Theories with NIP. List 5.

We work in a monster model \(\mathfrak{C} \) of a complete theory \(T \). Recall that our convention is that \(\varphi(x, a) \in L(A) \) means that \(\varphi(x, y) \in L \) and \(a \) is a tuple from \(A \).

Problem 1. Let \(\varphi(x, y, z) \in L(\mathfrak{C}) \). Show that \(\text{alt}(R_{\varphi(x, y, c)}(x, y)) \) computed in \(\text{Th}(M^{Sh}) \) is less than or equal to \(\text{alt}(\varphi(x, y, c)) \) computed in \(T \).

Problem 2. Show that if \(M \) is the random graph, then \(M^{Sh} \) does not have quantifier elimination.

Problem 3. Let \(M \prec \mathfrak{C} \) and \(\varphi(x, y, b) \in L(\mathfrak{C}) \). Assume that \(\varphi(M, b) \) is the graph of a function. Prove that there is \(\psi(x, y, d) \in L(\mathfrak{C}) \) such that \(\psi(M, b) = \varphi(M, b) \) and \(\mathfrak{C} \models (\forall x)(\exists \leq 1 y)\psi(x, y, d) \).

Problem 4. Prove that \(T \) has NIP if and only if for every finite tuple \(b \) and indiscernible sequence \(I \) of cofinality at least \(|T|^+ \), some finite segment of \(I \) is indiscernible over \(b \).

Problem 5. Let \(I \) be a linear order, and let \(J \) be its completion. Let \(\sim \) be a convex equivalence relation on \(I \).

(i) Assume that \(\sim \) is finite. Prove that there is a finite tuple \(\bar{c} \subseteq J \) such that \(\sim_{\bar{c}}|_{\bar{c}} \subseteq \sim \) and \((\forall i, j \in I \setminus \bar{c})(i \sim j \iff i \sim_{\bar{c}} j) \).

(ii) Assume that \(\sim \) is essentially of size \(\kappa \). Prove that there is a tuple \(\bar{c} \subseteq J \) of length at most \(\kappa \) satisfying the same conditions as in (i).

Problem 6. Assume \(T \) has NIP. Let \(I = (a_i)_{i \in I} \) be an indiscernible sequence, and \(\varphi(x_1, \ldots, x_n, b) \in L(\mathfrak{C}) \). Prove that there exists a coarsest finite convex equivalence relation on \(I \) such that for every \(\bar{i}, \bar{j} \in I^n \) we have
\[
\bar{i} \sim \bar{j} \Rightarrow \models (\varphi(a_i, b) \iff \varphi(a_j, b)).
\]

Comment. From the lecture we know that there is a finite convex equivalence relation on \(I \) satisfying the above equivalence. In this problem, the only thing to do is to deduce that there exists a coarsest such relation.

Problem 7. Assume \(T \) has NIP. Let \(I = (a_i)_{i \in I} \) be an indiscernible sequence, where \(I \) is a saturated model of DLO. Let \(\text{Aut}(I) \) be the group of elementary permutations of \(I \). For every \(n \), \(\text{Aut}(I) \) acts naturally on \(S_n(I) \). Prove that the number of orbits under this action is at most \(\kappa \).