Theories with NIP, List 1

We work in a monster model \mathfrak{C} of a complete theory T.
Problem 1. Let T be the theory of equality with an infinite model. Consider $\varphi\left(x ; y_{1}, y_{2}, y_{3}\right):=\left(x=y_{1} \vee x=y_{2} \vee x=y_{3}\right)$. Prove that $\operatorname{VC}-\operatorname{dim}(\varphi) \neq \mathrm{VC}-\operatorname{dim}\left(\varphi^{\mathrm{opp}}\right)$.

Problem 2. Let $\varphi(x ; y)$ be a NIP formula. Prove that the set $\{\operatorname{alt}(\varphi(x ; b), I):|b|=$ $|y|$ and I is an indiscernible sequence $\}$ is bounded by some natural number.
Comment. Thus, $\operatorname{alt}(\varphi):=\max \{\operatorname{alt}(\varphi(x ; b), I):|b|=|y|$ and I is an indiscernible sequence $\}$ makes sense.

Problem 3. Let $T=\operatorname{Th}((M, \leq))$, where (M, \leq) is an arbitrary linear order.
(i) Let $a=\left(a_{i}\right), b=\left(b_{j}\right), c=\left(c_{k}\right)$ be finite tuples, where c is increasing. Assume there are no i, j such that a_{i} and b_{j} are in the same open interval from the list: $\left(-\infty, c_{0}\right),\left(c_{0}, c_{1}\right), \ldots$. Show that $\operatorname{tp}(a / c) \cup \operatorname{tp}(b / c) \vdash \operatorname{tp}(a b / c)$.
(ii) Prove that T has NIP.

Problem 4. Let G be a group \emptyset-definable in \mathfrak{C}. Define G^{0} as the smallest typedefinable, bounded index subgroup of G which is an intersection of definable subgroups of finite index, if it exists; otherwise we say that G^{0} does not exist.
(i) Show that $\left[G: G_{A}^{0}\right] \leq 2^{|T|+|A|}$ for any (small) $A \subset \mathfrak{C}$.
(ii) Show that if G^{0} exists, then $G^{0}=\bigcap\left\{G_{A}^{0}: A \subset \mathfrak{C}\right\}$.
(iii) Prove that G^{0} exists iff $\bigcap\left\{G_{A}^{0}: A \subset \mathfrak{C}\right\}$ has bounded index.
(iv) Prove that G^{0} exists iff for every $A \subset \mathfrak{C}, G_{A}^{0}=G_{\emptyset}^{0}$. Hence, if G^{0} exists, then $G^{0}=G_{\emptyset}^{0}$.

Problem 5. Assume T has NIP, and let G be a \emptyset-definable group. Prove that G^{0} exists.

Problem 6. Prove that each global type finitely satisfiable in A is invariant over A.
Problem 7. Let $\mathfrak{C}^{*} \succ \mathfrak{C}$ be a bigger monster model and $p \in S(\mathfrak{C})$ be a type invariant over A.
(i) Prove that $p \mid \mathfrak{C}^{*}$ is a unique extension of p to an A-invariant type in $S\left(\mathfrak{C}^{*}\right)$.
(ii) Prove that $p \mid \mathfrak{C}^{*}$ does not depend on the choice of A over which p is invariant.

Problem 8. Prove that if a global, A-invariant type p is finitely satisfiable in some small set, then it is finitely satisfiable in any model $M \prec \mathfrak{C}$ containing A.

Problem 9. Prove that if $p, q \in S(\mathfrak{C})$ are A-invariant, then $p \otimes q$ is also A-invariant.
Problem 10. Prove that \otimes is associative.

