Theories with NIP. List 4.

We work in a monster model \mathfrak{C} of a complete theory T.
Problem 1. Consider condintions:
(1) $\varphi(x, y)$ has IP;
(2) for some $n \in \mathbb{N} \backslash\{0\}$ and some $\eta \in 2^{n}$ the formula $\bigwedge_{i=0}^{n-1} \varphi\left(x, y_{i}\right)^{\eta(i)}$ has SOP.

Prove that $(1) \vee(2)$ implies that $\varphi(x, y)$ is unstable.
Problem 2. (i) Let $M:=(\mathbb{R}, \leq) \models D L O=: T$. Show that all types in $S_{n}(\mathbb{R})$ are definable (equivalently, \mathbb{R} is weakly stably embedded).
(ii) Prove that, in fact, \mathbb{R} is stably embedded.

Problem 3. Let D be a 0 -definable set. Prove that D is stably embedded iff $D_{\text {ind(}(\text {) }}$ has the same definable sets as $D_{\operatorname{ind}(B)}$ for any B.

Problem 4. (i) Let $M \prec \mathfrak{C}$ and $\widehat{M} \succ M^{S h}$ with L-reduct $\widehat{M} \upharpoonright_{L} \prec \mathfrak{C}$. Prove that, up to a renaming of the language, $\widehat{M}=\left(\left.\widehat{M}\right|_{L}\right)_{\operatorname{ind}(B)}$ for some small $B \subseteq \mathfrak{C}$.
(ii) Give an example showing that \widehat{M} may be a proper reduct of $\left(\widehat{M} \upharpoonright_{L}\right)^{S h}$.

Problem 5. (i) Show that if $M \prec N$, where N is $|M|^{+}$-saturated, then for every k the family $\left\{\varphi(M, b): \varphi\left(x_{1}, \ldots, x_{k}, y\right) \in L, b \subseteq N,|b|=|y|\right\}$ is exactly the collection of all externally definable subsets of M.
(ii) Let $N \succ M$ be $|M|^{+}$-saturated. Prove that $S_{k}^{q f}\left(M^{S h}\right) \approx S_{e x t, k}(M) \approx S_{M, k}(N)$

Problem 6. Let $A \subseteq M \prec \mathfrak{C}$, where M is $|A|^{+}$-saturated. Prove that A is stably embedded iff for every $\left(M^{\prime}, A^{\prime}\right) \succ(M, A)$ and every tuple m from M^{\prime} the type $\operatorname{tp}_{L}\left(m / A^{\prime}\right)$ is definable.

Problem 7. Let $I \subseteq M$ be an indiscernible sequence, and let $\left(M^{\prime}, I^{\prime}\right) \succ(M, I)$. Prove that there is an ordering on I^{\prime} making it into an indiscernible sequence.

Problem 8. Let $\varphi(x, y) \in L, A \subseteq M \prec \mathfrak{C}$, and $b \subseteq M$. Prove that $\varphi(x, b)$ has an honest definition over A (computed using M) iff there exists $\psi(x, z) \in L$ such that for every finite $A_{0} \subseteq \varphi(A, b)$ there exists d in A with $A_{0} \subseteq \psi(A, d) \subseteq \varphi(A, b)$.
Comment. This shows that the definition of honest definition of $\varphi(x, b)$ over A does not depend on the choice of the model M containing A and b.

Problem 9. Assume NIP. Let $D \subseteq \mathfrak{C}$ and $\varphi(x, y) \in L$ be such that $\varphi(\mathfrak{C}) \cap D$ is a linear order \leq. Assume that $D_{\operatorname{ind}(\emptyset)}$ is o-minimal with respect to this order. Prove that every externally definable subset of D is a union finitely many \leq-convex subsets.

