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1 Introduction and preliminaries

In stable theories, Keisler measures are very well understood, originating in
[16]. There was a comprehensive study of Keisler measures in NI P theories,
starting with [12], [13], [14]. It is very natural to ask what happens in simple
theories. The main thrust of the current paper is to give counterexamples to
some of these questions, as in the abstract. Another aspect of the paper is
to give some positive results in the case of countable small theories.

Partly as motivation we will, in this introduction, discuss and recall what
is known about Keisler measures and forking in general, as well as in stable
and NP theories and then state the questions which are answered in the
body of this paper.

Our model-theoretic notation is standard. Models will be denoted by
M, N, ... and subsets (sets of parameters) by A, B, .... If and when we work
with a complete theory T then we often work in a sufficiently saturated
model, called € or M; a,b,... refer to tuples in models of T unless we say
otherwise or clear from the context.

The study of stable theories is connected to categoricity and is largely due
to Shelah [25]. There are many other reference books, including [23]. In the
middle 1990’s the machinery of stability theory was extended or generalized
to the class of simple theories which had been defined earlier by Shelah in
[26]. This development was closely connected to and went in parallel with the
concrete analysis of several kinds of structures and theories, including Lie co-
ordinatizable and smoothly approximable structures ([15], [3]), and bounded
PAC fields ([11] and the later published [9]), using tools with a stability
theoretic flavour. In fact Hrushovski’s S -theories already provided a certain
abstract finite rank environment for adapting stability to the more general
situations. The technical breakthroughs came with Byunghan Kim’s thesis
[17], [18] followed by [20]. Kim showed that all the machinery of nonforking
independence extended word-for-word from stable theories to simple theories,
except for stationarity of types over models (or more generally algebraically
closed sets), and [20] found the appropriate weak version of the stationarity
theory: the Independence Theorem over a model, or more generally for Las-
car strong types. The latter, improved to so-called Kim-Pillay strong types,
migrated and became essential in all of model theory, and also made con-
nections to combinatorics and Lie groups possible, although we still do not
know, whether this level of generality, versus the strong types of Shelah, is
really needed in simple theories. The expression “Independence Theorem”



already appears in the earlier work on Si-theories, and was borrowed from
there. In addition to the original papers, there are several good texts on sim-
ple theories [27], [19], [1]. The original definition of simplicity was in terms of
not having the “tree property”. We will define it here in terms of “dividing”
as it is an opportunity to introduce dividing and forking.

Definition 1.1. (i) A formula ¢(x,b) divides over A if there exists an A-
indiscernible sequence (b; : i < w) with b = by such that {Pp(x,b;) : i < w} is
inconsistent.

(i1) If ¥(x) is a partial type over a set B closed under conjunctions and
A C B, then X(x) divides over A if some formula ¢(x,b) € X(x) divides
over A.

(7ii) A formula forks over A if it implies a finite disjunction of formulas each
of which divides over A.

(iv) For 3(z), A C B as in (i), X(z) forks over A if some formula in ¥(x)
forks over A.

(v) The complete theory T is said to be simple if for any complete type p(x) €
S(B) there is a subset A C B of cardinality at most |T'| such that p(x) does
not divide over A.

In simple theories, dividing and forking coincide. Stable theories can be
characterized as simple theories such that for any model M, p(z) € S(M),
and M < N, p(z) has a unique extension to a complete type g(x) € S(N)
which does not fork over M.

The stable forking conjecture says that in a simple theory T, forking is
explained by the “stable part” of T' (in a sense that we will not describe in
detail). There are many simple theories T" which have a stable reduct Tj
(with quantifier elimination) such that 7" is the model companion of Ty to-
gether with the new relations (possibly modulo some mild universal theory).
Typically in such a situation forking in 7" is witnessed by forking in 7§ so the
stable forking conjecture holds. Our two main examples of simple theories
will have this feature.

In a simple theory T we will say that a and b are independent over A (in
the sense of nonforking) if tp(a/A,b) does not fork over A. This satisfies a
number of properties: invariance, finite character, local character, existence
of nonforking extensions, symmetry, transitivity, and the “Independence The-
orem over a model”. Moreover the existence of an “abstract independence
relation” satisying these properties implies simplicity of T" as well as that this
relation coincides with nonforking. This will be used in Sections 2 and 3 and



we will give a few more details there. Among the “simplest” simple theories
are the theories of SU-rank 1, where every complete nonalgebraic 1-type has
only algebraic forking extensions.

Although NIP theories are not really objects of study in the current
paper, they form part of the motivation. A theory T' is NIP if there is no
formula ¢(z,y) and a; for i € w and bg for S C w in some model M of T such
that for all 4, S, M = ¢(a;,bs) iff i € S. NIP theories are generalization
of stable theories in an orthogonal direction from simple theories, and in
fact T' is stable if and only if T is both simple and NIP. Although forking
is not so well-behaved in NIP unstable theories, it still plays a big role.
In particular, forking coincides with dividing over models [5], and global
nonforking extensions of types over a model M are precisely extensions which
are invariant under automorphisms fixing M pointwise. For a type p(z) over
a set A its global nonforking extensions (if they exist) are rather invariant
over the bounded closure “bdd(A)”.

The other main ingredients in this paper are Keisler measures. Given a
structure M (or model M of T'), and variable z, a Keisler measure p, over M
is a finitely additive probability measure on the Boolean algebra of definable
(with parameters) subsets of the z-sort in M. Keisler measures generalize
complete types p(z) over M which are the special case where the measure is
{0, 1}-valued (0 for false, 1 for true). It took a long time for Keisler measures
to become part of everyday model theory (see [4] for a quick survey). They
were studied by Keisler in [16] which is, on the face of it, about N1 P theories,
but where, among the main points, is that for stable theories, locally (formula-
by-formula) Keisler measures are weighted, possibly infinite, sums of types.
(See also [24] where this is used to give a pseudofinite account of the stable
regularity lemma.) In the NIP environment, Keisler measures were a very
useful tool in solving some conjectures about definable groups in o-minimal
structures [12]. In [13], [14], the ubiquity of automorphism (translation)
invariant Keisler measures in NIP theories (groups) was pointed out.

The role, if any, of Keisler measures in simple theories, is not well under-
stood. For pseudofinite fields, the nonstandard counting measure provides
both automorphism invariant measures on definable sets, as well as trans-
lation invariant measures on definable groups (with very good definability
properties). The examples given in Sections 2 and 3 of the current paper
show in particular that such behaviour does not extend to simple theories in
general.

We will now describe the main results of the paper, with motivations
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coming from what is known in the stable context.

We will talk about (non-) forking over ), but () can be systematically
replaced by any small set A of parameters.

The following is well-known ([12], [22]) but we recall the proof anyway.

Fact 1.2. (No assumption on T.) Suppose ¢(x,b) forks over . Then
w(p(x, b)) =0 for any automorphism invariant global Keisler measure p(x).

Proof. Working in the saturated model M we may assume that ¢(z, b) divides
over (), witnessed by indiscernible sequence (bg, by, . ..) with by = b such that
{p(x,b;) : i < w} is inconsistent. So @(x,by) A P(x,b1) A ... A ¢(x,by) is
inconsistent for some k > 1. Assume for a contradiction that p(¢(x,b)) >0
for some automorphism invariant global Keisler measure p. Choose 0 < r < k
maximum such that p(é(z,bo) A ... A ¢(x,b,)) = t for some ¢t > 0. Let
Yi(z) = @(z,bo) Ao . .AP(x,b,—1) ANp(2,b;) for j =r,r+1,7+2,.... Then by
indiscernibility, invariance of p and choice of r, we have that p(y;(x))) =t
for all j > r, but u(¢;(z) Ay (x)) =0 for r < j < j' — a contradiction as
pler =x) = 1. O

Remark 1.3. Suppose T' is stable (and complete in language L), and p(x) is
a complete type over (). Then there is a global Keisler measure pu(x) (i.e. over
a saturated model M ) which extends p(x) and is Aut(M)-invariant. Moreover
w is the unique Aut(M)-invariant global Keisler measure extending p.

Proof. Again we give a proof, for completeness. The reader is referred to
Section 2 of Chapter 1 of [23] for notation and facts that we use. Fix a finite
set A of L-formulas of the form ¢(x,y), and consider the collection of p'(x)|A
where p’ is a global nonforking extension of p. We know that there are only
finitely many such, say pi,...,p,. Let ua be the average of {pi,...,pn},
namely for each ¢(z,y) € A and b € M, ua(o(z,b)) = (1/n)(>_ pi(o(z,b)))
(where p;(¢(x,b)) = 1 if ¢(z,b) € p; and 0 otherwise).

One has to check that A C A’ implies that pa, agrees with pua on A-
formulas, so that the directed union of the ua gives a global Keisler measure
. For this we use transitivity of the action of Aut(M) on the set of global
nonforking extensions of p. From the definition of i and invariance of non-

forking, we deduce that p is Aut(M)-invariant.
Uniqueness of u follows from Fact 1.2. m

Corollary 1.4. Suppose that T is stable and ¢(x,b) is a formula which does
not fork over (). Then there is an Aut(M)-invariant global Keisler measure
giving ¢(x,b) positive measure.



Proof. Let p’ be a global type which contains ¢(z, b) and does not fork over 0,

and let p be the restriction of p’ to (). The Aut(M)-invariant Keisler measure
extending p constructed in Remark 1.3 gives ¢(z,b) positive measure. O

A weak version of the corollary above holds in NI P theories using Propo-
sition 4.7 of [13]. The question raised by the first author is whether the
conclusion of Corollary 1.4 holds for simple theories. The first main result of
the current paper is a negative answer:

Theorem 1.5. There is a simple theory T' (of SU-rank 1) together with a
formula ¢(x,b) which does not fork over () but has measure 0 for all auto-
morphism invariant global Keisler measures.

We now turn to the case of definable groups. Recall:

Definition 1.6. Let G be a group definable (say without parameters) in a
structure M. Then G is said to be definably amenable if there is a Keisler
measure on G over M which is invariant under left translation by G.

So definable amenability is a function not just of (G, -) but of the ambient
structure M.

Recall from Section 5 of [12] that definable amenability of G' depends only
on Th(M), not the particular model chosen. The relation with paradoxical
decompositions will be discussed in detail in Section 4. The group version of
Remark 1.3 is:

Fact 1.7. Stable groups are definably amenable. More precisely if Th(M) is
stable and G' a group definable in M, then G s definably amenable. Moreover
there is a unique left invariant Keisler measure on G (over M ) which is also
the unique right invariant Keisler measure.

Ezplanation. This is well-known but spelled out in detail for the more general
case of “generically stable” groups in Corollary 6.10 of [13]. Also it is done
explicitly in the local (formula-by-formula) case in [8].

It was asked by several people, including the sixth author, whether groups
definable in models of simple theories are definably amenable. Note that this
is the case for groups definable in pseudofinite fields (or arbitrary pseudofinite
theories). Nevertheless, our second main result is:



Theorem 1.8. There is a simple theory (of SU-rank 1) and a definable group
G in it which is NOT definably amenable.

In [10] a first-order theory was defined to be amenable if every complete
type over () extends to a global automorphism invariant Keisler measure.
(In Remark 1.3 we pointed out that this is true in a strong form in stable
theories.) The usual move of expanding a theory by a new sort for a principal
homogeneous space (PH.S) for a definable group yields:

Corollary 1.9. There is a simple theory which is NOT amenable.

We recall briefly the situation for definable groups in NP theories. First
there DO exist non definably amenable groups; such as SL(2,R) as a group
definable in the real field. Nevertheless there is a very nice theory of defin-
ably amenable groups, beginning in [13], continued in [14, 6] and brought to
a fairly comprehensive conclusion in [7]. The latter paper includes a classi-
fication of the translation invariant Keisler measures on definably amenable
groups in NP theories.

Theorem 1.5 will be proved in Section 2. Theorem 1.8 and Corollary 1.9
will be proved in Section 3. The constructions of the theories and structures
which give these (counter-)examples is a bit complicated from the combi-
natorial point of view, but model-theoretically is straightforward and only
involves producing model companions of suitable universal theories. More-
over the witnessing of the “nonamenability” is transparent. However there is
a general theory of “definable paradoxical decompositions” from [12], which
is recounted in Section 4, and where we also give a “simpler” witness to The-
orem 1.8 in terms of certain invariants attached to non definable amenability
of groups. We also use the nonexistence of definable paradoxical decompo-
sitions to give several positive results for small theories (countable complete
theories T" such that S(T') is countable). These include definable amenability
of definable groups in 7', as well as a certain weak version of amenability of 7.
We also show non-triviality of the graded Grothendieck ring of any structure
with small theory.

2 The first example.

Here we prove Theorem 1.5. We first give an overview and then the technical
details. Recall first that for any group G and a free action of G on a set P we



can consider P as a structure in a language with function symbols f, for each
g € G. When G is infinite, all such structures are elementarily equivalent,
the theory is strongly minimal and there is a unique 1-type over (). We will
choose G to be the free group F5 on 5 generators. We will add another sort
O to the picture and a relation R C O x P and find ay,...,as in P such that
R(z,ay), R(z,as), R(x,as3) are disjoint infinite sets, which are contained in
the union of R(z,as) and R(z,as). It will be done sufficiently generically
such that there is still a unique 1-type realized in P, and the theory of the
structure is simple (of SU-rank 1). As all of the a; have the same type, any
automorphism invariant Keisler measure (on the sort O) will assign the same
measure to each of the R(z, a;), which will have to be 0. But R(z,a;) (being
infinite) does not fork over ().

2.1 The universal theory

As usual we mix up notation for symbols of the language and their interpre-
tations. As above we have two sorts O, P, and relation R C O x P. And it
is convenient to only have function symbols for 5 free generators of F5 and
their inverses, which we will call fi, fi, f3, ¢i, and g5. We get a language
L. Terms corresponds to elements of the free group Fj;, which will act on the
sort P, via the function symbols. For a € P, let R, denote the subset of O
defined by R(zx,a).

Then we can express by a collection of universal sentences in L that
(i) the map taking (¢,a) € G x P to ta € P is a free action of G on P,
(ii) for all a € P, the sets (subsets of O), Ry (a), Rfy(a), Rpsa) are pairwise
disjoint and each is contained in the union of Ry, ) and R, ).

We will call this universal L-theory T

We will define a theory 7™ in L which extends T and has quantifier
elimination, so will be the model companion of 7. As usual to show the
existence of model companions one needs to describe, in the parameters,
when a quantifier-free formula ¢(z) over a model M of T has a solution
in a larger model N of T. The key issue is Axiom (ii) above. So some
combinatorics is required which will be done in the next section.

2.2 Colourings and free actions.

We fix a free action of F5 on a set X.



As above, we will denote a system of free generators for the free group
F5 by {f1, f2, f3,91,92}. There is an induced “Cayley graph” metric on X,
where d(u,v) = 1 if one can get from one of u, v to the other by multiplying
by one of the distinguished generators. So d(z,y) is finite if x,y are in the
same orbit of F5 and co otherwise. We should clarify here that a “path” from
u to v will be represented by a reduced word w in the fijE and gj-c such that
wu = v. There is at most one such path (as Fj is free on these generators,
and the action is free). And d(u,v) is precisely the length of w.

For v € X, let B, (v), the ball around v of radius n, be {u € X : d(v,u) <
n} and for V' a subset of X, B, (V) = U,cy Bn(v).

Definition 2.1. (i) Define <* on X by u <* v if there exist i € [3] and
j € [2] such that v = g;f; u.

(ii) Let < be the reflexive and transitive closure of <*, and for v € X, let
Uy={ueX:v<u}.

(i1i) The nth level of U, is {u € U, : d(v,u) = 2n}.

(iv) By a complete tree for v € X we mean a subset T of X containing v
such that for allu € T, and i € [3] there is j € [2] such that g;f; " (u) € T.
(v) By a depth n tree for v € X, we restrict (iv) to T C By, (v) and require
the second clause of (iv) only for uw € Bo, o(v)NT.

Remark 2.2. (a) Ezplanation of (v): Note that if d(v,u) = 2n — 2 then for
any i € [3] and j € [2], g;f; 'u has distance at most 2n from v.

(b) Any product of words of the form g;f; "' fori € [3] and j € [2] will be a
reduced word. Hence if w,w' are distinct such reduced words, and u,v € X
then we could not have that both wu = v and w'u = v.

(c¢) Note that U, is a maximal complete tree for v.

Lemma 2.3. Suppose v € X, and Y C X with |Y| < n+ 1. Suppose there
is a depth n tree T for v with T NY = (. Then there is a complete tree T'
for v which is disjoint from Y .

Proof. The proof is by induction on n. When n = 0, we may assume Y is a
singleton {z}, and T = {v} with v # x.

For i € [3] and j € [2] let v;; = g;f; 'v. By Remark 2.2(b), there will
be at most one v;; such that v;; < z. Hence for each i € [3] there is
j(i) € [2] such that v; ji) £ =. Hence also for each i € 3], z ¢ U, . Hence
{v} UUics Uu, ) 18 @ complete tree for v which is disjoint from Y = {z}.

The inductive step: Suppose |Y| =n + 1 and T is a depth n tree for v
such that TNY = () (and n > 0). As above denote by v;;, g;f; ‘v. Fix
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i € [3] and one of the j’s € [2] such that v; ; € T'. Then clearly TNU,, ; is a
depth n — 1 tree for v; ; which is disjoint from Y.

Case (i). Y NU,, ;| <n. Then by induction hypothesis, there is complete
tree T; for v;; which is disjoint from Y NU,, ;. As T; C U,,, it follows that
T; is also disjoint from Y.

Case (ii). |Y NU,, | =n+1. Namely Y C U, . Letj # j, j’ € [2]. So
clearly U, , is disjoint from U, ; (again by freeness of the action of F5) and
so disjoint from Y. In this case define T; to be Uvm,,, a complete tree for v; ;
which is disjoint from Y.

Now let 7" = {v} U ;i3 Ti- Then T is disjoint from Y and is a complete
tree for v. O

The motivation for part (1) of the next definition is to use colourings to
describe quantifier-free 1 types over P realized in O in models of 7. That
is, a colouring ¢ of P with colours +, — will correspond to the quantifier-free
type p(x) on O where R(z,a) € p(z) iff ¢(a) = +. Conditions (a) and (b)
below correspond to Axiom (ii) from the universal theory 7.

Definition 2.4. (1) Suppose D C X. By a good colouring of D we mean a
function ¢ : D — {4, —}, such that if v € D and c¢(v) = + then

(a) for all i € [3] there is j € [2] such that c(g,;f; ' (v)) = + if g; f; ' (v) € D.
(b) and for all i # j € [3], c(fif'v) = —, if f;f7 v € D.

Moreover if D = X we call ¢ a total good colouring.

(2) We say that vi,vy € X are a conflicting pair, if there are wy € U,, and
wy € U, such that wy = f;f;  wy for some i # j € [3].

Lemma 2.5. (i) Being a conflicting pair is symmetric.

(ii) If v1 and vy are a conflicting pair, then there are unique w; € U,, and
wy € U,, such that wy = fjfi_lwl for some i # j € [3]. We call wy,ws the
conflict points.

Proof. (i) is obvious.

(ii) Let wy € U,,, wy € U,, witness that v; and vy are a conflicting pair,
namely wy = f;f; 'wy for some i # j € [3]. Let w; = zv; and wy = yvg,
where z and y are products (maybe empty) of pairs of free generators of
the form gkf[1 (as wy € U,, and wy € U,,). Then vy = y‘lfjfi_lxvl. The
product y~ ! f; f ' is already reduced (as y~! ends and x begins with a g-
generator). Thus x and y are uniquely determined, hence w; and ws too. [
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Proposition 2.6. Let V and W be disjoint finite subsets of X, both of which
have cardinality at most n. Let ¢ : V. UW — {4, =} be a good colouring of
VUW given by c is + on'V and — on W. Let N = n(n+ 1) —2. Then
there is total good colouring (i.e. of X ) extending c if and only if there is
good colouring of By (V') extending the restriction of ¢ to By(V)N(VUW).

Proof. One direction is obvious: if ¢ is a total good colouring then its restric-
tion to By (V') of course extends its further restriction to By (V)N (VU W).

For the other direction: suppose ¢’ is a good colouring of By (V') extending
the restriction of ¢ to By(V)N(VUW).

Note in passing that V' C By (V). We will define a set Y which consists
of W together with one element from each pair (w,w’) of conflict points
which come from a conflicting pair (v, ve) of elements of V. So given such
v1,v9 € V and conflict points wy, ws:

Case (1). Both wy,ws € By(V). Then by the good colouring condition 1(b)
(from Definition 2.4), not both ¢/(w;) and ¢'(wsy) equal +. So choose one of
them, without loss w; such that ¢(w;) = — and put w; into Y.

Case (2). At least one of wy, wq, without loss w; is NOT in By (V). Then
add w; to Y.

There are at most n(n—1)/2 conflicting (unordered) pairs from V', and hence
Y| <n+n(n—1)/2=n(n+1)/2= N/2+1, and by construction ¢'(z) = —
for allz € Y N By(V).

Now for each v € V, T'= {u € By(v) : d(u) = +} is a depth N/2 tree
for v which is disjoint from Y (by definition of a good colouring and the
construction of Y). By Lemma 2.3 (as |Y| < N/2 + 1) there is, for each
v € V, a complete tree T, for v which is disjoint from Y. Let us then define
a (total) colouring ¢” of X which has value 4+ on T, for each v € V and —
otherwise.

As cis + on V, and — on W which is contained in Y which is disjoint
from each T, ¢ extends c.

Claim. " is good.
Proof. Suppose ¢’(u) = +. So u € T, for some v € V. But T, is a complete
tree for v, so for each i € [3] there is j € [2] such that g;f; 'u € T, whereby
"(g;f; 'u) = +. This gives 1(a) in the definition (Definition 2.4) of a good
colouring.

For 1(b): suppose for a contradiction that ¢’(w;) = + and ¢’(ws) = + for
wy, wy in X such that wy = f;f; 'w; for some i # j € [3]. But then w; € T,
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and wy € T, for some v1,v2 € V, and we see that wy,w, are conflict points
for the conflicting pair vy, vy € V. But by the definition of Y, one of wy, w»
is in Y and so gets ¢’ colour —. A contradiction. ]

Corollary 2.7. For each v € X there are good colourings c,c of X such
that c(v) = + and ¢ (v) = —.

2.3 The model companion 7™

We return to the context of Section 2.1, namely the language L and universal
theory T'. To any element h of Fj expressed in terms of the generators and
their inverses in reduced form we have a term ¢; of L. Note that if ¢ is a
term in nonreduced form then there will be some h such that ¢t = ¢, is true
in all models of T'.

We will give two axiom schema, which in addition to 7" give a theory 7™
in the given language. We will check subsequently that (7*)y = T', and that
T* has quantifier elimination (and is complete), so is the model companion
of T.

We want to describe which quantifier-free 1 types over a model M of T
can be realized in some extension N of M to a model of T', by expressing the
existence of solutions of appropriate approximations. There are two kinds of
1-types: realized by an element of P, and realized by an element of O. We
introduce some notation to deal with each of these cases.

Let p;(z,x) for i € I be a list of all (complete) quantifier-free types (over
) of pairs (a,b) in models M of T where a € O(M) and b € P(M). So
pi(z,x) will be a maximal consistent (with T") set of formulas of the form
R(z,tn(z)), 7 R(z,tn(x)) for h ranging over Fj. (The inequalities between x
and the t,(x) for h # 1 will come free from 7).

For each n, let v,(z1,...,Zn,y1,...,Yn) be a quantifier-free L-formula
expressing the existence of a good colouring ¢ of By({z1,...,x,}) such that
c(x;) =+ fori=1,...,n and ¢(y;) = — for each y; which happens to be in

By({x1,...,2,}) (where N = n(n+1) — 2).

Axiom Schema I. All sentences of the form

(‘v’xl,...,xnGP)(VZ1,-~7Zn60)(/\Zi7ézj—>
i#]
(EI:EGP)( /\ b3, (zj, ) A /\ x#x&),

j=1,...n i=1,...,n
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where n > 1, 4y,...,i, € I and each ¢;,(z,7) is a finite conjunction of
formulas in p;, (2, z).

Axiom Schema II. All sentences of the form

Vo1, o Ty Y1y Un € P)(V21, .00, 20 EO)(fyn(:vl,...,xn,yl,...,yn) —

for n > 1.

We define T to be (the theory axiomatized by) T together with Axiom
Schemas I and II.

Lemma 2.8. Any existentially closed model of T is a model of T*. In par-
ticular T* is consistent and (T*)y =T.

Proof. Let M be an existentially closed model of T'. Consider an axiom

(Vxq, ..., 2, EP)(Vzl,...,zneO)</\zi7ézj —
i#

.....

belonging to Axiom Schema I.

Choose ay,...,a, € O(M), which we may assume to be distinct. We
will build a certain model M’ of T containing M. Let X be a principal
homogeneous space for Fy (disjoint from P(M)) with a distinguished point
b. Let P(M') = P(M) U X with the natural action of F5. For h € Fj, we
put (a;,hd) € R iff R(z,t,(2)) € pi,(2, 7). And for any other a € O(M), we
put = R(a,c) for any ¢ € X. We also define O(M") to be O(M). Then it
can be checked that M’ is a model of T'. Now b witnesses that the formula

(Fz € P)(Njoi 0 ®is(az,2) ANy @ # b)) for any by,....b, € P(M)

..........

holds in M’. As M is existentially closed in M’, this formula also holds in
M. We have shown that M is a model of Axiom Schema I.

Now let

Vo1, o Ty Y1y Un € P)(V21, .00, 20 EO)(fyn(acl,...,xmyl,...,yn) —

@e0)( N\ REz)A-REg)A N\ 2#2))

13



be a sentence in Axiom Schema II.

Choose by,...,bp,¢1,...,¢, € P(M). We will add a new point % to
the O sort to get a structure M’ extending M. Let us assume that M |=
Yn(b1, ... by, c1, ..., ¢,). By Proposition 2.6, there is a good colouring ¢ of
P(M) such that ¢(b;) = + and ¢(¢;) = — fori =1,...,n. Ford € P(M) =
P(M’) we define R(%,d) iff ¢(d) = +. Then M’ is a model of T, and again
as M is existentially closed in M’, (32 € O)(A._,. . (R(2,bi) A =R(z,¢:)) A
..... . %2 # a;)) is true in M, for any a4, ...,a, € O(M). So M is a model
of Axiom Schema II. O

Proposition 2.9. (i) T* is complete with quantifier elimination,

(i) T is the model companion of T,

(i1i) for any model M of T* and A C M, the algebraic closure of A in M
(in the sense of the structure M) is precisely (A), the substructure of M
generated by A.

Proof. For (i) we use the well-known criterion that for M, N w-saturated
models of T, the collection of partial isomorphisms between finitely gen-
erated substructures of M and N is nonempty and has the back-and-forth
property.

First to show nonemptiness: Let a € O(M) and b € O(N). Then {a},
{b} are isomorphic substructures of M and N.

Now suppose f is an isomorphism between finitely generated substruc-
tures My and Ny of M and N respectively. Let a € M. We want to extend
f to g with a € dom(g). We may assume a ¢ M.
Case 1. a € P(M).
Let p(z) = qftp(a/My) (quantifier-free type of a over M,). For each b €
O(My), let py(z,x) = qftp(b,a/0). Then p(z) is axiomatized by {z #
¢ c € P(Mo)} UlUpeom) Pe(b; ). Now f(p) is precisely {z # d : d €
P(No)} U Uscoquio P F(B). ).

By Axiom Schema I and w-saturation, f(p) is realized in N.
Case 2. a € O(M).
Let q(z) = qftp(a/My). Then f(q) ={z#d:d € O(No)}U{R(z, f(b)) : b €
P(My), M = R(a,b)} U{=R(z, f(b)) : b € P(My), M = —R(a,b)}. Choose
bi,...,b, € P(My) such that M = R(a,b;), and cq,...,¢, € P(M,) such
that M | —R(a,¢;) (if such exist). Then as M is a model of T* (and so of
T) we have M = ~,(b1,...,bn, ¢, .., ¢,), whereby

N ): /Yn(f(bl)a N 'af(bn)af(cl)v s ,f(Cn>)
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So by Axiom Schema II and the w-saturation of N, f(q) is realized in N.

(ii) follows immediately as 7™ is model-complete (by (i)) and (7%)y = T (by
Lemma 2.8).

(iii) By quantifier-elimination, we have to show that for any small substruc-
ture My of a (saturated) model of T*, and a € M \ My, qftp(a/M,) has
infinitely many realizations. For a € P(M) this is by Axiom Schema I and
saturation. And for a € O(M) this is by Axiom Schema II and satura-
tion. [l

2.4 Simplicity and the proof of Theorem 1.5

We now work in a saturated model M of the complete theory T* defined
earlier.

Proposition 2.10. Let a be an element (so an element of O(M) or of
P(M)), and B a (small) subset. Then a ¢ acl(B) implies that tp(a/B)
does not divide over ().

Proof. We may assume that B is a substructure, enumerated by an infinite
tuple by. Let I = (bg, b1, b, ...) be an indiscernible sequence. Note that [ J I

is a substructure, say M, of M.
Let p(x,by) = tp(a/by) with a ¢ B.

Case I. a € P(M).

Define a new structure M; extending My, by adjoining new elements {x, :
g € F5} satisfing P, and for any element ¢ in some b,, such that O(c), define
R to hold of (¢,x,) iff the corresponding element of by is in the relation R
with ¢,(a). Also define the fi and gji tautologically on {x, : g € F5}. Then
check that M; is a model of T', so by quantifier elimination and saturation
of M we may assume that M; is an extension of M, inside M. And we see
that %, realizes p(x,b;) for all i.

Hence p(x,by) does not divide over ().

Case II. a € O(M).

Do the analogous thing: define an L-structure extending M, with a single
new element * which is in O and with R(x,¢) for ¢ in some b, (such that
P(c)) iff a is R-related to the corresponding element of by. Again check that
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we get a model of T, so can be assumed to live in M over M, and % realises
p(z, b;) for all i. O

Corollary 2.11. (i) T* is simple and of SU-rank 1 (each of the sorts O, P
has SU-rank 1).

(ii) For all tuples a, b and subset A (of M ), a is independent from b over A
iff (aA) N (bA) = (A).

(i1i) Each of the sorts has a unique 1-type over ().

Proof. By Proposition 2.10, every complete 1-type (over any set) is either
algebraic or does not divide over (), which implies that 7" is simple. In partic-
ular forking equals dividing and is symmetric. And so the proposition says
that the only forking extensions of any complete 1-type are algebraic, namely
that each of the sorts has SU-rank 1.

(ii) follows from Proposition 2.10 (and Proposition 2.9 (iii)) by forking cal-
culus, using also the fact for any set B, (B) = (J,c(b), which follows from
there being only unary function symbols in the language.

And (iii) is a consequence of quantifier elimination. O

The proof of Theorem 1.5 is completed by:

Proposition 2.12. For any a € P, the formula R(z,a) does not fork over ()
but has measure 0 for any (automorphism) invariant Keisler measure j1 (on

the sort O ).

Proof. Let p be an invariant Keisler measure on the sort O. As there is a
unique 1-type over ) realized in P, u(R(z,a)) = p(R(z,b)) for all a,b € P.
But for any given a, and i € [3], R(z, fi(a)) = (R(z,g1(a)) V R(z, g2(a))),
and R(z, fi(a)), R(z, fa(a)), R(z, fs(a)) are pairwise inconsistent. So this
forces p(R(x,a)) = 0 for all @ € P. On the other hand R(z,a) has infinitely
many realizations, so as O has SU-rank 1, R(z, a) does not fork over (). [J

On the other hand let us note that:

Remark 2.13. The theory T is extremely amenable: every complete type
over () has a global (automorphism) invariant extension.

Proof. We just give a sketch, leaving details to the interested reader. Let
p(z, 2) = tp(a,b/P) where a is a tuple from P and b a tuple from O. Let M
be a saturated model. Then we can find a realization (a’,b') of p in some
elementary extension N of M such that all the elements from the tuple (a’, b')
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arein N\ M, N = ~R(d,a) for each a € @', d € O(M), and N |= =~R(b, d) for
each b € b’ and d € P(M). Then tp((a’,0')/M) is clearly Aut(M )-invariant
(using quantifier elimination). O

3 The second example

In this section we will prove Theorem 1.8. Again we start with an overview.
Our theory T* will be a certain expansion of ACF{, and the group G which
is not definably amenable will be SLy(K), where K is the underlying al-
gebraically closed field. Of course working just in ACFy, SLs(K) will be
definably (extremely) amenable. The additional structure we will add will
be a partition of SLy(K) into 4 sets Cy,Cy, C3,Cy. We will choose matri-
ces a(i,j) € SLy(Z) for i € [4], j € [3], which freely generate Fys, and
require that for each i € [4], ¢y a(i,j)'Ci = SLy(K). The C; will
be chosen sufficiently generically so that the theory 7™ of the structure
(K, +, x,C1,Cq,C5,Cy) is simple of SU-rank 1. If by way of contradiction
G = SLy(K) were definably amenable, witnessed by (left) invariant Keisler
measure 4, then the requirement above implies that p(C;) > 1/3 for each
i € [4] but then by disjointness, u(G) > 4/3 a contradiction.

In Section 4, we will mention a closely related example with Fg in place
of Fi5 but with a partition of SLs(K) into six sets rather than four. In
terms of certain invariants related to “definable paradoxical decompositions”,
this other example could be considered “better”. The general theory of
paradoxical decompositions in both the abstract or discrete groups setting
and the definable setting will also be discussed.

As in Section 2, we will describe a universal theory 7', and T* will be its
model companion, but no longer complete.

3.1 The universal theory

The language L will be that of unital rings, together with four 4-ary predicate
symbols 01, Cg, 03, 04.
It is well-known that

(o)
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generate a free group in SLy(Z). Hence so do the matrices

ek [1—4k —8K?
a b _< 2 4k+1)

for k = 0,...,11. We number these 12 matrices in some way as a(i, j), for
i € [4], 7 € [3]. We will refer to the group generated by these matrices as
Fi5. Note that the entries of each a(i, j) are terms of the language.

For an integral domain R of characteristic 0, SLy(R) is the collection
of 2 x 2 matrices over R of determinant 1. The (universal) theory 7 in
the language L will be the theory of integral domains R of characteristic 0
together with axioms:

(i) The 4-ary predicates C1, ..., Cy partition SLs(R), and
(ii) For each x € SLo(R) and each i € [4], there is j € [3] such that a(i, j)-x €
Ci-

3.2 Combinatorics and colourings

We prove some lemmas needed for defining 7*. The context in this section
is simply the free group G = Fj5 on 12 generators numbered as a(i, j) for
i € [4] and j € [3] together with a free action of G on a set X.

Definition 3.1. Let Xo C X. A colouring ¢ : Xo — [4] is good if for all
x € Xo and i € [4], IF a(i,j) - x € Xy for all j € [3], THEN c(a(i,j) - x) =1
for some j € [3]. We call this condition the ith colouring axiom at x.

Also we may call the (good) colouring total if Xo = X.

We will use similar notation to that in Section 2.2, regarding the graph
structure on X, distance, connectedness, and uniqueness of paths etc. For
example, a subset X, is connected if for any x,y € X, d(z,y) < oo and all
points on the unique path from z to y are in X,. For Xy C X, B,(Xo)
denotes the set of x € X such that there is y € Xy, d(z,y) < n.

For Cy, Cy subsets of X, d(Cy, C4) is the length of a shortest path between
an element of Cy and an element of (', if there is such a path, and oo
otherwise.

We now give some lemmas about extending good colourings.

Lemma 3.2. Suppose that Xq C X is connected. Then any good colouring
co : Xo — [4] extends to a total good colouring.
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Proof. We may assume that X, # (), otherwise replace it by a singleton
coloured with any colour. As good colourings can be defined independently
on connected components of X, we may assume that X is connected, so
equals |J, Bn(Xo). And note that each B, (Xj) is connected. We extend
¢o to X by induction. Assume that we already have a good colouring ¢, :
B,(Xy) — [4] extending c¢o. We extend to ¢,41. Suppose y = a(i,j) -
x € Bni1(Xo) \ Bn(Xp) for some z € B,(Xy), and some i, j, then define
cni1(y) = i. Note that this is well defined, for if y also equals a(é', j') - 2’ for
some x # ' € B,(Xy), then y is on the unique path between z and z’ so
y € B, (Xo) as it is connected.

If y € Buy1(Xo) \ Bn(Xp) is not of this form, define ¢, 1(y) € [4] arbi-
trarily.

We have to check that ¢, is a good colouring of B, 41(Xp). Suppose
x € Byi1(Xo) and @ € [4], and a(i,j) - © € B,11(Xop) for all 7 € [3]. Now
if a(i,j) -z € B,(Xp) for all j € [3] then by connectedness of B, (Xj) also
x € B,(Xp) and so as ¢, is a good colouring and ¢,y extends c¢,, the ith
colouring axiom at z is satisfied. Otherwise a(i,j) - © € Bp11(Xo) \ Bn(Xo)
for some j € [3]. Then z € B, (X)), for if not, there are xg,yo € X, such
that d(zo,x) = n+ 1 and d(yo,y) = n + 1 and we get that z,y lie on the
unique path connecting zy and yo, whereby z,y € Xy, a contradiction. Hence
Cni1(y) =i by definition. ]

Lemma 3.3. Let Cy, Cy be disjoint connected subsets of X with 3 < d(Cy, Cy)
< 00. Let C' be the smallest connected subset of X containing CoUCy. Then
any good colouring cy of Cy U Cy extends to a good colouring of C'.

Proof. Note that C is the union of Cy, C; and the points on the unique
shortest path I connecting them. By assumption the length of I is > 3,
namely |I| > 4. Now extending, if necessary, Cj to a suitable B,(Cj) and
extending ¢y|Cy to a good colouring of B,(Cy) we may assume that [ =
(u,v,y,2) with u € Cy, z € Cy and v,y ¢ Cy U C}.

If v = a(i, j) - u for some 4, j put ¢(v) = i. Otherwise define it arbitrarily.
Likewise if y = a(i,j) - z for some i,; define ¢(y) = i. Note that this is
well-defined. We have to check that ¢ is a good colouring. And for this it is
clear that we only need to check the ith colouring axioms at u,v,y, z (for all
i). For u, z it is clear by construction. And for v,y it is also clear vacuously,
because it cannot be the case that all of a(i, 1) - v, a(i,2) - v and a(i, 3) - v lie
in C', and similarly for y. O]
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Lemma 3.4. Suppose Xy C X has n connected components, any two of
which are of distance > 2™ apart. Then any good colouring cy of Xo extends
to a good colouring of X.

Proof. By induction on n. The case n = 1 is Lemma 3.2. The case n = 2 is
Lemma 3.3, noting that 22 =4 > 3.

So let us assume n > 2 and the lemma holds for n and we want to prove
it for n + 1. Let Xy have n + 1 connected components Cy,...,C, and let
¢o be a good colouring of Xy. As the connected components of X can be
coloured separately, we may assume that the C; lie on a common connected
component of X. We may also assume that the distance [ between Cj and
(' is the minimal distance between distinct pairs Cj, C;. Let C] be the
smallest connected subset of X containing Cy and C; (as mentioned earlier
(' is the union of Cy, C and the points on the unique shortest path between
Cy and (). Using Lemma 3.3, let ¢| be a good colouring of ] extending
CO|(C[) U Cl)

Claim. For each i > 1, the distance between (' and C; is at least 2".

Proof of Claim. Fix i > 1 and let d = d(C", C;) and suppose for a contradic-
tion that d < 2". As d(Cy, C;) and d(C4, C;) are both > 2" then d has to
be witnessed by d(z, C;), where x is a point on the unique shortest path I be-
tween Cj and C} which we know has length I. So d(z,C;) < 2", d(x,Cy) = Iy
say, and d(z,Cy) = Iy say with [y + 1; = [. Moreover d(Cy, C;) < lop + d and
d(C1,C;) <1y + d, both of which are > [ by choice of Cy and C;. But then
[ +2d = lg+d+ 1, +d > 2] which implies 2d > [ > 2"*!  which implies
d > 2", a contradiction.

Let X = C1UC,U. . .UC,,, and let ¢ be ¢y on CyU. . .UC,, and ¢} on C]. Note
that ¢ is a good colouring on X|) as it is good on each connected component
of X{. Then by the claim, and the induction hypothesis, ¢, extends to a good
colouring ¢ of X, and as ¢ extends ¢y, ¢ extends ¢y too. O

Lemma 3.5. Suppose Xg C X has size n. Let a(n) = 2" — 1, and let
co : Xo — [4] be a good colouring which extends to a good colouring ¢ :
Bomy(Xo) = [4]. Then ¢y extends to a good colouring ¢ : X — [4] of X.

Proof. Let ky be the number of connected components of Xy. So ky < n.
Case (i). Either kg = 1 (X is connected) or kg > 1 and the ky connected
components of X, are at distance > 2 apart.

Then by Lemma 3.4, ¢y extends to a good colouring of X. And we are
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finished.
Case (ii). Otherwise. Then define Xy = By, (Xo), and k; to be the number
of connected components of X;. And note that k1 < ko and X; C By (Xo).

Again if either X; is connected or the k; connected components of X; are
of distance > 2% apart, then the good colouring ¢/|X; extends to a good
colouring of X, and we finish.
Otherwise define Xy = Bqr, (X7) and ks to be the number of connected
components of X5. So ky < k.
We continue this way to produce kg > k1 > ... > k; > 1 and Xy C X; C
. € X; where X; has k; connected components, until we get that X; is
connected or its k; connected components are at distance > 2% apart, and
we extend | X; to a good colouring of X.
We have to check why the process can be continued, in particular why

.....

geeey =U,...,

3.3 The theory T*

Here we will obtain the model companion 7™ of the universal theory 7T intro-
duced in Section 3.1. In terms of compatibility with notation in the previous
section, we will write a model of T as M = (R, c), where R is an integral
domain of characteristic 0 and ¢ is the colouring SLy(R) — [4] such that
Ci(M) = c71(i) for i = 1,...,4. So as Fy is acting freely on SLy(R) by
left multiplication, the axioms from Section 3.1 say precisely that ¢ is a good
colouring. In this context we will use freely the colouring notation from the
previous section.

Lemma 3.6. For any model (R,c) of T and integral domain S O R, ¢
extends to a good colouring ¢ of SLy(S), whereby (S,c') is also a model of
T.

Proof. Note that SL(S) \ SLs(R) is a union of Fjs orbits. On each such
orbit one can define a good colouring, by Lemma 3.2 for example, and these
good colourings together with ¢ give a good colouring of SLs(S). [

So if (R, ¢) is an existentially closed model of T', then R is an algebraically
closed field. So from now on we will assume that R = K is an algebraically
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closed field, and we situate K in a larger saturated algebraically closed field
K from which we can choose generic points of algebraic varieties over K (and
write S Ly for SL2([~()).

For technical reasons related to a subsequent relative quantifier elimina-
tion proof by a back and forth argument we will be concerned with extend-
ing the colouring ¢ of SLy(K) to generic points of curves on (SLy)". By
a good curve over K, or good K-curve, we mean an absolutely irreducible
curve C' C (SLy)"™ for some n, defined over K, with the property that if
d = (di,...,d,) is a generic point of C' over K, then each “coordinate”
d; ¢ SLy(K). In the following a(n) = 2"*! — 1 as in Lemma 3.5.

Definition 3.7. Let K be an algebraically closed field. Let n > 1, let C' C
(SLy)"™ be a good K-curve, and let ¢y : [n] — [4]. We will say that C is
safe for ¢y over K if for d = (dy,...,d,) a generic point of C over K, the
colouring ¢ : {dy,...,d,} — [4] defined by ¢(d;) = co(i), extends to a good
colouring & of Bagmy({dy, ..., dn}) C SLy(K).

Fix n. Let us now fix a (quantifier-free) formula ¢(z, ) in the language L,
of rings such that for any algebraically closed field F' and tuple a from F' (of
length that of §), ¢(Z, a) if consistent, defines a good F-curve D; C SLy(F)".
We call such ¢(z,y) a “good formula”.

Remark 3.8. Note that for any algebraically closed field F' and good curve
D C SLy(F)", there is a good formula ¢(Z,y) and a € F such that D =
D;. This is because we can express dimension and irreducibility of algebraic
varieties, and we can also express that the projection of a curve onto each
coordinate has infinite image.

Lemma 3.9. Given n, good formula ¢(Z,y) as above, and a function ¢y :
[n] — [4], there is a formula ¥(y) in L., such that for every algebraically
closed field K and a € K, K | ¢(a) iff the curve D is safe for ¢y over K.

Proof. Note that we are working completely in the language of rings, even
though we mention colourings. First note that for a curve C' C SLy(K)"
and any (di,...,d,) € C(K), there is a bound k, on the cardinality of
Bomy({di,...,dy,}), and moreover by a case analysis we can identify defin-
ably, from properties of the d; the precise cardinality. There is a formula
X(21, ..., 2,) in L, expressing that ¢ is a good coloring of Bymy({z1, ..., 21 })
into 4 colours {1,2, 3,4} such that ¢(z;) = ¢o(7)
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We now bring in the good formula ¢(z,y). Let 1(y) express that for in-
finitely many Z such that ¢(z, y) holds, x(Z) holds. Then for K algebraically
closed, and @ € K, K = +(a) iff for generic d on D, over K, there is a good
colouring ¢ of Bym)({ds,...,d,}) such that c(d;) = co(i) for i = 1,...,n,
namely that Dj is safe for ¢y over K. O

We can now define T*.

Definition 3.10. T* is the L-theory expressing of (K, c), that:

(i) K is algebraically closed and (K,c) = T,

(11) whenever C' C (SLy)" is a good curve over K, c¢q : [n] — [4] and C is
safe for cy, then there are infinitely many d = (dy, ..., d,) € C(K) such that
co(i) = c(d;) fori=1,... ,n.

Remark 3.11. By Remark 3.8 and Lemma 3.9, the property (ii) in the
definition of T% above is expressed by an axiom schema, ranging over n and
good formulas ¢(Z,y) € L,.

Lemma 3.12. Any model (R,c) of T extends to a model (F,c) of T*. In
particular (T*)y =T and T* is consistent.

Proof. Fix (R, c) = T and as mentioned after Lemma 3.6 we may assume R =
K to be an algebraically closed field. We will fix a good curve C' C (SLg)"
over K and ¢ : [n] — [4], such that C is safe for ¢y, and find an extension
(F,c) of (K,c) and d = (dy,...,d,) € C(F) such that ¢(d;) = ¢o(i) for
i =1,...,n. We will also choose F' algebraically closed. So in (F,c) we
satisfy Axiom Schema (i) as well as a weaker form of one instance of the
Axiom Schema (ii) for T* (namely that there is at least one, rather than
infinitely many, d satisfying the required conditions). Extending (K ¢) to a
model of T™ is then a routine union of chains argument, including finding the
infinitely many d as above. Details are left to the reader.

Simply choose d = (dy,...,dy,) to be a point of C' in K generic over
K. By goodness of C, each d; € SLy(K) \ SLy(K). By assumption there
is a good colouring ¢’ of Byum)({di,...,d,}) such that ¢’(d;) = co(i) for
1=1,...,n. Let F' be the algebraic closure of the field generated by K and
d. And let X = SLy(F) \ SLy(K). Then X is a union of Fjy-orbits and
Bomy({di,...,d,}) C X. Hence, by Lemma 3.5, there is a good colouring
" of X with ¢”(d;) = ¢o(i) for i = 1,...,n. As X and SLy(K) are both
unions of Fis-orbits, ¢ U ¢” will be a good colouring of SLy(F') extending c.
Denote ¢ U ¢” by ¢, and we have produced our required extension (F,c’) of

(K c). O
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Lemma 3.13. Let (F1,c1), (Fy, c2) be Ny -saturated models of T*. Let I be the
collection of partial isomorphisms between (nonempty) countable substruc-
tures of Fy, Fy respectively which are of the form (Ki,c1|Ky), (K, co|K3)
where K1, Ky are algebraically closed fields. Then I has the back-and-forth
property.

Proof. So suppose we are given an isomorphism f between (K7, ci|K7) and
(Ko, co| K3). It is enough to extend f to g with domain L; O K where L is
algebraically closed and of transcendence degree 1 over K. By compactness,
it suffices to prove the following.

Claim. For every finite tuple dy,...,d, from SLy(L,) there are ey,... e, €
SLy(F3) such that the map ¢ which extends f and takes d; to e; for i =
1,...,n preserves quantifier-free L,-types, as well as satisfying cs(e;) = ¢1(d;)
fori=1,... n.

Proof of claim. We may clearly assume that di,...,d, ¢ SLy(K;) for i =
1,...,n. It follows that (di,...,d,) is a generic over Kj point of a good
curve Cy C SLY over Ki. Let ¢o : [n] — [4] be defined by co(i) = ¢1(d;).
Hence C is safe for ¢y over K;. As f is an isomorphism of algebraically
closed fields, the curve Cy = f(C}) is safe for ¢y over K. In particular Cy
is safe for cq over F,. However (Fy,cy) is a model of T, so Axiom Schema
(ii) implies that there are infinitely many e = (ey, ..., e,) € Cy(F») such that
co(i) = co(e;) for i = 1,...,n. By Ny-saturation of (Fy,ce) (and countability
of K3) we can find e = (ey,...,e,) € SLy(F») a generic over Ky point of Cy
such that ¢y(i) = ca(e;) for ¢ = 1,...,n. As the quantifier-free L,-type of e
over Kj is the image under f of the quantifiier-free L,-type of d over K, and
c1(d;) = co(i) = ca(e;) for i = 1,...,n we have proved the claim, and hence
the lemma. O

Corollary 3.14. (i) Let a = (ay : a < ), b = (by : a < 7) be tuples
of the same length v in models M, N of T*, where v is an ordinal. Then
tpa (@) = tpn(b) iff the map taking a, to b, for a < vy extends to an isomor-
phism between the substructures (K, c) of M and (K',¢) of N where K is
the algebraic closure of the field generated by a, and likewise for K' and b.
(i) In particular the completions of T* are determined by the isomorphism
types of the algebraic closure of Q equipped with an L-structure.

(111) T* is the model companion of T.

(v) In a model M of T*, the model theoretic algebraic closure of a subset A of
M coincides with the (field theoretic) algebraic closure of the field generated
by A.
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Proof. (i) is an immediate consequence of Lemma 3.13. And as said above
(ii) is a special case (for the empty tuples).

(iii) is another special case: let M C N be models of T*. Then the identity
map M — N is an isomorphism of L-structures whose underlying field is
algebraically closed, hence an elementary map by (i). So 7% is model com-
plete, hence by Lemma 3.12 is the model companion of 7.

(iv) In the light of (i) we have to check that if M is a saturated model of T™*
and (K, c) is a (small) substructure of M where K is algebraically closed as
a field, then for any a € M \ K, there are infinitely many realizations of the
type of a over K in the sense of the ambient model M of T*. Let K’ be the
(field-theoretic) algebraic closure in M of the field K (a). Then (K’,c|K') is
an L-structure whose isomorphism type determines its type by (i). Now we
build abstractly another “algebraically closed” model of T', as follows. Let K
be a large algebraically closed field containing K and let (a; : i < w) in K be
algebraically independent over K. Let K| be the (field-theoretic) algebraic
closure of K(a;). Fix field isomorphisms f; of K" with K over K which take
a to a;, and use these to copy the additional structure (the colouring) to
the K[. So each K is equipped with a good colouring ¢; extending ¢ on K.
Let F' be the field generated by J, K!. Notice that |J, SLo(K]) is a union
of Fip-orbits inside F' and |J; ¢; gives a good colouring of this union. Hence
(by Lemma 3.2 for example) we can extend |J; ¢; to a good colouring ¢ of
SLy(F) to get (F,c) |=T. Embed (F,¢) in a model N of 7%, and we see by
(i), that each a; has the same type over K in N, which also equals tp(a/K)
in M. [

3.4 Simplicity and the proof of Theorem 1.8.

Proposition 3.15. Fvery completion of T is simple, and nonforking inde-
pendence coincides with independence in the sense of the reduct to ACFy. In
particular the SU-rank of x = x is 1.

Proof. Fix a saturated model M of T*. We let ¢ denote the colouring on M.

Types will refer to types in M and tpacr to types in the reduct of M to the
field language. We will use Theorem 4.2 from [20] which says that it suffices to
prove that AC F-independence is a “notion of independence” which satisfies
the Independence Theorem over a model. The only nontrivial thing to check
in terms of being a notion of independence is the extension property, but it
follows easily from Corollary 3.14 (iv), or by our method of proof below of the
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Independence Theorem. So it remains to prove that AC' F-independence in M
satisfies the “Independence Theorem over a model”: namely suppose M is a
small elementary substructure of M and a, b, dy, d; are tuples such that a and
b are ACF independent over M, dy and a are AC'F' independent over M, d;
and b are AC F-independent over M, and tp(dy/M) = tp(di/M ), THEN there
is d realizing tp(do/M ) such that d is AC' F-independent from M, a,b over M.
Let Dy = acl(doM), Dy = acl(diM), A = acl(aM) and B = acl(bM). In
spite of the notation we will enumerate Dy, D;, A and B (and other sets
introduced below) in a consistent fashion (vis-a-vis, dy, dq, a, b) as tuples and
treat them as such. In particular Dy and D; will have the same type over M
in the structure M so also in the ACF reduct. By stationarity of this type
in the AC' F-reduct, if D realizes this AC F-type, AC F-independently from
AU B over M then D realizes tpacr(Do/A) as well as tpacr(D1/B).

Let o¢ be a (field) isomomorphism between acl(DyA) and acl(DA) over
A (again treating these consistently as tuples), and likewise o7 an isomor-
phism between acl(DyB) and acl(DB). Use the isomorphisms oy and oy to
transport the colourings of SLs(acl(DyA)) and SLy(acl(D;B)) (coming from
the structure M) to SLy(acl(DA)) and SLy(acl(DB)), which we call ¢y and
c1. Let F be the subfield of M generated by acl(AB), acl(DA) and acl(DB).
Note that the colouring ¢’ obtained by taking the union of c|acl(AB), ¢y and
1 is well-defined, as we have that D is AC F-independent from AB over each
of A, B, and A is AC' F-independent from B over D. Moreover this colouring
c is good, being defined on a union of connected components on each of
which it is good. Hence, as usual we can extend ¢ to a good colouring ¢’ of
SLy(F). By Lemma 3.13 we can embed (F,c") into M over acl(AB), by a
map o. Let D' = (D). So D’ is ACF-independent from AB over M.
Claim. D' realizes tp(Dy/A) U tp(D,/B).
Proof of claim. We let alg(C') denote the field-theoretic algebraic closure of
the subfield of M generated by C.
Then o o gy(alg(DyA)) = alg(D'A), and for every e € SLs(alg(DyA)) we
have that c(e) = ¢o(og(e)) = d(op(e)) = c(o o gp(e)). Thus we have an
isomorphism over A between

(alg(DoA), c|SLa(alg(DyA))) and (alg(D'A),c|SLa(alg(D'A))).

Hence by Corollary 3.14 (i), D’ realizes tp(Dy/A). By a similar proof, D’
realizes tp(D,/B).
This proves the claim as well as the proposition. O
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Proof of Theorem 1.8: existence of a non definably amenable group
definable in a simple theory.

This is precisely as mentioned in the introduction to Section 3: Fix a model
M = (K,c) of T* and let T** be the complete theory of M. Proposition
3.15 says that 7% is simple of SU-rank 1. Let G = SLy(K) as a group
definable in M and we use notation as in Section 3.1. Asssume for the sake
of contradiction that p is a left invariant Keisler measure on G. Fix an
arbitrary @ € G and i € [4]. Then by Axiom (i) (of T), G = a(i,1)7'C; U
a(i,2)7'C; Ua(i,3)"'C;. So by invariance of u, u(C;) > 1/3. On the other
hand the C; for i € [4] partition G, whereby u(G) > 4/3, a contradiction. [J

Proof of Corollary 1.9: existence of a nonamenable simple theory.
Let M = (K,c) be a saturated model of T*. Adjoin an “affine copy” of
SLy(K) as a new sort. Namely add a new sort S together with a regular
action of SLy(K) on S, to get a (saturated) structure M’. Any automorphism
invariant Keisler measure on the sort S would yield a translation invariant
Keisler measure on SLy(K), contradicting Theorem 1.8. O

Remark 3.16. Combining the proof of Theorem 1.8 with the setting of [2],
it should be possible to obtain the following generalization of Theorem 1.8.
Let T be a simple model complete theory eliminating 3*° quantifier, and G a
definable group containing a non-abelian free subgroup (as an abstract group,
not necessarily definable). Then there exists a simple theory T* expanding T

so that forking in T* coincides with forking in the reduct T  (in particular,
T* has the same SU-rank as T') and G is not definably amenable in T*.

4 Paradoxical decompositions and additional
results.

Lying behind the second example (and also in a sense the first example)
is the theory of “definable paradoxical decompositions” from [12], giving
necessary and sufficient conditions for a group G definable in a structure M
to be definably amenable. When the structure M is a model of set theory
and G is just a group, or just when all subsets of G are definable, then we
are in the context of amenability of a discrete group G, and where there
are classical results giving equivalent conditions. In any case the theory
of definable paradoxical decompositions gives some interesting invariants of
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non definably amenable groups and we can ask about the invariants of the
example in Section 3. This and various other things are discussed in this
final section.

4.1 Definable paradoxical decompositions

Let us first recall the (classical) notion of a paradozical decomposition of a
discrete or abstract group GG. We will abbreviate this notion as ¢pd for “clas-
sical paradoxical decomposition”. A cpd for G consists of pairwise disjoint
subsets Xy,..., X, Y1,..., Y, of Gand ¢1,...,9m, h1,...,h, € G such that
G is the union of the g;X; and is also the union of the h;Y;. Recall that the
discrete group G is said to be amenable if there is a (left) translation invari-
ant finitely additive probability measure on the collection (Boolean algebra)
of all subsets of G. The well-known theorem of Tarski is:

Fact 4.1. Let G a be group. Then G is amenable if and only if G has no
paradoxical decomposition.

Remark 4.2. Clearly after replacing the X;,Y; by suitable subsets, we can
assume that each of the (¢;X;); and (h;Y;); form partitions of G.

One could ask whether for a definable group G (essentially a group
equipped with a certain Boolean algebra of subsets, closed under left trans-
lation), we have the identical result: G is definably amenable iff G has a
definable cpd, namely where the X;,Y; are definable? We expect the answer
is no. In any case Tarski’s proof of “nonamenability implies the existence of
a cpd” is nonconstructive and does not go over immediately to a definable
version.

So in [12] there is another version of paradoxical decomposition which does
give a characterization of definable amenability, remaining in the Boolean
algebra of definable sets.

We will briefly describe this here. We fix a definable group G in a structure
M. Definable will mean with parameters.

By a (m-)cycle (for m > 0) we mean a formal sum »_,_,  X; of defin-
able subsets X; of G. If all the X, are the same we could write this formal
sum as mX;. We can add such cycles in the obvious way to get the “free
abelian monoid” generated by the definable subsets of G. And any definable
subset X of G (including G itself) is of course a (1-)cycle.

28



If X =>._ , Y; are two cycles, then by a
definable piecewise translation f from X to Y we mean a map f from the
formal disjoint union X; L. ..U X, to the formal disjoint union Y; LI... Y,
for which there is a partition of each X; into definable subsets X;1,..., X,
and for each i and ¢ < n;, an element g;; of G such that the restriction f|X;
of f to X;; is just left translation by g¢;;, and g¢;; X;; is a subset of one of the
Y;’s. By a definable map from X to Y we mean just the same thing except
that translation by g;; on Xj; is replaced by a definable function with domain
X+ and image contained in some Yj.

Such a definable piecewise translation (or definable map) f is said to be
ingective if it is injective as a map between formal disjoint unions. So for
example, in the case of definable piecewise translations this would mean that
for each 7,9 < m and t < n;,t’ < ny if f takes both X;; and X, into the
same Yj, then for x € X;; and 2/ € Xy, f(x) = f(2') implies that i = ¢/,
t=t and x = 2.

We write X < Y if there is an injective piecewise definable translation
f from X to Y. Note that < is reflexive and transitive. Also X < W and
Y < Z implies X +Y < W + Z.

Definition 4.3. By a definable paradoxical decomposition (dpd) of the de-
finable group G we mean an injective definable piecewise translation from
G+Y toY for some cycle Y.

The following is proved in [12] (Proposition 5.4).
Fact 4.4. G is definably amenable if and only if G does not have a dpd.

Lemma 4.5. Suppose G +Y <Y where Y = ) ._, Y, (with the Y;
definable). Then o

(1) mG+Y <Y forallm>1,

(2)2Y <Y,

(3) (n+1)G < nG.

Proof. (1) By induction: G+Y <Y implies (m+1)G+Y =mG+G+Y <
mG+Y <Y.

(2)Y+Y <nG+Y <Y (by taking n = m in part (1)).

(3) (141G < (n+ DG +Y <V (by (1)) = Sy Vi € Sy -
nG. [

Corollary 4.6. G has a dpd iff (n + 1)G < nG for somen > 1.
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On the other hand:

Lemma 4.7. G has a definable cpd (a cpd where the X; and Y; are definable)
if and only if 2G < G (if and only if (n + 1)G < nG for all n).

Proof. Suppose G =J,_, _ ,, 9:Xi = szl ..... . h;Y; witnesses a definable cpd.
As mentioned in Remark 4.2, by replacing the X; and Y} by suitable subsets
we can assume pairwise disjointness of the ¢;X;, as well as pairwise disjoint-
ness of the h;Yj, and we get that G+ G <J; X;ulJ;Y; <G.

The converse works the same way: if G + G < @G, then we have two
partitions of G, as |J, X; and Uj Y; as well as g;, hj € G, such that the sets

g, ' X, h;le are all pairwise disjoint. O]

Hence the question of whether a non definably amenable group G has a
definable cpd is the same as asking whether 2G' < G. (Of course when G is
equipped with predicates for all subsets then this has a positive answer, by
Tarski’s theorem.) We expect it has a negative answer in general.

Remark 4.8. Let G be the definable group produced in Section 3 above. Then
4G < 3G.

Proof. We have (with notation as in Section 3), that G = [J;¢p3 a(i, ) 1C;
for each ¢ € [4]. By cutting down each C; we may assume that for each i, the
a(i, ) 'C; are disjoint. (Of course the C;’s remain disjoint although their
union may no longer equal G.)

Now we obtain an injective piecewise definable translation from 4G to
3G by taking a(i, j)7*C; in the ith copy of G to C; in the jth copy of G, for
i€ 4], 7€ (3] O

It is likely that the generic nature of the example from Section 3 implies
that n = 3 is least such that (n + 1)G < nG.

In the rest of this subsection we will explain how to modify the example
so as to produce 2G < G also in an ambient SU-rank 1 theory. So this will be
in a sense, a “better” example, with respect to the invariant “least possible
n” where n is as in Corollary 4.6. Thus, in this modified example there is a
definable ¢pd and we will see below that the “definable Tarski number” (the
least sum m + n that can appear in a definable ¢pd of G) equals 6 which
is the least possible for non definably amenable groups definable in simple
theories.
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We do a similar thing to Section 3, but with Fg in place of Fio and six
colours in place of four colours. We choose a; for i = 1,...,6 to be elements
of SLy(Z) which are free generators of a copy of Fg inside SLs(Z). For
the universal theory 7" in Section 3.1 we work in the language of rings with
6 additional 4-ary predicates C',...,Cs and the axioms say that R is an
integral domain of characteristic 0, that C1,...,Cs partition SLy(R), and
SLy(R) = a;'CiUay'CoUaz'Cs = a;'CyUaz 'Cs U ag ' Ce.

Note that this will already give a definable epd of G = SLy(R) and so
2G < G by Lemma 4.7.

We have to construct again the model companion 7™ of T" and show it to
be simple (of SU-rank 1).

The main thing is to modify the combinatorial lemmas in Section 3.2. So
now we have a free action of Fg on a set X, and for Xy C X, by a good
colouring ¢ : Xy — [6] we mean that for all z € X
(i) if a; - x € X for all i = 1,2,3 then ¢(a; - ) = i for some ¢ = 1, 2,3, and
(ii) if a; - x € X, for all j =4,5,6 then c(a; - z) = j for some j = 4,5, 6.

Again we have the notions of distance, connectedness etc., with respect
to the relevant Cayley graph on X.,

New version of Lemma 3.2: extending a good colouring of X, to a
good colouring of X when X, is connected.

Proof. (By induction on n.) Suppose we have extended the good colouring
¢ of Xy to a good colouring ¢, of B,(Xy). Suppose i € [6], and y = a; - x is
in B,11(Xo) \ Bn(Xp) for some z € B, (Xj), then define ¢,;;(y) = ¢. This is
well-defined by uniqueness of paths. And if y € B,,11(Xo) \ Bn(Xp) is not of
this form, define ¢, (y) arbitrarily.

Again we have to check that ¢,1 is a good colouring of B,,1(Xp). Sup-
pose € B,y1(Xo) and a;-x € B, 1(Xo) foralli =1,2,3. If a;-z € B, (X))
for all i = 1,2, 3, then connectedness of B,,(X) implies that also z € B,,(Xj).
So as ¢, is a good colouring of B,(Xj), and ¢,y extends ¢,, Axiom (i) is
satisfied at x. Otherwise a; - € By, 11(Xo) \ Bn(Xo) for some ¢ = 1,2,3 and
so x € B,(Xp), hence ¢,41(a; - x) =1i.

Exactly the same holds for = € B,,;1(Xy) for which a; -z € B,,11(Xy) for
all 1 =4,5,6.

So, as in Lemma 3.2, we have extended the good colouring of X, to a
good colouring of X.

New version of Lemma 3.3
We have Cjy, C; connected subsets of X with 3 < d(Cp,C}) < 0o and C' is
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the smallest connected set containing Co U C7. And we want to extend a
good colouring ¢y of Cy U C to a good colouring ¢ of C. As in Lemma 3.3
we reduce to the case of a path (u,v,y,z) from u € Cy to z € C; where
v,y ¢ CoUC,. If v = a;-u for some i € [6], put ¢(v) = i, and define it
arbitrarily otherwise. Likewise if y = a; - z for some i € [6] put ¢(y) = ¢, and
define it arbitrarily otherwise. Again we check that c is well-defined and that
the good colouring axioms are satisfied.

Lemmas 3.4 and 3.5 adapt (formally) word for word to the new context.
As well as the definition of the model companion 7™ in Section 3.3 and the
simplicity of (all completions of) 7™ in Section 3.4.

So the conclusion is:

Proposition 4.9. There is a definable group G in a model of a simple theory
such that non definable amenability of G s witnessed by a definable cpd,
equivalently such that 2G < G.

A final remark in this section concerns the numbers m,n witnessing a
definable cpd, namely the existence of pairwise disjoint definable subsets
X, ., X, Y1,...,Y, of G and ¢1,...,9m,h1,...,h, € G such that G =
Ug; X; = Uh;Y;. Following classical terminology, for a definable group G
which is not definably amenable, a least possible value of m + n that occurs
in a definable c¢pd of G can be called the definable Tarski number of G. (And
if G has no definable cpd we will say that its definable Tarski number is co.)

Proposition 4.10. Suppose G is a definable group in a structure M and G
has a definable cpd with attached numbers m,n. If either m = 2 orn = 2
then Th(M) has the strict order property. In particular, the definable Tarski
number of a non definably amenable group definable in a simple theory is at
least 6.

Proof. So we assume that G is the disjoint union of nonempty X, X5, and Y
and that G = ¢ X7 U o X5. Then G is also the disjoint union of g1 X7, ¢1X5
and ¢g1Y. Replacing Xy, X5, Y by their g;-translates, and changing notation
there is ¢ € G such that X; U gXy, = G. So Xs is a proper subset of gXos.
Iterating we have a strictly increasing sequence X, C g X5 C ¢?°X, C ¢°X5 C
..., vielding the strict order property. O

Thus in the modified example above, the definable Tarski number is 6 (as
there is a definable ¢pd with n = m = 3). So in terms of definable Tarski
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number, this is the simplest possible example of a non definably amenable
goup definable in a simple theory.

4.2 Small theories

The aim here is to give some positive results concerning definable amenability
for groups definable in (models of) small theories 7', as well as some related
results around amenability of small theories.

Recall that a complete countable theory T is said to be small if for all
n € N> the type space S,,(T) is countable. This is equivalent to saying that
for any model M of T and finite subset A of M, the type space Si(A) is
countable.

We could prove the definable amenability of definable groups in small
theories directly from Fact 4.4. But we can slightly generalize the set-up so
as to obtain other corollaries.

Our general context consists of a group G acting on a set S and where we
are given a Boolean algebra B of subsets of S which is closed under the action
of G (in particular () and S are elements of B). We will call B a G-invariant
Boolean algebra of subsets of S.

Replacing “definable” by “in B”, we can copy the notions of (m-) cycles
and B-piecewise translations from Section 4.1 to the present context. We can
also introduce the notion of B-map f from a cycle »_; X; to a cycle » ;Y.
This will be a map from the formal disjoint union ||, X; to the formal disjoint
union | | ;Y; such that for every ¢ and B € B with B C X;, and for every
J, f(B)NY; € B. Note that this makes sense without any G-action. Note
also that any B-piecewise translation is a B-map, and that injectivity makes
sense for B-maps.

Observe that both the class of B-piecewise translations and the class of
B-maps are closed under composition . As before we write X <Y if there is
an injective B-piecewise translation from X to Y.

By a B-paradozical decomposition (Bpd) we mean an injective B-piecewise
translation from S +Y to Y for some cycle Y. Also we say that the G-set S
is B-amenable if there is a G-invariant finitely additive probability measure
on B. The proof of Fact 4.4 in [12] adapts to yield:

Proposition 4.11. The G-set S is B-amenable if and only if S has no B-
paradoxical decomposition.
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Lemma 4.5 and Corollary 4.6 remain valid in the more general context
of B-piecewise translations. Actually, we use this generalization of Lemma
4.5(2) in the proof of 4.13 below.

We will call a Boolean algebra B small if its Stone space is countable, in
other words there are only countably many ultrafilters on B.

Let us introduce some notation for cycles which will be used in a proof
below. The context here and in the next lemma is simply a Boolean algebra
B of subsets of aset S. Let X =>"._,  X,and Z=),_,  Z becycles

..........

(so n is the same in both). We also fix the ordering of the X; and Z;.

(1) X C Z means that X; C Z; for each i,
(2) X N Z = () means that X; N Z; = () for each i, and
(3) X # () means that some X; is nonempty.

If moreover f is a B-map from X to Z, then by the image f(X) of X under
f we mean the cycle ). W; where W; is f(X;U...UX,)NZ; which we note
is in B.

Lemma 4.12. Suppose that Y is a nonempty cycle and fy, f1 are injective
B-maps from'Y to'Y such that fo(Y)N f1(Y) =0. Then B is not small.

Proof. The proof goes by induction on the length of the cycle Y. First
suppose that Y is a l-cycle, i.e. Y isin B. Forn € 2<% let f, : Y = Y
be given by: fj is the identity, and f, = fy0) © foa) o ... o fyk-1) when
dom(n) ={0,...,k — 1} with £ > 0. And let Y = f,(Y). Then the Y are
nonempty subsets of Y which are in B (as the f; are B maps), Y7 D Y7 when
7 extends 7, and Y NY"™ = @ for all n. Forn € 2% let 3, = {Y"" : p < w}.
Then each ¥, extends to an ultrafilter p, on B and p, # p for n # 7 € 2.

When Y is an n-cycle > ._,; .nYifor n> 11t is a bit more complicated.
With the notation introduced a’bove, define the f, : Y — Y in the same way
for n € 2<%, and define Y7 = f,(Y), and now define Y;" to be f,(Y1 U...U
Y,) NY.

Again the sets Y;” are in B and we have, for all n € 2<¢:
WY1 =%, Y
(2) Y7 #£0,
(3) Y" C Y™ whenever n extends 7, and
(4) Yy =§.

Note that in particular the Y7 satisfy both (3) and (4). If they also satisfy
(2) then we get continuum many ultrafilters on B as in the n = 1 case. Oth-

erwise there is 7 such that Y7 = () and therefore so is Y;7 for all 7/ extending
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n. Consider the tree of cycles (Y)); where Y/ =>"._, Y. These are
(n—1)-cycles and so by the inductive hypothesis, we obtain continuum many

ultrafilters on B. O

Proposition 4.13. Let S be a G-set with a G-invariant Boolean algebra B
of subsets. Suppose that for every finitely generated subgroup Go of G and
finite subset By of B the Boolean algebra (GoBy) generated by all translates
of elements of By by elements of Gy is small. Then S is B-amenable. In
particular if B is small, S is B-amenable.

Proof. If S is not B-amenable then it is witnessed by S 4+ Y <Y for some
nonempty cycle Y. By the obvious generalization of Lemma 4.5(2) mentioned
above, we get 2Y <Y so we have injective B-piecewise translations fy: Y —
Y and f; : Y — Y such that fo(Y) N f1(Y) = 0. Let Gy be the subgroup of
G generated by the finitely many elements of G appearing in the translations
in fo, f1, and let By be the finite collection of elements of B which appear as
the subsets of the elements of the cycle Y which are translated in the maps
fo, f1- Then fo and f; are (GoBy)-maps, so (GoBBy) is not small by Lemma
4.12. Hence, B is not small. ]

Here are some applications:

Corollary 4.14. Suppose that G is a definable group in a model M of a
small theory T'. Then G is definably amenable.

Proof. First as T remains small after naming finitely many parameters we
may assume G is (-definable. Remember that definable amenability of G
refers to there being a translation invariant Keisler measure on the family
of all definable, with parameters in M, subsets of G. We apply Proposition
4.13 to the case S = GG and B the collection of definable subsets of G. If B,
is a finite subset of B and Gy is a finitely generated subgroup of GG then the
elements of the Boolean algebra (GoBy) are all definable over a fixed finite
set A of parameters. So by smallness of 7' this Boolean algebra is small, and
we can apply Proposition 4.13. O

Proposition 4.13 also gives another proof of Fact 1.7 above:

Corollary 4.15. Any group G definable in a model M of a stable theory is
definably amenable.
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Proof. By Fact 4.4 we may assume that T is countable and M is count-
able. Then for any finite collection Xi,..., X, of definable subsets of G,
the Boolean algebra generated by the set of all left G-translates of the X is
small. (For any finite collection of L-formulas ¢1(z,v1), ..., dn(x, y,) where
ranges over G and the y; are arbitrary tuples, the Boolean algebra generated
by instances ¢;(x, a;) of the ¢;, with a; in a given countable model is small.)
So we can apply Proposition 4.13 again. O

One could unify the two previous corollaries as follows. Let G be a defin-
able group. Suppose that for every finite set A = {¢1(x,41), ..., ¢n(x,yn)} of
L-formulas, and finite set A of parameters, the Boolean algebra of subsets of
G which are both A-definable and A-definable, is small. Then G is definably
amenable.

It is natural to ask whether every complete countable small theory T is
amenable, as defined in the introduction. However the theory of the dense
circular ordering is w-categorical, with a unique 1-type over (), but there is no
automorphism invariant Keisler measure on the universe x = x, as explained
in Remark 2.2 of [10], as () is not an extension base.

But we point out that a rather weaker property follows from Proposition
4.13:

(%) For every (-definable set D there is a global Keisler measure concentrated
on D which is invariant under definable automorphisms.

We may want to call a complete theory T weakly amenable if it satisfies (x),
but this would be an unnecessary introduction of new terminology. In any
case:

Corollary 4.16. Suppose that the countable complete theory T is small.
Then T satisfies ().

Proof. Let D be a (-definable set in a saturated model M of T'. Let Aut gz (M)
be the group of automorphisms of M which are definable (with parameters)
in M. Apply Proposition 4.13 to the situation where G = Autg;(M), S = D,
and B is the Boolean algebra of all definable (with parameters) subsets of D.
Then by smallness the assumption of Proposition 4.13 is satisfied, so we get

(). O

Remark 4.17. (i) Corollary 4.16 implies Corollary 4.14 via the usual trick
of adding a new affine sort.
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(i1) We obtain a characterization of when an (O-definable set D satisfies (x),
by the nonexistence of an appropriate paradozical decomposition. This is
by Proposition 4.11 applied to G = Autge;(M), S = D and B the Boolean
algebra of definable subsets of D.

(iii) Similarly taking G = Aut(M), S = D and B as in (ii) we obtain a
characterization of when there is an automorphism invariant global Keisler
measure on D.

Finally we give an application of the material above (Lemma 4.12) to
prove the nontriviality of graded Grothendieck rings of small theories. We
first recall the usual Grothendieck rings ([21]) attached to a structure M
which may be many sorted, although we give a slightly different presentation.
We will assume that some sort has at least 2 elements. Let Def(M) be the
collection of all definable (with parameters from M) subsets of products of
the basic sorts of M. Let K(M) be the free abelian monoid generated by
Def(M). We can view the elements of K (M) as cycles > ., X, where
the X; are definable sets. As earlier we have the notion of a definable map
between cycles and in particular a definable bijection between cycles. Let
~ be the equivalence relation on K (M) of being in definable bijection, for a
cycle D let [D] be its ~-equivalence class, and let K..,;(M) be the quotient
K(M)/ ~. In this context one sees that every cycle is ~-equivalent to a
definable set (in an appropriate product of sorts), whereby Ke.i(M) = {[D] :
D € Def(M)}, and is moreover an abelian monoid with 0 = [}]. It also has a
unital commutative semiring structure by defining [D;]-[Dsy] = [D; x Ds] and
taking the multiplicative identity to be [{a}] for any singleton in any sort.
Finally we put an equivalence relation ~q on Kepi(M): [D1] ~¢ [Ds] if there
is [ D] such that [Dy]+[D] = [Dy]+[D]. We denote the quotient by K’ ..(M),
a cancellative, unital, commutative semiring. We let [D]y denote the ~y-
class of [D]. Then adding formal additive inverses yields a canonical unital
commutative ring Ko(M) extending K’ (M), called the Grothendieck ring

of the structiure M. The elements of Ky(M) can be written in the form
[Dl]g — [DQ]O, for Dl, DQ € Def(M)

Example 4.18. Let M = (N,s), where s is the successor function. Then
Th(M) is small, but Ko(M) is trivial.

Proof. The function s gives a definable bijection from N to N\ {0} whereby
[{0}]o + [N]p = [N]p in Ko(M), hence [{0}]o is the zero element of Ky(M).
As it is also the 1 of Ky(M), Ko(M) is trivial. O
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However by working with graded Grothendieck rings we get a rather dif-
ferent situation. Again we fix a structure M, maybe many-sorted, but we
define Ko(S) for S a sort, or product of sorts, and define KJ"**(M) to be
@D Ko(S). Here are the details. First fix a sort S (or product of sorts).
Start with Def(S) the Boolean algebra of definable (with parameters) sub-
sets of S. Again define K(S) to be collection of cycles of formal sums of
elements of Def(S), and ~ the equivalence relation on K () of being in de-
finable bijection. Let Kepmi(S) be the quotient K (S)/ ~. It is no longer true
that every element of K.pi(S) is of the form [D] for D € Def(S). Again
form K.,.(S), and Ky(S) whose elements are of the form [Di]y — [D2]o
for Dy, Dy € Keemi(S). Now Ky(S) is just a commutative group with no
ring structure. We define K™*(M) to be the direct sum @4 Ko(S) with its
abelian group structure, but also with a commutative ring structure obtained
as follows: for Dy € Def(Sy) and Dy € Def(Ss), let [D1]o-[D2]o = [D1 % Dao
in Ko(S; x S2). And extend it bilinearly to - from Ky(S1) x Ky(S2) to
K()(Sl X SQ)

Proposition 4.19. Let M be any structure in a countable language such that
Th(M) is small. Then

(1) For every sort S, the group (Z,+) embeds into the group Ky(S), in par-
ticular Ko(S) is nontrivial,

(2) The ideal tZ[t] in the polynomial ring Z[t] embeds in K" (M).

Proof. (1) Consider the homomorphism from (Z, +) to Ko(S) which takes 1
to [S]o. To show it is an embedding we have only to show that for each n > 1,
n[S]p # 0. Otherwise there is a cycle Y € K(S) such that n[S] + [Y] = [Y],
yielding a definable injection from S + Y to Y, and thus from Y + Y to
Y by the obvious variant of Lemma 4.5(2). So we have definable injections
fo:Y =5 Yoand f; : Y — Y with fo(Y)N fi(Y) = 0. Let B be the
Boolean algebra of subsets of S which are definable over the fixed finite set
of parameters over which fy, fi and the summands of Y are defined. Then
fo, f1 are B-maps. By Lemma 4.12, B is not small, hence Th(M) is not
small, a contradiction.

(2) Given a sort S, we see from the proof of (1) that [S], generates a subring
isomorphic to tZ[t]. O

Note that we obtain a characterization of when Kg™ /(M) is trivial. It is
precisely that for every sort S and definable subset D of S there is a cycle
Y € K(S) such that D+Y ~ Y.
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On the other hand, triviality of the Grothendieck ring Ky (M) is equivalent
to there being a definable set D and d € D such that D and D \ {d} are in
definable bijection.

A final remark is that the definition of K" **(M) depends on the choice
of sorts S. We could rechoose all definable sets to be sorts, in which case
the new graded Grothendieck ring will be bigger and nontrivial, because for
a singleton sort S, all cycles on S are finite sums of singletons and two such
cycles are ~-equivalent iff they have the same cardinality.
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