Theories with NIP. List 6.

We work in a monster model \mathfrak{C} of a complete theory T. Assume \mathfrak{C} is infinite.

Problem 1. Let p_t , $t < \alpha$, be A-invariant types. Let I_t be a Morley sequence in p_t over $AI_{< t}$, for $t < \alpha$. Prove that the sequences I_t , $t < \alpha$, are mutually indiscernible over A.

Problem 2. Prove that $\kappa_{inp}(T) = \aleph_0$ if and only if $\kappa_{inp}(p(x)) \leq \aleph_0$ for every finitary type p(x).

Problem 3. Let p(x) be a partial type. Prove that the following conditions are equivalent.

- (i) $\kappa_{inp}(p) > \kappa$.
- (ii) There is an inp-pattern of length κ .
- (iii) There is an inp-pattern of length κ witnessed by mutually indiscernible sequences $(b_i^{\alpha})_{i < \omega}, \alpha < \kappa$.

Observe that that an analogous proof works for "ict" in place of "inp".

Problem 4. Prove that T has NIP if and only if $\kappa_{ict}(T) < \infty$. Hint. Use Propositions 1 and 2 from page 32 from the notes.

Problem 5. Assume that T has NIP. Prove that $\kappa_{inp} = \kappa_{ict}$ (as functions on partial types).

Problem 6. Let T be the theory of an infinite set in the empty language. Prove that dp-rk(x = x) = 1 and $\kappa_{ict}(x = x) = 2$ (where |x| = 1).

Problem 7. Prove that the following conditions are equivalent for any given partial type p(x).

- (i) p(x) is algebraic.
- (ii) dp-rk(p(x)) = 0.
- (iii) $\kappa_{ict}(p(x)) = 1.$

Problem 8. Let T be the model companion of the theory of two linear orders. Prove that dp-rk(x = x) = 2 (where |x| = 1), but there is no type of dp-rk 1.