ANALIZA MATEMATYCZNA 3. LISTA ZADAN NR 6a
EKSTREMA LOKALNE FUNKCJI TRZECH ZMIENNYCH
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lub jesli ktéras pochodna czastkowa w tym punkcie nie istnieje.

. Wyznaczy¢ punkty krytyczne podanych funkcji oraz okresli¢ ktéore z nich sa a ktore nie sa

stacjonarne:
(1) flx,y,2) = sinayz (2)
(3) flr,y,2) = Vat+y? + 22 (4)
(5) f(z,y,2) =sinz +siny +sinz  (6)
(1) fl2,y,2) =sin(z +y + 2) (8)
(9) flo,y,2)=V1-a?—y? =22 (10)
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Macierza Hesse (czyli hesjanem) funkcji trzech zmiennych f(x,y,z) w punkcie wewnetrznym

dziedziny P :=

(a,b,c) € D? nazywamy macierz pochodnych czastkowych rzedu dwa funkcji f:
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Minory gtéwne tej macierzy oznaczamy:
0 f o0 f
o2 f @(P) 0xdy (P)
A(P) = W(P), Ay(P) = . Ag(P) :=det(H(P)).
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Jesli P = (a,b,c) € Dg)c jest punktem stacjonarnym funkcji f, w ktérym istnieja (i sa ciagte) jej

pochodne czastkowe rzedu 2, to woéwczas mamy nastepujace mozliwosci:

Jesli A1(P) >0, Ay(P) > 01 Az(P) >0, to f ma lokalne minimum w punkcie P.

Jesli Ay(P) <0, Ay(P) > 01 A3(P) <0, to f ma lokalne maksimum w punkcie P.

. Wyznaczy¢ ekstrema lokalne nastepujacych funkcji:

f(xaya )_x2+y2_|_z2

(

(33 f(z,y,2) =sinx + siny + sin z

(5) f(xayaz)—cos:c+cosy+cosz

(7)  f(x,y,2) =sin’z +sin’y +sin® 2
9) flzy,2)=vV1+22+y>+22
(11)  f(z,y,2) = /1 — a2 —y? — 22 (
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2)=2*(1—2%) +y* + 2(1 - 2)
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