Theories with NIP, List 1

We work in a monster model \mathfrak{C} of a complete theory T.

Problem 1. Let T be the theory of equality with an infinite model. Consider $\varphi(x; y_1, y_2, y_3) := (x = y_1 \lor x = y_2 \lor x = y_3).$ Prove that VC-dim $(\varphi) \neq$ VC-dim $(\varphi^{\text{opp}}).$

Problem 2. Let $\varphi(x; y)$ be a NIP formula. Prove that the set $\{\operatorname{alt}(\varphi(x; b), I) : |b| =$ |y| and I is an indiscernible sequence is bounded by some natural number. Comment. Thus, $\operatorname{alt}(\varphi) := \max\{\operatorname{alt}(\varphi(x; b), I) : |b| = |y| \text{ and } I \text{ is an indiscernible sequence}\}$ makes sense.

Problem 3. Let $T = \text{Th}((M, \leq))$, where (M, \leq) is an arbitrary linear order. (i) Let $a = (a_i), b = (b_i), c = (c_k)$ be finite tuples, where c is increasing. Assume there are no i, j such that a_i and b_j are in the same open interval from the list: $(-\infty, c_0), (c_0, c_1), \ldots$ Show that $\operatorname{tp}(a/c) \cup \operatorname{tp}(b/c) \vdash \operatorname{tp}(ab/c)$. (ii) Prove that T has NIP.

Problem 4. Let G be a group \emptyset -definable in \mathfrak{C} . Define G^0 as the smallest typedefinable, bounded index subgroup of G which is an intersection of definable subgroups of finite index, if it exists; otherwise we say that G^0 does not exist.

(i) Show that $[G: G_A^0] \leq 2^{|T|+|A|}$ for any (small) $A \subset \mathfrak{C}$. (ii) Show that if G^0 exists, then $G^0 = \bigcap \{G_A^0 : A \subset \mathfrak{C}\}$.

(iii) Prove that G^0 exists iff $\bigcap \{G^0_A : A \subset \mathfrak{C}\}$ has bounded index. (iv) Prove that G^0 exists iff for every $A \subset \mathfrak{C}$, $G^0_A = G^0_{\emptyset}$. Hence, if G^0 exists, then $G^0 = G^0_{\emptyset}.$

Problem 5. Assume T has NIP, and let G be a \emptyset -definable group. Prove that G^0 exists.

Problem 6. Prove that each global type finitely satisfiable in A is invariant over A.

Problem 7. Let $\mathfrak{C}^* \succ \mathfrak{C}$ be a bigger monster model and $p \in S(\mathfrak{C})$ be a type invariant over A.

(i) Prove that $p|\mathfrak{C}^*$ is a unique extension of p to an A-invariant type in $S(\mathfrak{C}^*)$.

(ii) Prove that $p|\mathfrak{C}^*$ does not depend on the choice of A over which p is invariant.

Problem 8. Prove that if a global, A-invariant type p is finitely satisfiable in some small set, then it is finitely satisfiable in any model $M \prec \mathfrak{C}$ containing A.

Problem 9. Prove that if $p, q \in S(\mathfrak{C})$ are A-invariant, then $p \otimes q$ is also A-invariant.

Problem 10. Prove that \otimes is associative.