Theories with NIP. List 4.

We work in a monster model \mathfrak{C} of a complete theory T.

Problem 1. Consider conditions:

(1) $\varphi(x, y)$ has IP;

(2) for some $n \in \mathbb{N} \setminus \{0\}$ and some $\eta \in 2^n$ the formula $\bigwedge_{i=0}^{n-1} \varphi(x, y_i)^{\eta(i)}$ has SOP.

Prove that $(1) \lor (2)$ implies that $\varphi(x, y)$ is unstable.

Problem 2. (i) Let $M := (\mathbb{R}, \leq) \models DLO =: T$. Show that all types in $S_n(\mathbb{R})$ are definable (equivalently, \mathbb{R} is weakly stably embedded). (ii) Prove that, in fact, \mathbb{R} is stably embedded.

Problem 3. Let D be a 0-definable set. Prove that D is stably embedded iff $D_{ind(\emptyset)}$ has the same definable sets as $D_{ind(B)}$ for any B.

Problem 4. (i) Let $M \prec \mathfrak{C}$ and $\widehat{M} \succ M^{Sh}$ with *L*-reduct $\widehat{M} \upharpoonright_L \prec \mathfrak{C}$. Prove that, up to a renaming of the language, $\widehat{M} = (\widehat{M} \upharpoonright_L)_{\mathrm{ind}(B)}$ for some small $B \subseteq \mathfrak{C}$. (ii) Give an example showing that \widehat{M} may be a proper reduct of $(\widehat{M} \upharpoonright_L)^{Sh}$.

Problem 5. (i) Show that if $M \prec N$, where N is $|M|^+$ -saturated, then for every k the family $\{\varphi(M, b) : \varphi(x_1, \ldots, x_k, y) \in L, b \subseteq N, |b| = |y|\}$ is exactly the collection of all externally definable subsets of M.

(ii) Let $N \succ M$ be $|M|^+$ -saturated. Prove that $S_k^{qf}(M^{Sh}) \approx S_{ext,k}(M) \approx S_{M,k}(N)$

Problem 6. Let $A \subseteq M \prec \mathfrak{C}$, where M is $|A|^+$ -saturated. Prove that A is stably embedded iff for every $(M', A') \succ (M, A)$ and every tuple m from M' the type $\operatorname{tp}_L(m/A')$ is definable.

Problem 7. Let $I \subseteq M$ be an indiscernible sequence, and let $(M', I') \succ (M, I)$. Prove that there is an ordering on I' making it into an indiscernible sequence.

Problem 8. Let $\varphi(x, y) \in L$, $A \subseteq M \prec \mathfrak{C}$, and $b \subseteq M$. Prove that $\varphi(x, b)$ has an honest definition over A (computed using M) iff there exists $\psi(x, z) \in L$ such that for every finite $A_0 \subseteq \varphi(A, b)$ there exists d in A with $A_0 \subseteq \psi(A, d) \subseteq \varphi(A, b)$. Comment. This shows that the definition of honest definition of $\varphi(x, b)$ over A does not depend on the choice of the model M containing A and b.

Problem 9. Assume NIP. Let $D \subseteq \mathfrak{C}$ and $\varphi(x, y) \in L$ be such that $\varphi(\mathfrak{C}) \cap D$ is a linear order \leq . Assume that $D_{\operatorname{ind}(\emptyset)}$ is o-minimal with respect to this order. Prove that every externally definable subset of D is a union finitely many \leq -convex subsets.