Theories with NIP. List 13.

We work in a monster model \mathfrak{C} of a complete theory T; $A \subseteq \mathfrak{C}$ is small; $G = G(\mathfrak{C})$ will denote a type-definable (over \emptyset) group.

Problem 1. Prove that G_A^0 , G_A^{00} , and G_A^{000} are all normal subgroups of G.

Problem 2. Prove that $G_A^{000} = \langle ab^{-1} : a \equiv^L_A b \rangle$.

Problem 3. Let H be an A-invariant, bounded index, normal subgroup of G. Prove that for any other monster model \mathfrak{C}' which contains A as a small set we have $G(\mathfrak{C}')/H(\mathfrak{C}') \cong G/H$.

Problem 4. Let \mathfrak{C}' be a monster model which contains A as a small. Prove that $G_A^*(\mathfrak{C}') = G(\mathfrak{C}')_A^*$, where $* \in \{0, 00, 000\}$. Conclude that G/G_A^* does not depend on the choice of the monster model.

Problem 5. For $* \in \{0, 00, 000\}$ prove that TFAE:

(i) G^* exists;

(ii) $\bigcap_{A \subseteq \mathfrak{C} \text{ small}} G_A^*$ has bounded index;

(iii) $G_A^* = G_{\emptyset}^*$ for all small $A \subseteq \mathfrak{C}$.

Deduce that the existence of G^{000} implies the existence of G^{00} implies the existence of G^{0}

Problem 6. Prove that an A-type-definable subgroup H of G is the intersection of some family of groups type-definable over countable sets.

Problem 7. Let $* \in \{0, 00, 000\}$. Prove that if G^* exists, then it exists in any other monster model \mathfrak{C}' and $G^*(\mathfrak{C}') = G(\mathfrak{C}')^*$.

Problem 8. Prove that if T is stable, then $G^0 = G^{00} = G^{000}$. Comment. The existence of G^0 was proved in the "Stable groups" course; on List 1 of this course we generalized it to NIP theories. To prove the above equalities, use stabilizers.

Problem 9. Prove the fact stated on p.74 of the notes. *Hint. Use Pettis theorem.*

Problem 10. Recall that $X_{\equiv_A} := \{ab^{-1} : a \equiv_A b\}$. Prove that for any $c \in G$ we have $cX_{\equiv_A}c^{-1} \subseteq (X_{\equiv_A})^2$.