. Jaki

kąt tworzy pole wektorowe z największą ścianą? Jak się mają strumienie
pola przez poszczególne ściany do kwadratów ich powierzchni?

12. Twierdzenie Stokes’a.

Zastosować i sprawdzić prawdziwość twierdzenia Stokes’a dla poda-
nej całki krzywoliniowej i powierzchni
222.

∫
∂S
x2y+y3dx−x3−xy2dy+eezdz, S= {(x,y,z);x2+y2= z¬ 4}

223.
∫
∂S
ydx+2zdy+3xdz, S= {(x,y,z);x2+y2+z2=4 , z­ 1}

224.
∫
∂S
xyzdz, S= {(x,y,z);x2+y2= z¬x+2}

225.
∫
∂S
xyzdz, S= {(x,y,z);x2+y2¬ z=x+2}

226.
∫
∂S
ydx+zdy−ydz, S= {(x,y,z);x2+y2= z¬ 4}

227.
∫
∂S
ydx+zdy−ydz, S= {(x,y,z);x2+y2¬ z=4}

228.
∫
∂S
ydx+zdy−ydz, S= {(x,y,z);2

√
x2+y2= z¬ 4}

229.
∫
∂S
ydx+zdy−ydz,

S= {(x,y,z);x2+y2¬ 20,
√
20−x2−y2= z­ 4}
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