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Łamigłówki i zadania na weekend
W łamigłówkach 901, 902 i 903 oprócz tworze-

nia liczb z podanych cyfr wolno użyć w dowolnej ilo-
ści pięciu działań (dodawanie, odejmowanie, mnoże-
nie, dzielenie, potęgowanie), silni, pierwiastka kwa-
dratowego oraz nawiasów dla oznaczenia kolejności
działań.
901. Zapisz liczbę 45 używając cyfr 1, 1, 2 i 7.
902. Zapisz liczbę 82 używając cyfr 0, 0, 5 i 7.
903. Zapisz liczbę 101 używając cyfr 0, 3, 5 i 8

(każdej tylko raz).

Zabawy z pierwiastkami i potęgami
904. Zapisz wyrażenie √
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w postaci liczby całkowitej, ułamka nieskracalnego lub pierwiastka kwadratowego z liczby
wymiernej.
905. Zapisz wyrażenie
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w postaci liczby całkowitej, ułamka nieskracalnego lub pierwiastka kwadratowego z liczby
wymiernej.
906. Rozstrzygnij, czy istnieją liczby całkowite dodatniem, n i k spełniające równanie(
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Rozwiązania zadań 893–900
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Trzecie rozwiązanie zadania 894
podał Władysław Daleczko.
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Odpowiedź: Dana w zadaniu liczba jest równa
√
2.
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897. Sposób I: Zauważmy, że
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Sposób II: Podnosząc daną w treści zadania liczbę do kwadratu otrzymujemy:(√
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Odpowiedź: Dana w zadaniu liczba jest równa
√
10.

898. Wykażemy, że równanie(
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(1)
nie ma rozwiązań w liczbach całkowitych dodatnich m, n i k.
W tym celu przeprowadzimy dowód nie wprost i założymy, że rozwiązanie powyższego

równania istnieje.
Przejście do algebraicznego sprzężenia tego równania daje(
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co po przemnożeniu stronami przez równość (1) prowadzi do równania
(−6)m=9n ·18k ,

skąd
6m=9n ·18k . (2)

Jednak równanie (2) nie ma rozwiązań, gdyż dla dowolnych liczb całkowitych dodatnich
m, n i k jego lewa strona ma w rozkładzie na czynniki pierwsze tyle samo dwójek,
co trójek, podczas gdy po prawej stronie występuje więcej trójek niż dwójek.
899. Przyjmijmy c= aa. Wówczas
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,

skąd wynika, że bb=1+add, a ponieważ liczba a> 1 może być wybrana dowolnie, wy-
starczy zapewnić warunki
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)
oraz bb> 1+dd .

Przyjmując d=2 oraz b=5 otrzymujemy a=781 i c=781781.
900. Przyjmijmy c= aa. Wówczas
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Przyjmując d=2 oraz b=17 otrzymujemy a=
1717−1
16

oraz c= aa.

http://www.math.uni.wroc.pl/∼jwr/trapez
Pochwal się swoimi rozwiązaniami na Facebooku: facebook.com/IMUWr


