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ABSTRACT. We study amenability of definable groups and topological groups,
and prove various results, briefly described below.

Among our main technical tools, of interest in its own right, is an elabora-
tion on and strengthening of the Massicot-Wagner version [20] of the stabilizer
theorem [14], and also some results about measures and measure-like functions
(which we call means and pre-means).

As an application we show that if G is an amenable topological group, then
the Bohr compactification of G coincides with a certain “weak Bohr compact-
ification” introduced in [19]. In other words, the conclusion says that certain
connected components of G coincide: Gy, = G{0. We also prove wide gen-
eralizations of this result, implying in particular its extension to a “definable-
topological” context, confirming the main conjectures from [19]. We also in-
troduce \/-definable group topologies on a given (-definable group G (including
group topologies induced by type-definable subgroups as well as uniformly de-
finable group topologies), and prove that the existence of a mean on the lattice
of closed, type-definable subsets of G implies (under some assumption) that
cl(G99) = c1(GRY°) for any model M.

Secondly, we study the relationship between (separate) definability of an ac-
tion of a definable group on a compact space (in the sense of [11]), weakly almost
periodic (wap) actions of G (in the sense of [9]), and stability. We conclude that
any group G definable in a sufficiently saturated structure is “weakly definably
amenable” in the sense of [19], namely any definable action of G on a compact
space supports a G-invariant probability measure. This gives negative solutions
to some questions and conjectures raised in [17] and [19]. Stability in continuous
logic will play a role in some proofs in this part of the paper.

0. INTRODUCTION

The general motivation standing behind this research is to understand relation-
ships between dynamical and model-theoretic properties of definable [topological]
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groups. More specifically, similarly to [19], in this paper our goal is to understand
model-theoretic consequences of various notions of amenability.

The consequences that we consider in this paper are mainly the equalities be-
tween the appropriate versions of the components G and G of a definable
group G in various categories (e.g. in the category of topological groups).

The notions of amenability are those considered in [19], and they come from
certain natural categories of flows.

Below we briefly recall and explain the contexts (or “categories”) which we are
interested in (including the relevant notions of amenability). More detailed dis-
cussions can be found in Section 1; for the proofs the reader is referred to Section
2 of [19]. But before that, recall some issues concerning definability. A function
f from a set D(M) definable in a structure M to a compact (Hausdorff) space
X is said to be definable if the preimages of any two disjoint closed subsets of X
can be separated by a definable set; equivalently, f is induced by a continuous
map from the type space Sp(M) to X. Let G(M) be a definable group. In [11], a
G(M)-flow (i.e. an action by homeomorphisms of G(M) on a compact space X)
is called definable if for every x € X the function g — gx is a definable map from
G(M) to X in the above sense. In fact, this should rather be called a separately
(or elementwise) definable flow, and only for simplicity we will further write “de-
finable flow”. Recall that in the classical topological situation, if G is a topological
group, then a G-flow is a jointly continuous action of G on a compact space. In
the model-theoretic context of a definable group G(M), it is natural to ask, what
if anything is the right analogue of a jointly continuous action on a compact space.
One might want to call such an action “jointly definable”. Finally, recall that an
ambit is a flow with a distinguished point with dense orbit.

(1) Definable context. Here, G(M) is a group definable in a structure M. By
G we mean the interpretation of G(M) in the monster model. Then the
quotient map G(M) — G/GY) turns out to be the definable Bohr compact-
ification of G(M) (i.e. the universal compactification among the definable
group compactifications). The definable amenability of G(M) means that
there exists a left-invariant, Borel probability measure on the G(M)-ambit
Sc(M). (One has to be careful here: (G(M),Sq(M),tp(e/M)) is not in
general the universal definable G(M)-ambit; it is universal but in the cate-
gory of G(M)-ambits (G(M), X, xo) such that the map from G to X given
by g — gxg is definable.)

(2) Topological context. Let H be a topological group. Then there is a unique
(up to isomorphism) Bohr compactification of H. The classical notion of
amenability of H is defined by saying that there exists a left-invariant, Borel
probability measure on the universal (topological) H-ambit. To recover
these notions model-theoretically, we treat H as a group G(M) definable
in a structure M in such a way that all open subsets of H = G(M) are
definable (e.g. M = G(M) is the group H expanded by predicates for all
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open subsets of H). Then, if we define GY0 as uGS} (where p is the group of

top

infinitesimals), then the quotient map G(M) — G/G is exactly the Bohr

top

compactification of G(M). Analogously, GI% is defined as (u)GSJ°. The
universal topological G(M)-ambit is described as S&(M) := Sg(M)/~,,
where p~, ¢ < p-p=p-q.

(3) Definable topological context. Here, G(M) is a group definable in a structure
M which is also a topological group. But we do not assume any relation-
ship between the topology on G(M) and the structure M (i.e. the topology
need not be definable in any way). Considering a monster model of an ex-
pansion of M in which all open subsets of G(M) become (-definable, we
define G, as pGY} (where G is computed in the original language);
similarly, G3% == (u“)G4P°. Then the quotient map G(M) — G/G% .,
is the universal definable, continuous compactification of G(M). In order
to define the definable topological amenability of G(M), we assume ad-
ditionally that there is a basis of neighborhoods of the identity in G(M)
consisting of definable sets in the original structure M. Under this assump-
tion, the G(M)-ambit S (M) is defined as in the previous item. We say
that G(M) is definably topologically amenable if SZ (M) supports a left-
invariant, Borel probability measure. (One has to be careful as in the first
item: (G(M),S&(M),tp(e/M)/~,) is not in general the universal defin-
able (jointly continuous) G(M)-ambit; it is universal but in the category of
(jointly continuous) G(M)-ambits (G(M), X, xo) such that the map from
G to X given by g — gz is definable.)

(4) Weak definable [topological] amenability of a definable [resp. topologicall
group G(M) means that there is a left-invariant, Borel probability mea-
sure on the universal definable [resp. jointly continuous| G(M)-ambit (see
Section 1).

Notice that the definable topological context is a common generalization of both
the definable and the topological context. We have defined above the notions of
amenability in various categories by saying that the universal ambit in a given
category supports an invariant, Borel probability measure. Equivalently, one can
say that any ambit (or flow) in the given category supports such a measure.

The following statement is Conjecture 0.4 in [19].

Conjecture 0.1. Let G(M) be a topological group and assume that the members of
a basis of neighborhoods of the identity are definable. If G is definably topologically

amenable, then G o, = Gaot rop-

In the definable context described above, this conjecture specializes to the the-
orem (easily deduced in [19] from [20]) saying that each definably amenable group
G(M) satisfies G} = GS%%. On the other hand, in the topological context, Con-
jecture 0.1 specializes to Conjecture 0.2 from [19] which predicts that whenever

G(M) is an amenable topological group, then G = G{5°. One of the main results
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of [19] is Theorem 0.5 there saying that Conjecture 0.1 is true if G(M) has a basis
of open neighborhoods of the identity consisting of definable, open subgroups.

In Subsection 2.6, we will prove Conjecture 0.1 in full generality (see Corollary
2.37). In fact, we obtain much more general results (namely, Theorems 2.35 and
2.36) than Conjecture 0.1, which do not assume any topology on G(M). The main
content of these results can be stated as the following

Theorem 0.2. Let H be an M -type-definable subgroup of a O-definable group G,
normalized by G(M). Let N be the normal subgroup generated by H. If Sq/u(M)
or Sma(M) carries a G(M)-invariant, Borel probability measure, then G%; <
NGO,

Conjecture 0.1 follows immediately from Theorem 0.2 applied to H := p.

Similarly to [19], the proof is based on the Massicot-Wagner argument from
[20], but here we use means on certain lattices instead of measures on Boolean
algebras. Moreover, in Subsection 2.3, we give a less numerical variant of the
argument from [20], using a general notion of largeness, discussed in Subsection
2.2, which coincides with non-forking in stable theories and seems interesting also
outside the stable context. It is new and essential in the proofs of our main results
that we work here in the category of \/-positively definable sets. The proofs of
the main results also require some extension results concerning pre-means, means,
and measures — established in Subsections 2.4 and 2.5 — which additionally yield
several corollaries concerning model-theoretic “absoluteness” (e.g. the existence of
a G(M)-invariant, Borel probability measure on S¢, (M) does not depend on the
choice of the model M) and may prove to be useful also in other situations. In
Subsection 2.7, we apply these kind of arguments to topological groups equipped
with the so-called \/-definable group topologies (including group topologies induced
by type-definable subgroups as well as uniformly definable group topologies). The
key property of a \/-definable group topology on a (-definable group G is that
for any model M the group G(M) is also a topological group. We prove (using
our version of the Massicot-Wagner theorem) that the existence of a left-invariant
mean on the lattice of closed, type-definable subsets of the group G = G(M*)
(where M* > M is a monster model and G is a (-definable group) equipped with
a \/-definable group topology, such that the projections of closed, type-definable
sets are closed, implies that cl(GS}) = cl(G9)°), where cl denotes closure with
respect to the \/-definable topology; this is Proposition 2.52.

We already recalled the notion of definable action of a definable group G(M) on
a compact space as well as the notion of weak definable topological amenability.
The following generalization of Conjecture 0.1 is stated as Conjecture 0.3 of [19].

Conjecture 0.3. Let G(M) be a topological group definable in an arbitrary struc-

ture M. If G is weakly definably topologically amenable, then G o, = GiXt top-

In Section 3, we will refute this conjecture by showing that it is already false in
the “discrete case”. In fact, we show
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Theorem 0.4. Suppose M is wi-saturated. Then G(M) is weakly definably
amenable: for any definable action of G(M) on a compact space X, X supports a
G(M)-invariant, Borel probability measure.

Our methods are as interesting as the refutation of the conjecture: under the
saturation assumption, definable actions are weakly almost periodic, so support
invariant measures. Our proofs involve stable group theory in a continuous logic
setting. This will also give us the negative answer to the question stated in [17,
Problem 4.11(1)], namely whether the assignment Sg(M)/E — G/GP given
by tp(a/M)/E — a/G3P is well-defined, where F is the equivalence relation on
Sc(M) such that Sg(M)/E is the universal definable G(M)-ambit. In [17, Propo-
sition 4.10], it was noted that an analogous assignment to G/GY9? is a well-defined
continuous semigroup epimorphism (with the natural semigroup structure on
Sc(M)/E coming from the fact that this is the universal definable G(M )-ambit).
We also provide a description of the universal definable G(M)-ambit as the
“Gelfand space” of the algebra of stable continuous functions from Sg(M) to
R, and describe the universal minimal definable G(M)-flow as G/G%). In this
section, we also discuss definable actions when M is not necessarily saturated,
and make the connection between weakly almost periodic actions and continuous
logic stability in a model.

This paper contains the material in Sections 2 and 3 of our preprint “Amenability
and definability”. Following the advice of editors and referees we have divided that
preprint into two papers, the current paper being the first.

1. SOME NOTIONS AND DEFINITIONS

We recall here model-theoretic definitions of certain components of groups in
various categories, and also the relevant variants of the notion of amenability; for
more details, see Section 2 of [19]. The new notions which we introduce in this
paper will appear in the relevant sections.

As usual, by a monster model of a given theory we mean a k-saturated and
strongly x-homogeneous model for a sufficiently large cardinal  (typically, K > |T|
is a strong limit cardinal). Where recall that the (standard) expression “strongly
r-homogeneous” means that any partial elementary map between subsets of the
model of cardinality < k extends to an automorphism of the model. A set [tuple]
is said to be small [short] if it is of bounded cardinality (i.e. < k). When G is a
(-definable group (in the monster model) and A a (small) set of parameters, then
G denotes the smallest A-definable subgroup of G of bounded index; and G%°
— the smallest A-invariant subgroup of GG of bounded index.

Let us now discuss in more details the “topological context” from item (2) in
the introduction. Let G(M) be a topological group (-definable in a structure M.
Assume (from now until Conjecture 1.3) that all open subsets of G(M) are also
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(-definable. By G we denote the interpretation of G(M) in a monster model M*.
Define p to be the intersection of all U = U(M™*) with U (M) ranging over all open
neighborhoods of the identity. So u is the subgroup of infinitesimals of G} it is not
necessarily normal, but it is normalized by G(M).

Definition 1.1. 1) G := pGY); equivalently, this is the smallest M-type-
definable subgroup of GG of bounded index which contains pu.
2) GI = (u“)GYP; equivalently, this is the smallest normal, invariant over M

subgroup of G of bounded index which contains .

It turns out that Gfo, is a normal subgroup of G and the map G(M) — G/G{y,
is the classical Bohr compactification of G(M) as a topological group (i.e. the
universal group compactification). For a description of G//G{) as the initial object
in a certain category see [19, Proposition 2.18|. In particular, one gets that both
quotients G/GY0 and G/G{) are independent as topological groups (equipped
with the logic topology) of the choice of the language (provided that all open
subsets of G(M) are (-definable) and of the choice of the monster model in which
they are computed. Moreover, the closure of the identity in G/GP5p) is exactly
Gio/Gion, s0 the property Gio, = GO is also independent of the choice of the
language and the monster model.

There is also a model-theoretic description of the universal (left) G(M)-ambit
as the quotient S&(M) := Sg(M)/~,, where p ~, ¢ < p-p = p-q with the
distinguished point tp(1/M)/~, and the action of G(M) given by ¢ * (i - p) :=
p-(g-p)=g-(p-p). Itis clear that this ambit is isomorphic to Sya(M) — the
space of complete types over M of hyperimaginary elements from p\G.

Recall the classical definition of amenability.

Definition 1.2. The topological group G(M) is amenable if for every G(M)-
flow (equivalently, G(M)-ambit) X there is a G(M)-invariant, Borel probability
measure on X; equivalently, there is a G(M)-invariant, Borel probability measure
on the universal ambit SZ(M).

The following is [19, Conjecture 0.2].

Conjecture 1.3. Let G(M) be a topological group. If G(M) is amenable, then
(G0 — (7000

top top -

Now, we discuss in more details the more general “definable topological context”
from item (3) in the introduction, which was studied in Subsection 2.2 of [19]. It is
a bit subtle, so we try to be precise about the notions and definitions (although a
full account is given in [19]). So we start with an L-structure M, and a group G(M)
(-definable in M. We assume that G(M) is also a topological group, although this
is not necessarily “seen” by the structure M. Let M’ be an expansion of M in a
language £’ containing £ such that we have predicates for all open subsets of the
topological group G(M). Let (M')* = M’ be a monster model of Th(M’) whose
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reduct M* = M to L is also a monster model. So the dynamics of G(M) as a
topological group is seen through the model theory of M’ and (M')* as discussed
earlier in this section. But we are more interested in what is definable in M. So
as to avoid too much unnecessary notation, we will rather talk about M, M* and
distinguish between definability in £ (which we just call definable) and definability
in the richer language £'. G% and G are computed in £, and Sg(M) denotes
the space of complete types in the sense of L.

Definition 1.4. 1) G, := 1 - G}y = G{o, - GY; equivalently, this is the small-
est M-type-definable (in the sense of £) subgroup of G of bounded index which
contains f.

2) Gatiop 1= (1) - GYP° = G - GY7; equivalently, this is the smallest normal, in-
variant over M (in the sense of £) subgroup of G of bounded index which contains

I

Note that we need the £'-structure to make sense of x, and G{o,
Got op 18 nevertheless still type-definable over M in L.

It turns out that G, is a normal subgroup of G and the map G(M) —
G /Gt top 15 the (unique up to isomorphism) universal compactification of G(M)
among definable (in the sense of £), continuous group compactifications of G(M).

Note that the definitions of G3% o, := - G%} and G3%,, = (1) - G4° make
sense even in the wider context when £’ is any extension of £ such that all members
of some basis of neighborhoods of the identity in G(M) are definable in £" with
parameters from M (where p is defined as the intersection of all U = U(M¥)
with U(M) ranging over the definable in £’ neighborhoods of the identity); the
difference is that now more monster models are allowed, because we do not require
L' to contain predicates for all open subsets of G. By a standard argument, we
get that the quotients G/G3 ., and G/G3Y . do not depend on the choice of
both the language £ and the monster model in which they are computed. The
property G oo = Gt op 18 also independent of the choice of £’ and the monster
model, which follows directly from definitions.

Remark 1.5. i) If G(M) is discrete, then GGX,,, = GR° > G and Gy, =
Gy > G,

ii) If all open subsets of G(M) are definable in M (in the language L), then
GOOO — GOOO > GOOO and G — GOO > G

def,top — ~top = def,top — ~top =

Recall that a group G(M) definable in M is definably amenable if and only if
there is a left-invariant, Borel probability measure on Sg(M). In order to give
a suitable generalization of this notion in the “definable topological context”, one
needs to assume that all members of some basis of (not necessarily open) neigh-
borhoods of the identity in G(M) are definable in M (in the original language L).
In [19], we assumed more, namely, that there is such a basis consisting of open
neighborhoods of the identity, but in the more general context everything works

etc., although
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in the same way. In particular, u is well-defined, and S% (M) defined as above is
still a G(M)-ambit. The following definition was proposed in [19, Section 3.

Definition 1.6. Assume that all members of some basis of neighborhoods of the
identity in the topological group G(M) are definable in M (in £). We say that
G (M) is definably topologically amenable if there exists a left-invariant, Borel prob-
ability measure on the G(M)-ambit Sg(M).

Conjecture 0.1 recalled in the introduction is the main conjecture of [19]. As
was recalled in the introduction, one of the main results of [19] was [19, Theorem
0.5] saying that Conjecture 0.1 is true if G(M) has a basis of open neighborhoods
of the identity consisting of definable, open subgroups. This implies Conjecture
1.3 for groups possessing a basis of open neighborhoods of the identity consisting
open subgroups. In Subsection 2.6 of this paper (see Corollary 2.37), we prove
Conjecture 0.1 (and so also Conjecture 1.3) in its full generality.

The definition of amenability of a topological group is by saying that there is
a well-behaved measure on the universal topological ambit. The definitions of
definable amenability or definable topological amenability are by saying that there
is a well-behaved measure on the G(M)-ambits Sg(M) or SL(M), respectively.
But these ambits are not universal in any of the categories of ambits considered in
[19] (they are universal ambits in some other categories described in parentheses
in items (1) and (3) in the introduction). So based on [17], we proposed in [19]
more general notions of amenability, which we recall now.

As was pointed out in [17], there is a unique closed equivalence relation E on
Sc(M) such that Sg(M)/E is the universal definable G(M)-ambit; a description
of F can be found in Section 3 of [17]. In [19, Subsection 2.2|, we described a closed
equivalence relation E; on Sg(M) such that Sg(M)/E; is the universal definable
topological G(M)-ambit (where G(M) is a topological group definable in M).

Definition 1.7. 1) We say that G(M) is weakly definably amenable if there exists
a left-invariant, Borel probability measure on the universal definable G-ambit, i.e.
on Sg(M)/E.

2) We say that G is weakly definably topologically amenable if there exists a left-
invariant, Borel probability measure on the universal definable topological G-
ambit, i.e. on Sg(M)/E;.

Conjecture 0.3 from the introduction is the most general conjecture of [19]. In
Section 3, we will show that it is false, even in the case when G(M) is discrete (i.e.
working in the definable category). In Subsection 3.4 of [19], a weaker form of this
conjecture was proposed. Namely, let Ggg(f),;p be the normal subgroup generated by
all products ab™! for (a,b) € E}, where aEjb <= tp(a/M)E; tp(b/M). Tt is M-
invariant, and by Proposition 3.10 of [17], we easily get that G320, < Gitto, <

def,top —
00
Gdef,top :
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Conjecture 1.8. Let G(M) be a topological group definable in an arbitrary struc-

ture M. If G is weakly definably topologically amenable, then G3 ., = Ggg?jop.

At first glance, it seems that this conjecture should be reachable by the methods
of Section 2, but we do not quite see how to prove it.

2. MEANS AND CONNECTED COMPONENTS

The main goal of this section is to prove the equality of various connected com-
ponents under the existence of a suitable measure or mean. In particular, we
will prove Conjecture 0.1. As mentioned in the introduction, this conjecture was
proved in [19] but under the stronger assumption that there is a basis of open
neighborhoods of the identity consisting of definable open subgroups. Similarly
to [19], our proofs are based on the idea of the proof of Massicot-Wagner version
of the stabilizer lemma. Our key tricks to deal with the general case will be us-
ing means instead of measures (so something like measures but defined only on
certain lattices of subsets), positively \/-definable sets, and a notion of largeness.
As to the Massicot-Wagner result, we will prove a variant of it (see Proposition
2.11 and Corollary 2.12) which is applicable to various situations. The main re-
sults of this section are contained in Subsection 2.6. In Subsection 2.7, we study
groups equipped with \/-definable group topologies, also proving that existence of
a mean on the appropriate lattice of subsets implies equality of the closures of the
appropriate connected components.

2.1. \/-definable sets. Let T be any (complete) theory, M |= T, and € be a
monster model of T. By a [type-|definable set we usually mean a set which is
[type-]definable with parameters in €. We can identify it with the corresponding
formula |or set of formulas|. We will be often talking about sets which are A-type-
definable, so using parameters from a set A. One can often incorporate parameters
into the language and work over (), e.g. in this and in the next subsection we work
with (-definability, but sometimes parameters are essential (e.g. in Proposition
2.11 and the applications to Theorem 2.35 and Proposition 2.52).

By the category of \/-positively definable sets, we mean the category whose
objects are expressions of the form \/,_ D;, where Dy C D; C ... are positively
definable sets, where two such expressions are considered to be equal if they agree
in any model of T' (equivalently, in the monster model; so working in the monster
model, any object can be identified with the corresponding subset of the model).
A morphism F': \/,. D; = /.., E; is a collection of definable functions F;: D; —
E;,, where i ranges over w and j; is some index in w, such that (JF; is a well-
defined function, and two such collections of functions are identified if they yield
the same function from \/,_ D;(M) to \/,., £;(M) for every (equivalently, some)
model M. We write \/,., D; €V, E; if this holds in every model (equivalently,
in €); this is equivalent to saying that for every ¢ there is j; such that D; C Ej,.
Whenever \/,. D;(7) is \/-positively definable and a is a tuple of parameters, we
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say that \/,., Di(a) holds if there is i such that M |= D;(a) for some (any) model
M < € containing a.

In fact, we can consider any \/,.; D; for a countable set I and positively definable
sets D;, as then one can replace I by w and the D;’s by the unions of initial sets
D;, i < n. We will be doing this freely without mentioning it. Also, one could
extend the context to uncountable sets I, but countable families are sufficient for
the purpose of our main theorems.

Recall that a subset D of a group G is said to be (left) generic if finitely many
left translates of it cover GG; D is said to be thick if there is n such that for every
J1,---,9n € G there is ¢ < j such that gj_lgi € D. It is clear that each thick subset
of G is generic. As to the converse, if D C G is generic, then D™D is thick.

Let G be a group definable in 7'. For a positively definable set D(z,y) - G(x), by
(38°"z) D(x, §) we mean the \/-positively definable set \/,_ (3"¢"z)D(z, ), where

l
(3" 2)D(x,g) = (3x1,....1)(V2) \/ D(xiz, 7).

=1

(Formally, the quantifiers in the last formula are restricted to G; if (G, -) is a sort,
then this formula is clearly positive, so (38"z)D(x,y) is \/-positively definable.
Abusing terminology by allowing in positive formulas both the group operation
on G and quantification over G, we can say that (3#"x)D(x,y) is \/-positively
definable also for any definable G.)

In particular, for any parameters b, (3¢"z)D(x,b) holds iff D(M,b) = {a €
G(M) : M = D(a,b)} is generic in G(M) for some [any| model M containing b.
For a \/-positively definable set D(z,7) = \/,c, Di(x,7) such that D(x,y) - G(x)
by (3#"z)D(x,y) we mean the \/-positively definable set \/,_ (3#"2)D;(z, 7). In
particular, for any parameters b, (Fz)\/,_ D;(x,b) holds iff for some i the set
Di(M,b) :={a € G(M) : M |= D;(a,b)} is generic in G(M) for some [any] model
M containing b. Working in the monster model, this is equivalent to saying that
D(€,b) :={a € G(€) : € = D(a,b)} = U,., Di(€,b) is generic in G(€) (but this
equivalence need not be true for a non Ny-saturated model).

Analogous definitions apply when we replace “generic” by “thick”. The only
difference is, of course, that the displayed formula above is now the following

(Hl_thiCkl‘)D(Jf, g) = (v.fl?l, . 737!) \/ D(.Tj*lﬂji; Zj)

1<j

2.2. A largeness notion. Throughout, G is a group acting on X. We work in the
language of group actions, (G, -, X, ,...). (- refers both to the group operation and
the action, and ... to possible additional structure.) In the particular case when G
acts on itself via left translations, the results which we will obtain for (G, -, X,-,...)
transfer automatically to the corresponding statements in the language of groups
(G,-,...) (i.e. without the extra sort for X), just identifying X with G.
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We define a largeness notion Lj for subsets of X, resembling “rank > k” for
certain model-theoretic ranks. In fact, we define two largeness notions L8 and
Lhick - The stronger notion £ corresponds to non-forking in stable theories (see
Remark 2.6). For our purposes, both notions work in the same way, so later we
will just write £;. It would be interesting to further investigate £3™" and Lihick
(and variants) for unstable theories.

In what follows, we deal with £5, but everything works also for the analogously
defined LMk,

Definition 2.1. Let Y (z,y) C X(z) be a \/-positively definable set \/, Yi(z, y).
(1) L& (Y (z,7)) is the \/-positively definable set \/,(3x)Yi(x,y) .
(2) For k > 0, LE" (Y (z,7)) is the \/-positively definable set in variables

(FE2) LE (Y (@, §) NY (27, 7).

In particular, using terminology from Subsection 2.1, for a \/-positively definable
set Y =Y (x) C X(x) we have a well-defined meaning of “£5™"(Y) holds” (working
in a given theory). Namely, L5 (V) holds iff Y # 0, and £5™(Y") holds iff {g € G :
LE" (Y NgY) holds} is generic as a \/-definable set, i.e. writing it as a countable
increasing union of definable sets, one of them must be generic. The word “hold”
will be often skipped from now on.

Remark 2.2. L¥"(Y (z,7)) can be expressed by a disjunction of positive, trans-
lation invariant formulas ;(y) of the language (G, -, X,-,Y;);, where Y = \/Y,.
(Here, by a translation invariant formula we mean a formula 9)(y;.;<.)(7) depend-
ing on the Y;’s (and with variables ¢ appearing only in the Y;(z,9)’s) such that
Y(v,iicw)(Y) is equivalent to 14y, i<w)(y) for any g € G.)

gen

Proof. The proof is by induction on k. Clearly £§™ (Y (z,7)) can by expressed as
V,;(3z)Yi(x,y) which does the job. Now, suppose that L;**(Y(z, 7)) can be ex-
pressed as \/;, ¥j (vi:i<w)(¥), Where each ) (v;.i<,)(¥) is positive and translation in-
variant. Then L3 (Y (z,7)) can be expressed as \/New(Ell‘genz)wj,mmzyi:i@) (7, 2).
By induction hypothesis, it is clear that each (3"8"2)v); (vir.y;.i<w) (¥, 2) s positive
and translation invariant. U

It is also easy to express the Lf™ directly, e.g. L5(Y) =V, L5 (),
where /

LM (y) = (Freenz) (V) L8N (Y N 2Y; N 2'Y; N 2'2Y5).

Remark 2.3. Let L and L' be two languages on a given universe, expanding the
language of the action of G on X. Suppose Y =Y (z) C X(x) and Y = \/Y; with
Y; definable in both L and L. Then £8*(Y) holds with respect to Th*(M) if and
only if it holds with respect to Th ().

Let Y = Y(z) € X(z) and Y = VY. By Remark 2.2, £5" is translation
invariant, i.e. £5(Y) < LE"(hY).
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Define
St (V) 1= {g : L7 (g¥ 1Y)},

This is an operator from the class of \/-positively definable sets to itself. Note

that L5, (Y') holds iff St en(Y') is generic as a \/-definable set (which remember
k

means that writing St Lien(Y) as a countable increasing union of definable sets U,

say, one of the U,,’s is generic). By Remark 2.2, we get

Remark 2.4. S := Stgeen(Y) satisfies S = S~'. If additionally £§™(Y'), then
1 € S, so S is symmetric. Even more: S can be expressed by a disjunction
of positive formulas (with parameters over which Y is defined) which are closed
under inversion; if additionally £5(Y), then these formulas can be chosen to
contain 1, so they are symmetric.

The next basic remark shows in particular that (working in a given theory) the
\/-definable set L5 (Y (z, 7)) does not depend on the choice of the presentation of
Y as a union of positively definable sets.

Remark 2.5. (1) Let Y(x,y) C Y'(z,y) € X(x) be \/-positively definable sets.
Then Ly (Y (z,79)) € Lx(Y'(z,7)) (as \/-definable sets in variables 7). In particular,
if the tuple 7 is empty, then “L;(Y") holds” implies “L;(Y”) holds”.

(2) Let Y(z,y) € X(x) be a \/-positively definable set. Then for every k €
w, LIKE(Y (z,9)) C LE(Y(x,7)). In particular, if the tuple 7 is empty, then
«£hick (V') holds” implies “ L5 (Y) holds”.

The whole discussion in Subsection 2.1 and above goes through working with
\/-definable sets instead of \/-positively definable sets. However, the above obser-
vation that the operator St cEen preserves \/-positive definability will be crucial in
our applications.

As already mentioned, the above definitions and facts have obvious counterparts
with “generic” replaced by “thick”. In the rest of the paper, we can work with any of
these two versions, so we will be writing £ in place of £8" or £ An exception
is the next remark which holds for £hick,

Remark 2.6. When G = Aut(€) is the automorphism group of a monster model of
a stable theory T', and Y is definable (over €), then £ (Y") holds for all k € w
if and only if Y does not fork over (). (Here, £M*(Y) is computed in (G, -, €, ")
with € equipped with its original stable structure.)

Proof. Let T = Th(€). The structure in which we will be working is (G, -, €, "),
with € equipped with its original stable structure.
(«-). It is enough to show this implication working in a monster model
(G*,-,€* ) = (G,-, €, ). We argue by induction on k.

If Y does not fork over ), then Y # ), so L'*(Y). For the induction step,
consider any Y which does not fork over (). By inductive hypothesis, it is enough
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to show that
S:={g€ G :gY NY does not fork over 0}

is thick. Take p* € S(€*) which does not fork over () and contains Y. By sta-
bility, we know that the orbit G* - p* is bounded (of cardinality at most 271), so
Stabg+(p*) is a bounded index subgroup of G*. Write explicitly Y (x) = ¢(z,a).
Then Stabg-(p*) is contained in

S={geG gV ep}t={geG p(rga) ep}={g G : T kdypga)}.
By stability, S’ is a definable subset of G* (in the sense of the structure
(G*,-,€*,-)). All of this implies that S’ is thick, as otherwise, by the sufficient
saturation of (G*,-, &), we would get a sequence (g;);<@iriy+ of elements of
G* such that g;'g; ¢ S forall i < j < (217h*, which contradicts the fact that
[G* : Stabg-(p*)] < (2/71)*. On the other hand, S’ is clearly contained in S.

(—). Suppose Y forks over (). Then, by stability, Y k-divides over () for some k.
Then one can easily check that £ (Y") does not hold. We will check it for k = 2
and k = 3, leaving the general case for the reader.

Suppose Y 2-divides over (). Then, by the strong Np-homogeneity of €, there
are go, g1, -+ € G such that for all i < j, ¢;Y Ng;Y = 0. If LM%Y holds,
then {g : gV NY # 0} is thick, so there are i < j such that gj_lgiY NY #£0, a
contradiction. (Note that this argument does not work for “generic” in place of
“thick”.)

Suppose Y 3-divides over (). Then there are gg, g1, -+ € G such that for all
i<j<k,gYNgYNgY =0 and for all i and j, g;g; = gi+;. Suppose for a
contradiction that £ (V") holds. Then there are i < j such that £{"% (g g, Y N
Y) holds. Hence, we can find k < [ such that (g;'g;Y NY) N (g 'qg; 'g;Y N
g qlY) # 0. In particular, g;Y N g;Y N g_xy;Y # 0, a contradiction as i < j <
l—k+j. O

2.3. Means and stabilizers. Let X be a G-set. By a G-lattice we mean a family
of subsets of X including () and X, which is closed under G-translations, and
intersections and unions of pairs.

Definition 2.7. Let G be a group acting on X, D a G-lattice of subsets of X.
A mean is a monotone, (non-negative), translation-invariant function m: D — R
satisfying m(0) = 0, and for Y, Z € D

mY UZ)=m(Y)+m(Z) —m(Y NZ).
The mean m is normalized, if m(X) = 1.
Given a mean m and € € R, the e-stabilizer of a set Y C X is defined to be
Ste(YV):={ge€ G :m(gYnY)>(1—-em(Y)}.

Lemma 2.8. Let X be a G-set and D a G-lattice. Let m be a mean on D (so
m(X) < oo), and let W € D satisfy m(W) > 0. Then:
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(1) St;(W) ={g € G:m(gW NW) > 0} is thick (so generic).
(2) We have Lx(W) for all k (working in (G,-, X,-,W,...)).

Proof. (1) For some n € N we have n- m(W) > m(X). Suppose St;(W) is not
n-thick. Then one can find g; € G, 1 = 1,...,n, satisfying gj_lgi ¢ Sty (W) for all
i < j. Therefore, m(g;W N g;W) = m(gj’lgiW NW) =0 for all i < j. Hence,
n-m(W) < m(X), a contradiction.

(2) Let us work with £ = L% which clearly implies the version with £ =
£5". Without loss, we can work in a monster model (G*, -, X* - W* ...) >
(G,-, X,,W,...). To see this, apply the standard construction by incorporating
m into the language (as the collection of functions my, ), where my( g (b) =
m(p(x,b)) when it is defined, and say symbol co otherwise), extending to the
monster model, and taking the standard part; this yields a mean (which we still
denote by m) on a certain G*-lattice of subsets of X*, including W*, and such that
m(X*) = m(X) < oo and m(W*) = m(W) > 0. So without loss (G, -, X,-,W,...)
is a monster model.

We argue by induction on k. For & = 0, m(W) > 0 ensures Lo(W). For higher
k, we know by induction that L,_;(gW N W) holds whenever m(gWW N W) > 0.
Thus, {g € G : Lxk_1(gW NW)} is thick by (1), so L(W) holds by the sufficient
saturation of the model and the definition of Lg. (Note that L,_1(¢gW N W)
is a \/-positively definable set \/, D;(g), so saturation is needed to deduce that
{9 € G : D;(g)} is thick for some i.) O

Remark 2.9. In fact, the ideal Z,,, = {Y : m(Y) = 0} is an Sl-ideal, i.e. Z,,, is a G-
invariant ideal on the lattice D such that whenever W € D and there are arbitrary
long finite sequences (g;) of elements of G such that g;W Ng;W € I, then W € I.
The stabilizer St; can be defined for any Sl-ideal Z as {g : gW NW ¢ Z}, and
Lemma 2.8 continues to hold for W ¢ Z. The assumption on m’ in Proposition
2.11 below can be replaced by: D’ carries an Sl-ideal.

Lemma 2.10. Let X be a G-set and D a G-lattice. Let m be a mean on D. Then,
for any Z € D and €1,€e3 € R, Ste,(Z) Ste,(Z) C Ste, 16, (Z).

Proof. The natural argument uses symmetric differences of sets, but here our lat-
tice is not closed under set-theoretic difference, so we will mimic means of symmet-
ric differences. (In fact, using Proposition 2.21, we could work with the Boolean
algebra generated by D and use symmetric differences, but we do not do it here
to keep this argument self-contained and completely elementary.)

Note that, by the invariance of m, for any ¢ we have

(1) g€ St(Z2) <= m(gZ)+m(Z) —2m(gZNZ) < 2em(Z).

Counsider any g; € St.,(Z) for i = 1,2. Then, m(¢;Z) + m(Z) —2m(g;Z N Z) <
2e;m(Z) for i = 1,2. Hence, by invariance, we easily get

m(g192Z) +2m(1 Z) + m(Z) —2m(q192Z N nZ) —2m(g1 Z N Z) < 2(e1 + e2)m(Z).
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By (), it is enough to show that the left hand side of the above inequality is greater
than or equal to m(g1922) +m(Z) —2m(g192Z N Z). By the modularity of m, this
is easily seen to be equivalent to m(g:Z U (¢192Z N Z)) > m(g1Z N (g192Z U Z))
which is true by the monotonicity of m. U

The following proposition is our strong version of the Massicot-Wagner elabo-
ration of the stabilizer theorem of the first author. It will be the engine for most
of our main results. We will actually need it only in case X = G, but the more
general statement clarifies some aspects of the proof. Note that when X = G,
the conclusion Y C Sty (BA) implies that Y~ C BAA~!B~!. A suitable version
also holds for approximate groups (yielding information on amenable approximate
groups as in Massicot-Wagner), but we will stick with the global assumptions.

Proposition 2.11. Let A C X, B C G, N € N. Let D' be the set of finite
intersections of translates gB. Let D be a G-lattice including A and B'A for
B’ € D'. Let m be an invariant mean on D, m(A) > 0, and m' an invariant
mean on the lattice generated by D', with m/(B) > 0. Then there exists a generic,

symmetric set Y C G that is positively definable in (G, -, B) over parameters from
G, and such that YN C Sty (BA).

Proof. In this proof, both largeness and \/-definability are considered with re-
spect to the theory of the structure (G,-, B). We use the mean m’ only for the
largeness of B. Namely, by Lemma 2.8, we have L(B) for all k € w. We will show:

(**) for some k and B’ € D’ with B’ C B and Ly1(B’), the set Y := St (B’)
is generic as a \/-definable set, and Y~ C St;(B'A).

This means that if we present (using Remark 2.4) Y as \/, Y, with the Y,’s
increasing, symmetric and positively definable over G, then some Y, is generic,
and, of course, Y,V C YN, So (**) will suffice.

Let ¢ = 1/N. Let f(k) be the infimum of m(B'A) over all B € L, ND'
with B € B. So 0 < m(A) < f(k) < m(X). Thus, we cannot have

f(l) > V14+ef(l—1) forall [ > 0. Fix [ > 0 with f(I) < v1+e¢ef(l —1).
Let A= f(l)V/1+e€. Let B' € D' with B' C B satisfy

(***) L£,(B’) and m(B'A) < .

We will show that any such B’ satisfies (**) (with k =[—1.) Let Y = St, ,(B’).
Since B’ € L, Y is generic as a \/-definable set. For g € Y we have £,_,(¢B'NB’),
SO

m(gB'ANB'A) >m((gB' NnBYA) > f(l—1) > f(1)/V1+e>m(B'A)/(1+e).

Hence, g € St.(B'A). SoY C St (B'A). By Lemma 2.10, for any Z, St (Z)" C
Stne(Z). Thus, we conclude that Y~ C Sty (B’A). This proves (**). O

We will also need the following corollary of the proof of Proposition 2.11.
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Corollary 2.12. Let AC X =G, BCP(G), NeN. PutD' ={¢BN---Ng,B :
B € B,gi,...,g9, € G}. Let D be a G-lattice containing D' and including A and
B'A for B' € D'. Let m be an invariant mean on D with m(A) > 0 and m(B) > 0
for B € B. Then there exrist | € Nyg, A€ R, B € B and g1,...,9, € G such that
for BB:=BnNg¢gBN---Ng,B we have

L(B") (working in (G,-,B)) and m(B'A) < A,
and whenever E € B and hy,...,h, € G are chosen so that for E' := E N
hMEN - N hy,E one has Li(E') (working in (G,-,E)) and m(E'A) < \, then
S = Stg,_(E') is generic (as a set \/-definable in (G,-, E)), symmetric, and
SN CEAE'A)"'C EA(EA)™L.

The above corollary will be used later for N = 8; in [15], we will use it for
N =16.

2.4. From pre-mean to mean. We show how to extend a pre-mean to a mean
canonically; if the pre-mean is G-invariant, the resulting mean will therefore be
G-invariant, too. This will be essential in the proofs of the main results of Section
2.

Definition 2.13. A normalized mean on a lattice (L,U,N) of subsets of a set X
is a monotone function p : L — [0, 1], satisfying:

p(Y UY') = p(Y)+p(Y') — p(Y NY7),
and p(0) =0, p(X) = 1.

Whenever we present a type-definable set Z as an intersection (), Z;, we mean
that the Z;’s are definable, i ranges over a directed set (I, <), and Z; C Z; for
1< .

Let E = (),c; i be a type-definable equivalence relation on a definable set X,
where without loss each R; is reflexive and symmetric.

Working in the monster model, we write Y/FE for the image of Y C X in X/FE,
and Y E for the pullback of Y/FE in X. For a binary relation R on X, and Y C X,
by RoY we mean {x € X : (Jy € Y)R(y,z)}. In particular, YE = EoY.

The following definition and lemma can be read over any base set of parameters.

Definition 2.14. A pre-mean for X/E is a monotone function m from definable
subsets of X into [0, 1], with m(0) = 0, m(X) = 1, and m(YUY") < m(Y)+m(Y”),
such that equality holds whenever (R; oY) NY’ = () for some i.

By compactness, the condition “(R; oY) NY”’ = () for some " is equivalent to
LL(EOY) ﬂ Y/ — @77.

Lemma 2.15. Let m be a pre-mean for X/E. Then m induces a normalized mean
v on the lattice of sets Y/E, with Y type-definable, or equivalently on the lattice
of type-definable sets Y with Y E =Y, in the following way

v(Y) :=inf{m(D) : D definable, Y C D}.
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Proof. Let L be the lattice of all A-definable sets Y with YE =Y. For Y € L,
define
v(Y) =inf{m(D) : D definable, Y C D}.
Clearly v(0) = 0, v(X) = 1, v is monotone, and v(Y UY") < v(Y) + v(Y).
If YY" € L are disjoint, then A, Ri(y,¥) Ay € Y Ay € Y’ is inconsistent.
By compactness, for some ¢ and some definable D O Y and D' O Y’ we have
(RioD)N D" =1{. As m is a pre-mean, we have m(D U D) = m(D) + m(D"),
and likewise for any definable subsets of D, D’. Hence, in this case, v(Y UY’) =
v(Y)+v(Y’).
Now, L is not complemented, but we do have:

Claim 1: Let Y C Z be both in L. For any € > 0 there exists Y C Z, Y' € L, Y’
disjoint from Y, and with v(Y) +v(Y') > v(Z) —e.

Proof. Write Y = (), .5 Y& with definable Y} such that Ry o Yj) C Y (here
i(k) € I and j(k) € K are some functions of k). Similarly write Z = (), Z;. Find
k such that v(Y) > m(Y;) — e. We have

Yiay 0 Ry o (X \ Vi) = 0.
Let

Y =Eo(Z\Y,)=Eo (ﬂzl\yk) =(Rio(Z\ Yz).

ThenY' € L,and Y C FoZ = Z. Also, Y’ C Eo (X \Y)) C Ry o (X \Yz), s0
Y NY’ = 0. Finally, v(Y') = inf,;m(R; o (Z,\ Y)) > inf, m(Z; \ Y%), so

v(Y') +m(Yy) > iI}fm(Zl \ Yi) +m(Yy) > iIllfm(Zl) =v(2)
As m(Yy) < v(Y) + ¢, we obtain v(Y') + v(Y) + € > v(Z) as required. O(claim)

From this, the equality v(Y U Z) = v(Y) + v(Z) — v(Y N Z) can be shown
as follows. Take any € > 0. Find Y’ € L such that Y/ C Y, Y’ disjoint from
YNZ, and 6 :=v(Y) —v(Y') —v(Y NZ) < je. Similarly, find Z’ € L such that
7' C Z, Z' disjoint from Y N Z, and & := v(Z) —v(Z') —v(Y N Z) < 3e. Then
Y NZY' Z are pairwise disjoint subsets of Y U Z. Finally, find 7' € L such that
T CYUZ, T disjoint from YN Z, and 6 :=v(YUZ) —v(T) —v(Y NZ) <e
Put Y =Y Uu(TnY)e Land 2" =2 U(I'NZ) € L. Then Y, Z" and
Y N Z are pairwise disjoint subsets of Y U Z. Put 7" =Y" U Z" € L. We see that
3 =v(YUZ)—v(T")—v(YNZ) <6 < eand T” is disjoint from Y'NZ. Moreover,
o =v(Y)—v(Y")—v(YNZ)<é < jeand 8 :=v(Z) —v(Z") —v(Y NZ) <
09 < %e. Note also that 67, 4d5,6" > 0.

We get [v(YUZ)—v(Y)—v(Z)+v(YNZ)| = 0" +v(T")—v(Y)—v(Z)+2v(Y N
Z)| = 0" = ((Y)=v(Y") —v(YNZ)) = (v(Z) —v(Z2") —v(Y N2Z))| = [0" — 6] — 5.
Since 0" € [0, €] and 67,65 € [0, 1¢], we see that |6” — &7 — d5| < e. Letting ¢ — 0,
we obtain the desired equality. 0
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Lemma 2.15 will be sufficient to deal with Case 1 in Subsection 2.6, i.e. to prove
Theorem 2.35. In order to deal with Case 2 and prove Theorem 2.36, we will need
some variant of this lemma. Namely, suppose that the type-definable equivalence
relation E is on a definable group G.

Definition 2.16. A G-pre-mean for G/FE is a pre-mean for G/E such that m(Y U
Y') = m(Y) + m(Y’) whenever (RN -~ Ng,R)oY)NY' =  for some
J1,---,9, € G and some ¢ € [.

The following variant of Lemma 2.15 follows from Lemma 2.15.

Corollary 2.17. Let m be a G-pre-mean for X/E. Then m induces a normalized
mean v on the laltice of type-definable sets Y with Y (g1 EN---Ng,E) =Y for
some gq,...,9, € G, in the following way

v(Y) :=inf{m(D) : D definable, Y C D}.

2.5. Means and measures. In this subsection, we will prove that, in a certain
general context, the existence of an invariant mean is equivalent to the existence of
an invariant measure on an appropriate space. This is interesting in its own right,
but also yields model-theoretic absoluteness of various notions of “amenability”, i.e.
the existence of invariant measures on appropriate spaces computed for a given
model M does not depend on the choice of M.

Let us recall some definitions from measure theory.

Definition 2.18. Let R be a ring of subsets of a given set X, namely closed under
finite unions and differences; an example is a Boolean algebra of subsets of X.

1) A content on R is a function m: R — [0, +oco] which is finitely additive and
satisfies m(() = 0.

2) A pre-measure on R is a content which is o-additive, namely if (A4, ),<, is
a sequence of pairwise disjoint members of R whose union A is also in R, then
m(4) = 3, m(A,).

3) A measure is a pre-measure on a o-algebra of subsets of a given set.

A content m on a ring R of subsets of X is called o-finite if X is the union of
an increasing sequence (X, ),<, of elements of R with m(X,) < oco.

Fact 2.19 (Carathéodory extension theorem). Let v be a o-finite pre-measure on
a ring R of subsets of X. Then there is a unique extension of v to a measure on
the o-algebra o(R) generated by R.

From the proof, or from a more precise statement which says that the extended
measure (restricted to o(R)) is just the outer measure induced by v, it follows
that if R is a G-ring (for an action of a group G on X) and v is G-invariant, then
so is the extended measure. It is clear that the converse of the above theorem
is also true, i.e. if a content v on R extends to a measure on o(R), then v is a
pre-measure.
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When (X,,)n<w is a descending sequence of sets whose intersection is empty, we
will write X, | 0; when (X, ),<. is an ascending sequence of sets whose union is
X, we will write X,, T X.

Remark 2.20. Let v be a content on a ring R of subsets of X taking only finite
values. Then v is a pre-measure if and only if for every sequence (X,,),<. of sets
from R such that X, | 0 one has lim, v(X,,) = 0 (in this case we say that v is
continuous at 0). If R is a Boolean algebra, these conditions are also equivalent to
the condition that for every sequence (X,)n<. of sets from R such that X, T X
one has lim, v(X,,) = v(X).

Proposition 2.21. If p is a normalized mean on a lattice (L,N,U) of subsets
of a set X, then it extends uniquely to a content v on the Boolean algebra B(L)
generated by L. If L is a G-lattice and p s G-invariant, then so is v.

Proof. Case 1: L is finite, say equal to {Ay, ..., A4,}.
It is clear that there is a unique possible candidate for v, namely v is determined
by the formulas

v (a0 naf) = [ a) =p [ (N an(U 40 ).

ieAt ieAt iEAT

for any € € {0,1}"", where AT := {i <n:e(i) =1}, A7 :={i <n:e(i) =0},
and A? := X \ A;, Al := A;. This follows by finite additivity of p and the fact
that each element of B(L) can be (uniquely) written as a (disjoint) union of sets
of the form AB(O) NN A™.

Conversely, it is clear that when we define v be the above formulas on the atoms
of B(L) and then extend additively, then we get a content. It is also clear that
if p is G-invariant, so is v. The remaining thing to check is that v extends p, i.e.
v(Ag) = p(Ag) for all k < n.

We argue by induction on n, where the base induction step for n = 0 is clear.

Assume the conclusion holds for numbers less then a given n > 0. It is enough to
show that v(A,) = p(A,).

v(A) =Y p A (YA | —p A () A)n (] A) | =S+ S,

e€2n ieAt ieAt IEAT

where

Si= > plAnAan (VA | —p|lAnAn([) AN 4)].

ccon—1 ient i€eAT i€EAT
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So= > plAn[VA|—p[An([) A)N (AU [ 4)
ec2n—1 iead iead i€AL

By the modularity of p,

Sy = EEGQn_l P (Aﬂ n ﬂieA? Ai) -p (A" A (mieAi Ai) N (UieAZ AZ))
—p (AN A0 Niear Ap) +p (An AN (Micar 4i) N (Uiear A7) -

Thus, S+ 82 = Yecpnm1 £ (An N Nicar Ai) = 2 (An N (Micar A1) N (Uiear A1),
which is equal to p(A,) by induction hypothesis. Thus, the induction step has
been completed.

Case 2: L is arbitrary.

For uniqueness notice that any content on B(L) extending p is determined by
its restrictions to all Boolean algebras generated by finite sublattices of L and
that these restrictions are unique by Case 1. To show existence, for any finite
sublattice Lo C L let vz, be the unique content on B(Lg) extending p|r,, which
exists by Case 1. Then note that by uniqueness in Case 1, ULO vr, is the desired
content. U

The next easy example shows that it may happen that a mean p is continuous
at 0, but the unique extension v to a content on the generated Boolean algebra is
not continuous at 0, i.e. v is not a pre-measure and so it cannot be extended to a
measure.

Example 2.22. Take any infinite set X and present it as an increasing union of
sets X,,. Let the lattice L consist of (), X, X1,...,X. Define a mean on L by:
p(0) =0, p(X) =1, p(X,) = 5. Then, if A, | 0, where A, € L, then eventually
A, = 0, so pis continuous at 0. Let v be the unique extension of p to a content

on B(L). Then X \ X, | 0, but limv(X \ X,,) = § # 0, so v is not a pre-measure.

The means that we are interested in come from pre-means, and we will see that
this rules out obstacles as in the above example.

From now on, we work in models of a given theory 7. As is well-known, a
definable family of definable sets is given by a formula ¢(Z,7), in the sense that
the family is precisely the collection of sets defined by the formulas (z,b) as b
varies (over a given model, or over the monster model). We generalize this to
the notion of a \/-definable family (of definable sets), given now by a collection
{¢i(Z, z;) : i € I} of formulas. Namely, the family is the collection of sets definable
by formulas ;(z, b;) for i € I and varying parameters b;.

Definition 2.23. We will say that a \/-definable family & = {¢;(z,y,z) :
i € 1,z; belongs to any model} defines an equivalence relation if for every model
M, Ey = (& is an (M-type-definable) equivalence relation, where &, :=
{oi(x,y,b;) :i € I,b; C M},
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By a standard trick, we can and do assume that [ is a directed set and for every
i <, (V) (3%) (g5 (2, 4, 2) = @i, y, 2))-

The above definition is introduced in order to capture for example the following
situations. A (-type-definable equivalence relation E = ,_; Ri(x,y) is defined by
the \/-definable family {R;(z,y) : i € I} (so here there are no parameter variables
zZ;). In particular, the relation of lying in the same left [resp. right| coset of a (-type-
definable subgroup H of a (-definable group G is defined by a \/-definable family
(without parameter variables). To get another important example, consider any ()-
type-definable subgroup H = (1,.; X; (where I is directed and X; C X; whenever
i<j). Put E={G(x) NG(y) Az (yz ')z € X, : i € I,z} (where for z ¢ G or
a ¢ G we put z7'az := a). Then, for any model M, E) is the M-type-definable
equivalence relation of lying in the same right coset of [ 9EG(M) H9. More generally,
when G is equipped with a \/-definable group topology as in Subsection 2.7, then
the relation of lying in the same left [resp. right] coset of the infinitesimals (i.e.
par from Definition 2.39) is also naturally defined by a \/-definable family.

From now on, let G be a ()-definable group and let E be an equivalence relation
on G defined by a \/-definable family € := {¢;(x,y,2;) : i € I,Zz}; we assume
that each ¢;(z,y,z;) implies that z,y € G. Work in a monster model M*; so
G = G(M*).

Definition 2.24. By a G-pre-mean for £y, we mean a G-pre-mean for G/E),
(see Definition 2.16), i.e. a monotone function m on definable (with parameters)
subsets of G into [0, 1], with m(0) = 0,m(G) = 1, and m(YUY") < m(Y)+m(Y”),

such that equality holds whenever ((g1¢;(%,y,b1)N- - -Ngni(x,y,b,))0Y)NY' =0
for some ¢1,...,9, € G, 1€ I, and by, ... b, from M.

By the standard construction (by incorporating the mean into the language, as
was recalled in the proof of Lemma 2.8(2)), we have the following remark.

Remark 2.25. A G-pre-mean for &), but defined only on M-definable sets and
satisfying the “equality criterion” only for ¢i,..., g, € G(M), extends to a G-pre-
mean for £y, (defined on all definable sets). In fact, it extends to a G-pre-mean
for £yy+, which is clearly also a G-pre-mean for £y for any N < M*. If the initial
G-pre-mean is G(M )-invariant, then the G-pre-mean for &y« is G(M*)-invariant,
so it is also a G-invariant G-pre-mean for £y for any N < M™.

For a model M, let Dg,, be the G-lattice of type-definable (with parameters)

subsets D of G(M*) such that (g1 EyN- - -NgEy)oD = D for some gy, ..., g, € G.
From Corollary 2.17 and Remark 2.25, we get:

Corollary 2.26. Let m be a G-pre-mean for Ey;. Then m induces a normalized
mean p on the lattice Dg,, via p(Y) := inf{m(D) : D definable, Y C D}. If m is
G(M)-invariant, then we can replace it by a G-invariant pre-mean, and then the
induced p is G-invariant as well.

The converse is easy is check.
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Remark 2.27. A normalized mean p on the lattice Dg,, induces a G-pre-mean m
for £y via m(Y) = inf{p((nEpy N -+ - NgEx) oY) 1 g1,...,9, € G}. If pis
G(M)-invariant [resp. G-invariant|, so is m.

Corollary 2.28. If Dg,, carries a [G(M)-invariant], normalized mean, then it
carries such a mean p which is induced from a [G-invariant] G-pre-mean m for

En via p(Y) :=inf{m(D) : D definable, Y C D}.

Corollary 2.29. The ezistence of a G-invariant normalized mean on Dg,, does
not depend either on the choice of M or the monster model M* in which the lattice
15 computed.

The next proposition is the main observation of this subsection.

Proposition 2.30. Assume Ey; is G(M )-invariant. The following conditions are
equivalent.

(1) Sq/E, (M) carries a G(M)-invariant, Borel probability measure.
(2) There is a G(M)-invariant |G-invariant] G-pre-mean for Ey.
(3) The lattice Dg,, carries a G(M)-invariant |G-invariant], normalized mean.

Proof. First note that E)y; being G(M )-invariant guarantees that G(M) acts nat-
urally on G/E)s, which induces an action of G(M) on S¢/g,, (M).

(1) — (2). Let p witnesses (1). For an M-definable subset D of G define
m(D) = (D), where D is the set of complete types (over M) of elements of
D/E);. Since Ey is G(M )-invariant, we easily see that m is a G(M)-invariant G-
pre-mean for &£,;, but defined only on M-definable sets and satisfying the “equality
criterion” only for ¢y,...,9, € G(M). By Remark 2.25, it extends to an actual
G-invariant G-pre-mean (defined on all definable sets) for £y;.

(2) — (3). This follows from Corollary 2.26.

(3) = (1). Take a G(M )-invariant, normalized mean on Dg,,. By Corollary 2.28,
there exists a G-invariant, normalized mean p induced from a G-invariant G-pre-
mean m for £y via p(Y) := inf{m(D) : D definable, Y C D}. By Proposition
2.21, let v be the unique extension of p to a G-invariant content on the Boolean
algebra B(Dg,,). We will show that v is a pre-measure, which by Carathédory
theorem can be further extended to a G-invariant measure 7 on the generated o-
algebra o(B(Dg,,)). Then v induces a G(M)-invariant, Borel probability measure
on Sq/k,, (M) via u(P) :=v({a € M* : tp((a/Ey)/M) € P}) for any Borel subset
P of Sg/g,, (M), and the proof will be complete. So it remains to show

Claim 1: v is a pre-measure.

Proof. Put R := B(Dg,,). By Remark 2.20, it is enough to show that for every
sequence (X, ),<, of sets from R such that X, 1 G one has lim, v(X,,) = 1. Take
any € > 0. We need to show that v(X,,) > 1 — e for some n.

One can find sets Z; C Yy (for k € w) from Dg,, and natural numbers ny <
ny < ... such that
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for every ¢ < w (where U stands for disjoint union). Then

v(Xi) =Y p(Yi) = p(Z).
k=0
For each k& we can choose a definable set D, O Y} such that

Zm(Dk) —p(Yy) < e.

For each k let Fj be the family of all sets F' definable over the set of parameters
over which Zj is defined and such that Z, C F' C Dy. Then [ Fi = Zj for every
k. Therefore,

G:UXi:UYk\ZkgUDk\Zk.:U<Dk\ﬂfk):U |J D\ F.

k k FEF;
so by the saturation of M*, there are by < --- <k, <w and Fy, € Fi,,..., Fk, €
F,, such that
G = (Dp, \ Fipy) U -+ U (D, \ Fi,)-
(Note that this is not necessarily a disjoint union.)

We also have 7, C Fj,. Since Zy, € Dg,,, by compactness, it is easy to see
that there are definable sets F,gj € Fi, contained in Iy, such that ((g14(z, v, b)) N
N gupi(, 9, 0n)) o Fy) N (D, \ Fy;) = 0 for some gi,...,9, € G, i € I, and
bi,...,b, from M (all depending on j of course). Hence, m((Dy, \ Fy,) U k) =
m(Dy; \ Fi;) + m(Fy,), which implies that m(Dy; \ Fy;) < m(Dy,;) — m(Fy,).

From all these observations, we get

1= m(G) = m(U_, Dy, \ B,) < 1, m(Dy, \ Fiy) <

> i1 (D) = m(Fy) < (325, p(Ye,) — p(Zk;)) + €.
Hence, v(Xy,) = v((Ye, \ Z) U U (Yi, \ Zi,)) = 22520 p(Ye,) — p(Zs,) >
1 —e O(claim)

The proof of the proposition is complete . O

Remark 2.31. In Proposition 2.30, one can add one more equivalent condition:

(4) The G(M)-lattice Dg,, of type-definable subsets D of G(M*) such that
Ey o D = D carries a G(M )-invariant, normalized mean.

Proof. The implication (3) — (4) is trivial, while (4) — (1) follows similarly to
(3) = (1) (note that, in the proof of (3) — (1), it is enough to work with G(M)-
invariant pre-means, means and contents in order to get that p is G(M )-invariant).

O

The reason why we work with the more complicated lattice Dg,, instead of Dg,,
is that the former is a G-lattice which is needed in Case 2 in Subsection 2.6.
From Corollary 2.29 and Proposition 2.30, we get
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Corollary 2.32. Assume E)y; is G(M)-invariant for every model M. Then, the
ezistence of a G(M)-invariant, Borel probability measure on Sg/g,, (M) does not
depend on the choice of M.

For the type-definable equivalence relation E(z,y) given by 2 'y € H, where H
is a (-type-definable subgroup of G, Corollary 2.32 specializes to

Corollary 2.33. The existence of a G(M)-invariant, Borel probability measure
on Sq/u(M) does not depend on the choice of M.

Corollary 2.32 specializes to more absolutness results in the context of \/-

definable group topologies, which will be discussed in Subsection 2.7 (see Corollary
2.46).

Remark 2.34. If E)y; is not G(M)-invariant, then there is no natural (left) ac-
tion of G(M) on Sg/g,, (M). But we can always replace the family &£, by &£ :=
{i(tiz, tiy, z;) 1 € 1,t;,Z;} (where for a ¢ G or b ¢ G we put ab := b). Then,
for any model M, the induced equivalence relation E, will be the intersection
of all gF), for g ranging over G(M). And, by Corollary 2.32, the existence of a
G(M )-invariant, Borel probability measure on Sg/g; (M) does not depend on the
choice of M.

2.6. Measures, means, and connected components. Now, consider a struc-
ture M, a ()-definable group G, and an M-type-definable subgroup H of G (naming
parameters, we can assume that H is (-type-definable). Usually G will stand for
the interpretation of G in a monster model M* (i.e. G = G* = G(M*)); by G(M)
we denote the interpretation of G in M.

We will be interested in the following two cases.

Case 1: The type space Sg/u(M) (i.e. the space of complete types over M of
left cosets modulo H) carries a G(M )-invariant, Borel probability measure.

The discussion below repeats some arguments from the previous subsection in
a special case, but since this will be the context of the main results of Section 2,
we prefer to write it explicitly.

Let m be a G/(M)-invariant, Borel probability measure on S¢ g (M). We define
a G(M)-invariant pre-mean (see Definition 2.14, where the equivalence relation is
vH = yH) m' on M-definable subsets of G, by m/(Y) := m(Y), where Y is the
set of complete types over M of elements of Y/H.

As in the proof of Lemma 2.8, the standard construction allows us to extend
m’ to a G-invariant pre-mean on M*-definable subsets of G = G(M*). Note that
this extended pre-mean is definable over ) in some expansion of the language
(meaning that for any closed interval I and for any formula ¢(x, ) of the original
language the set {b: m/(p(z,b)) € I} is (-type-definable in this expansion of the
language), and M* can be chosen so that M < M* in the expanded language.
Next, using Lemma 2.15, we obtain a normalized, G-invariant mean m on Dy —
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the G-lattice of M*-type-definable subsets Y of G satisfying YH = Y — which
satisfies m(Y) = inf{m/(D) : D definable, Y C D}.

Case 2: H is normalized by G(M), and Sy\o(M) carries a G(M)-invariant,
Borel probability measure, where the action of G(M) on Sp\¢(M) is induced by
the action on H\G given by g * (Ha) := gHa = H(ga).

Let m be a G(M)-invariant, Borel probability measure on Sy (M). As in Case
1, we obtain a G(M )-invariant pre-mean (for the equivalence relation Hx = Hy)
m’ on M-definable subsets of G. The standard construction allows us to extend it
to a definable over () (in some expansion of the language), G-invariant pre-mean
m’ on M*-definable subsets of G = G(M™*), for some monster model M* such that
M* = M also in the expand language. Moreover, since H is normalized by G(M),
the standard construction gives us the following additional property of m/: For any
Y and Z definable subsets of GG, M-definable superset D of H, and ¢1,...,9, € G,
it (D"N---ND™)YNZ =0, then m(YUZ)=m'(Y)+m/'(Z), ie. m'isa
G-pre-mean for H\G, using the terminology from Definition 2.16. By Corollary
2.17, we obtain a normalized, G-invariant mean m on D}, — the G-lattice of
M*-type-definable subsets Y of G satisfying (H9* N ---N H)Y =Y for some
g1, -5 gn € G — which satisfies m(Y") = inf{m/(D) : D definable, Y C D}.

We are ready to prove the main results of this section. They concern situations
from the above Cases 1 and 2, respectively. We will give a detailed proof of the
first theorem and only explain how to modify it to get the second one.

In the rest of this section, we will write Z* to mean ZZZ1Z~1; Z® denotes
VAV AS

Theorem 2.35. Let H be a ()-type-definable subgroup of G, normalized by G(M).
Let N be the normal subgroup generated by H. Then (1) <> (2) +» (3) <> (4) — (5):

(1) Scyu(M) carries a G(M)-invariant, Borel probability measure.

(2) There is a G(M)-invariant pre-mean for G/H on M-definable subsets of
G.

(3) There is a G-invariant pre-mean for G /H which is definable over () in some
expansion of the language in which M < M* (enlarging M* if necessary).

(4) The lattice Dy carries a normalized, G-invariant mean.

(5) GY < NGYYP.

Proof. The equivalence of conditions (1)-(4) essentially follows from Proposition
2.30 applied to £ := {G(x) NG(y) Na7'y € X; i € I}, where H = (),.; X; (with
I directed and X; C X; whenever ¢ < j). For that notice that the relation E,; in
this special case is just lying in the same left coset of H, so it is G-invariant, and
the lattice Dg,, coincides with Dy.

However, for the reader’s convenience, we explain some of these equivalences
more explicitly. By the above discussion of Case 1, any G(M)-invariant, Borel
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probability measure on Sg;y(M) induces a G(M)-invariant pre-mean on M-
definable subsets of G, which then can be extended to a G-invariant pre-mean
m’ on definable subsets of G which is definable over () in some expansion of
the language in which M < M* (enlarging M* if necessary). This in turn
induces a normalized, G-invariant mean m on the lattice Dy, which satisfies
m(Y) = inf{m/(D) : D definable,Y C D}. So (1) — (2) > (3) — (4). The
implication (4) — (1) follows from the implication (3) — (1) in Proposition 2.30.

It remains to prove (4) — (5). So assume (4). By (4) — (2) and the above
discussion, we have a G-invariant mean m on Dy given by m(Y) = inf{m/(D) :
D definable, Y C D} for some pre-mean m’ satisfying (3).

Let p € Sg(M) be a wide type of G, in the sense that m(DH) > 0 for any D € p.
In order to finish the proof, it is enough to show that (HpH)* contains G%J. Indeed,
then, since pp~' C G9% implies ppp~'p~! C GYP, and so (HpH)* C NGP, we
get G%9 < NGSY which is the desired conclusion.

As HpH is an intersection of partial types P over M satisfying HPH = P
and m(P) > 0 (namely the appropriate HDH with D M-definable), it suffices to
show that for each such P, P* contains G%). For this, it suffices to find for any
M-definable set P’ containing P a generic, M-type-definable set Q = HQH with
Q% C P, for then m(Q) > 0 and we can find an M-definable set () containing
Q such that Q® C P, and we can iterate: find a generic, M-type-definable
R = HRH with R® C Q™ and an M-definable R’ containing R and satisfying
R® C Q" etc., and at the limit take the intersection P*NQ*NR“N... —an M-
type-definable, bounded index, subgroup contained in P™, which clearly contains
G%9. Since this is true for any M-definable P’ containing P, we get G%% C P*.

So consider a partial type P over M satisfying HPH = P and m(P) > 0.
Consider any M-definable P’ containing P. We will apply Corollary 2.12 to:
X =G, A := P, and the family

B:={HQH : P C HQH C P' and Q is M-definable}

of subsets of G. Recall that D’ is the collection of all intersections gy BN---Ng,B,
where B € B and ¢q,...,g9, € G, and as D take the lattice generated by: D', the
set A, and all sets B’A for B’ € D’. Note that D C Dy, so our mean m is defined
on D. By Corollary 2.12, we find l e N, A € R, B € B and ¢y,...,9, € G such
that for B':= BNg:BN---Ng,B we have

(***) L,(B") (working in (G, -, B)) and m(B'A) < A,

and whenever I/ € B and hq,...,h, € G are chosen so that for £/ := ENhEN
-+ -Nhy, E one has £;(E') (working in (G, -, E')) and m(E'A) < A, then St.,  (E') is
generic (as a set \/-definable in (G, -, F)), symmetric and has 8th power contained
in B'P(E'P)"' C E*.
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We can find M-definable sets C and D such that B C C C P/, P C D and
for ' .= CngCN---Ng,C, we have m'(C'D) < A (where m' is the pre-
mean on definable subsets of G chosen at the beginning of the proof of (4) —
(5)). Now, choose any M-definable set @ such that B C Q C HQH C C. Let
Q=QNaRQN---Ng,Q. Then B' C @', so, by (***) and Remark 2.3, we get
L£,(Q") (working in (G,-,Q)). Since £;(Q’) is a \/-definable (over () condition on
g1, - -, gn in the structure (G, -, Q) and @ is M-definable in the original theory, we
see that £;(Q') is an M-\/-definable condition on ¢, ..., g, in the original theory.
On the other hand, m/(C'D) < X is a \/-definable (over (}) condition on g1, ..., g,
in the expanded language (in which m’ is definable over (). Since M < M* also
in this expanded language, we can find gi,...,¢9, € G(M) such that £;(Q’) and
m/(C"D) < X still holds for the corresponding @' and C’. Finally, take £ := HQH
and E' == ENgEN---Ng,E. We see that E € B, £;(E’") (working in (G, -, E))
and m(E'A) < \.

Define Y := St., ,(E'). By the the choice of [ and A, we have that Y =/ Y,
is generic and Y® C B4 C P4,

As H is normalized by g¢q,...,g,, we have HE'H = E'. Since HE' = F/,
we have HYH = Y, and moreover Y is a disjunction of sets Y, positively M-
definable in (G, -, F) and satisfying HY, H = Y,.. Indeed, let R(x,y) be a new
predicate. By the approximations to £; mentioned in and after Remark 2.2, we
have that for any s € w there are increasing sets P, s(R)(y), v € w, positively
(-definable in (G,-, X, -, R) such that P, (R(9z,9))(y) < P,s(R(z,y))(y) for
all ¢ € G, and Ls(R(z,y)) can be presented as the \/-positively definable set
V, P.s(R(z,y))(y). In particular, if R(z,y) is positively definable in (G, -, X, -, E),
then the P, ((R)(y) are positively definable in (G, -, X, -, E) over the same parame-
ters over which R(x,y) is defined. Applying this to our situation for s :=[—1 and
R(z,y) :=(x € (yE' N E")), we get that Y = {y : L;(yE’ N E’)} can be presented
as \/, P, s(R(x,y))(y). Putting Y, (y) = P, s(R)(y), we have that Y, is positively
M-definable in (G, -, F), and, since HE' = E’, we get that for any hy, hy € H:
Y, (hiyhy) <= P, (R(z,hiyh2))(y) <= P,s(x € hyhoE' N E')(y) <=
P,z € myE' N E"Y(y) <= P,(r € yE'Nh'E)(y) <= P, (v €
yE'NE)(y) < Y.,(y). So HY,H =Y, as was claimed at the beginning of
this paragraph.

Since the Y, C G are positively M-definable in (G,-, F) and E is M-type-
definable in the original theory, we easily get that the Y, are M-type-definable
in the original theory. Moreover, some Y, will be generic, and HY, H =Y, and
Ys C P, O

In the situation of Case 2, we have

Theorem 2.36. Let H be a ()-type-definable subgroup of G, normalized by G(M).
Let N be the normal subgroup generated by H. Then (1) <> (2) <> (3) <> (4) <
(5) — (6):
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(1) Sma(M) carries a G(M)-invariant, Borel probability measure.

(2) There is a G(M)-invariant pre-mean for H\G on M-definable subsets of
G.

(3) There is a G-invariant G-pre-mean m’ for H\G (i.e. a G-invariant pre-
mean m’ for H\G such that m'(ZUZ") = m/(Z)+m/(Z") whenever D'Z N
Z' =0 for some M-definable superset D of H and D' = D% N ... N DI
for some g1,...,g, € G).

(4) There is a G-invariant G-pre-mean for H\G which is definable over 0 in
some expansion of the language in which M < M* (enlarging M* if neces-

sary).
(5) The lattice D}, carries a normalized, G-invariant mean.

(6) G < NG’
Proof. The equivalence of conditions (1)-(5) essentially follows from Proposition
2.30 applied to € := {G(2) ANG(y) Nyz™' € X; i € I}, where H = (),.; X; (with
I directed and X; C X; whenever 7 < j). For that notice that the relation Ej; in
this special case is just lying in the same right coset of H, so it is G(M)-invariant
by the assumption that H is normalized by G(M), and the lattice Dg,, coincides
with D;. One should also use the above discussion of Case 2.

It remains to justify (5) — (6).

So assume (5). By (5) — (2) and the discussion of Case 2, we have a G-invariant
mean m on DY given by m(Y') = inf{m/(D) : D definable, Y C D} for some pre-
mean m' satisfying (4). We follow the lines of the proof of (4) — (5) in Theorem
2.35, but now it is enough to work with right cosets modulo H%* N ... N H9 for
some g1,...,9, € G(M) (in place of two-sided cosets of H), e.g. P is a partial
type over M satisfying (H9 N ---N H%)P = P (for some gy,...,g, € G(M)) and
m(P) > 0. The way how D); was defined is essential to ensure that D C D, (and
so m is defined on D). O

Conjecture 0.1 follows immediately from Theorem 2.36, taking H := p:

Corollary 2.37. 1) Let G(M) be a topological group and assume that the members
of a basis of neighborhoods of the identity are definable in M. If G is definably
topologically amenable, then G . = Gt op-

2) Let G(M) be a topological group. If G(M) is amenable, then G2 = G2

top top *

2.7. \/-definable group topologies. In Section 1, we recalled two contexts to
deal with topological groups model-theoretically: one with all open subsets being
definable, and a more general one with a basis of open neighborhoods at the iden-
tity consisting of definable sets. Notice, however, that in each of these contexts
we do not get a natural group topology when passing to elementary extensions.
In order to get a group topology in an arbitrary elementary extension, one usually
considers a more special context with a uniformly definable basis of open neigh-
borhoods at the identity (in other words, when a basis of open sets at the identity
is a definable family).
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As usual, let G be a (-definable group, and M or N denotes a model. Here,
we extend the last context, for example to cover topologies induced on G(M)
by type-definable subgroups of G normalized by G(M). Note that any (-type-
definable subgroup H = (1),.; X; (with the definable sets X;, where without loss
I is a directed set such that X; C X, for ¢ < j), normalized by G(M), can be
viewed as topologizing G(M) in the sense that the family {X; : ¢ € I} is a basis
of (not necessarily open!) neighborhoods at the identity; but on a bigger model it
will not in general give a topology. It is thus natural to consider a slightly stronger
condition.

We first elaborate on some terminology introduced briefly in Subsection 2.5. By
a \/-definable family of definable subsets of G, we mean a class T = {p;(z,7;) : i €
I, y; belongs to any model}, where ¢;(z, ;) are some formulas implying G(z). In
any model M,

T(M) :={pi(M,y;) i € I,y; € M}
is an actual collection of subsets of G(M); also, put
Tar = {pi(z,4:) : yi € M}
By a standard trick, we can, and will from now on, assume that [ is a directed set,
and for every ¢ < j we have (Vy;)(3y;)(¢;j(x,9;) = wi(x,7;)); the last condition
is equivalent to the property that for every model M and i < j, each member
of the definable family {p;(M,y;) : 7; € M} contains a member of the family

{¢;j(M,y;) : gy € M}. (In fact, by the aforementioned standard trick, we could
even replace the word “contains” by “equals”, but we will not need it.)

Definition 2.38. A \/-definable group topology on G is a \/-definable family T =
{@i(x,y;) : i € I,y;} of definable subsets of G containing 1 such that in any model
M, T (M) forms a basis of (not necessarily open) neighborhoods of the identity
for a topology on G(M), making the group operations continuous. Equivalently,
for any model M, T (M) consists of subsets of G(M) containing 1, such that each
of the following sets

(1) the intersection of any two members of T (M),
(2) the inversion of any member of T (M),
(3) the conjugate of any member of 7 (M) by an element of G(M)

contains a member of T (M), and, additionally, if A € T (M), then there exists
B e T(M) with B? C A.

It easy to check that in the above definition, it is enough to take a sufficiently
saturated model M.
By compactness, a \/-definable group topology on G is a \/-definable family
T =A{pi(z,y;) : i € 1,7;} of definable subsets of G containing 1 such that:
(1) For every i,j € I there is k € I such that (V;)(Vy;)(30k)(vr(x, 9x) —

(2) For every i € I there is j € I such that (V;)(37;)(p; (1, 5;) — iz, 3:)).
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(3) For every ¢ € I there is j € I such that (Vg;)(V2)(3y;)(¢;(z txz, §;) —
pi(z, i)
(4) For every i € I there is j € I such that (Vy;)(3y;)((3z1, x2)(pj(x1,75) A
pj(@2,7j) Nw =21 22) = @i(2, 7i))-
Let T ={p(z,%) i € 1,Z;} be a \/-definable group topology on G. Work in a
fixed monster model M* (so M < M* by convention).

Definition 2.39. We let u], be the M-type-definable subgroup mDeTM D. When
the identity of T is clear, we write puy;.

It is clear that ], is normalized by G(M).

Remark 2.40. For any A-definable set D, there exists an A-type-definable set cl(D)
such that for any model M, the closure of D(M) is cl(D)(M). Namely, a € cl(D)
it A\, (Vy:)(a-@i(x, g;)ND(x) # 0) (more formally, A, (V5:)(3z)(pi(a 'z, 7)) AD(x)).

For a type-definable set D = (), D; (where D; C D; for i < j), let
c(D) = (,cl(D;). For any sufficiently saturated model M, the closure of
D(M) is cl(D)(M).

Remark 2.41. For P M-type-definable, cl(P) C Pul,. Indeed, cl(P) = N{PH :
H € T}, which formally means that cl(P)(z) is the type A,(V7;)(3z1, z2)(P(x1) A
©i(wa, i) Az = x1-23). In particular, ], is closed. Similarly, cI(P) C ul,P. In fact,
cl(P) is contained in both P((ul,) N -0 (u],)9) and ((uf,)9 N -0 (ul,)9) P
for any ¢1,...,9, € G.

By C7 (or just C) we will denote cl(1). Then C = (T, so it is -type-definable,
and it is a normal subgroup of G. It is clear that C < uy, for any M. Note that
formally C coincides with pip/« which happens to be (-type-definable in the monster
model M™.

We say that T is strongly Hausdorff if G(M) is Hausdorff in every model M:;
equivalently C = {1}; equivalently, (| F = {1} for some definable family 7 C 7.
Note that, in contrast with definable families, 7 (M) may be Hausdorff for one M,
without T being strongly Hausdorff. This occurs when u],(M) = {1}, see Example
2.45. Note also that given a Hausdorff topological group, we can expand it to a
first order structure in which there is a definable 7 which is strongly Hausdorff
and induces the given topology on the group we started from.

Define the following G-lattices of subsets of G (a (-definable group equipped
with a \/-definable group topology T).

(1) D — the G-lattice of sets D type-definable in M* over arbitrary param-
eters, such that Du], = D.

(2) D "~ the G-lattice of sets D type-definable in M* over arbitrary param-
eters, such that ((u],) N--- N (ul;)9)D = D for some gy, ..., g, € G.

(3) Dy — the G-lattice of closed sets D type-definable in M* over arbitrary
parameters.
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(4) D¢ — the G-lattice of sets D type-definable in M* over arbitrary parameters,
such that DC = D.

By Remark 2.41, it is clear that D4 and D4’ are both contained in Dy C De.
Now, we give an example showing that type-definable subgroups lead, in a nat-
ural way, to \/-definable group topologies.

Example 2.42. Let H = (,.; X; be any (-type-definable subgroup of G (and
without loss I is directed, and X; C X; whenever i < j). Let 7 be the union
of all families 7;,,, where 7;,, is the class of m-fold intersections of conjugates
of X;, for instance T;1 = {¢g7'X;g : ¢ € G}. Tt is clear that with the order
(i,m) < (j,n) <= i <jAm<n,T can be treated as a \/-definable family of
definable subsets of G containing 1. Clearly, for any model M, u], = (\7Ta is a
type-definable subgroup of G normalized by G(M); it follows that 7 (M) defines
a group topology on G(M).

In case when H is invariant under conjugation by elements of G(M), we can
recover H as the intersection of all M-definable neighborhoods of the identity.

All of this works also for H type-definable over M (allowing formulas with
parameters from M in the definition of \/-definable group topology).

In case H is a normal subgroup of G, the family T yields the same topology as
the family {X; : i € I} (where X;(z) are definable sets which do not depend on
any parameters ;), iy = C = H does not depend on M, and cl(P) = PH for any
type-definable set P. In particular, D4 = D#M/ = Dy = D¢ for every M.

Remark 2.43. Example 2.42 shows a connection between \/-definable group topolo-
gies and G(M)-normal, M-type-definable subgroups:

e cach \/-definable group topology T yields the G(M)-normal, M-type-
definable subgroup u];;

e cach G(M)-normal, type-definable over () [or over M| subgroup H yields
the \/-definable group topology 7 on G |defined over M, if G is defined
over M| described in Example 2.42, such that u], = H.

However, the former notion, namely that of a \/-definable group topology is more
precise, as it is a priori given without reference to the particular small model
M. Also, the map from \/-definable group topologies to G(M)-normal, M-type-
definable subgroups (or topologies on G(M)), given by T + ul,, is not injective;
Example 2.42 provides the smallest \/-definable group topology specializing to a
given topology on G(M), but there can certainly be others, e.g. in the Abelian
case, non-discrete, strongly Hausdorff topologies are never deduced from a single
model in this way (see also Example 2.45).

Remark 2.44. Let us change the notation only for the purpose of this remark. Let
G be an arbitrary topological group. Choose a basis {X; : i € I} of open sets at
the identity, with X; C X, whenever 7 < j. Expand the pure group language with
predicates for all X;’s, and denote the resulting structure by M and the resulting
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language by L. Let M* be a monster model, G* = G(M*) and X} = X;(M").
Then H := ()X} is a (-type-definable group which is normalized by G = G(M).
So Example 2.42 yields a \/-definable group topology 7 which specializes to the
original topology on G. This is the smallest (in a strong sense) \/-definable group
topology which specializes to the original topology on G, namely, for any other
such topology T’ which is \/-definable in an expansion of the pure group structure
on G whose language is denoted by £, and for any model N > M in the sense of
LUL', the topology on G(N) given by T is weaker than the one given by 7’. This
shows that Example 2.42 allows us to extend the given group topology on G to
the canonical (i.e. smallest among topologies \/-definable in arbitrary expansions)
group topology on elementary extensions.

Let us look at a concrete example illustrating some of the above discussions.

Example 2.45. Take M := (Z,+,:) and G(M) := (Z,+). Take the 0-type-
definable subgroup H := [),cyn!G. The family 7 from Example 2.42 coincides
with the \/-definable family {n!G : n € Z}. So T (M) is Hausdorff, but 7 is not
strongly Hausdorff. Now, consider the definable family F = {¢g- G : g € G\ {0}}
of definable subsets of G containing 0. It is clear that the family 7 of finite
intersections of members of F is a strongly Hausdorff \/-definable group topology
on G, and T (M) and T'(M) induce on G(M) the same topology. But for every
Np-saturated model M, the topologies T (M) and T'(M) on G(M) are different
(as the later is Hausdorff, but the former is not).

We return to the general context where 7 = {p(x,z) : i € I,%} is a \/-
definable group topology on G. Recall that the group G(M), with the topology
induced by T (M), is said to be definably topologically amenable if there is a
(left) G(M)-invariant, Borel probability measure on S,,,\a(M) (equivalently, on
SeM(M)). A natural question arises, whether the definable topological amenability
of (G(M),T(M)) is independent of the choice of M. The positive answer follows
from Corollary 2.32 applied to the family £ := {G(z) A G(y) A i(yz™, z) -
i € I,Z}; similarly, applying Corollary 2.32 to the family £ := {G(z) A G(y) A
wi(z7 1y, z;) i € 1,7}, we get item (2) of the following corollary.

Corollary 2.46. Let T be a \/-definable group topology on G. Then:

(1) the definable topological amenability of (G(M), T (M)) does not depend on
the choice of M,

(2) the ezistence of a G(M)-invariant, Borel probability measure on Sgu,, (M)
does not depend on the choice of M.

But the following question remains open.

Question 2.47. 1) Let T be a \/-definable group topology on G. Does amenability
of (G(M), T(M)) as a topological group depend on the choice of M ?
2) Let G be an arbitrary topological group. Let T be the smallest topology among
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topologies \/-definable in expansions of (G,-) which specialize to the given topology
on G (see Remark 2.44). Does amenability of G (as a topological group) imply
amenability of (G(N), T(N)) for N = M (where T is defined in Th(M)).

It is clear that the positive answer to (1) implies the positive answer to (2).
Question (2) is interesting, as it asks whether there is any chance to transfer
(topological) amenability to elementary extensions. (Note that whenever we have
two group topologies 7; C T3 on a given group G, then amenability of (G, 75)
implies amenability of (G, 71).)

Still, T = {p(x, z) : i € I, 2} is a \/-definable group topology on G.

Definition 2.48. 1) A right pre-mean for Ty is a G-pre-mean for £y, (in the sense
of Definition 2.24) with & := {G(z) A G(y) A wi(z 7'y, 2;) : @ € I,z }. Explicitly,
it is a monotone function m on definable subsets of G into [0, 1], with m(0) = 0,
m(G) =1, and m(Y UY') < m(Y) + m(Y’), such that equality holds whenever
YDNY' =0 for some D € Ty,.

2) A left G-pre-mean for Ty is a G-pre-mean for £y, (in the sense of Definition
2.24) with € := {G(z) AG(y) Api(yxz™",2) 1 i € I, z;}. Explicitly, it is a monotone
function m on definable subsets of G into [0, 1], with m(@) = 0, m(G) = 1, and
m(YUY’) <m(Y)+m(Y’), such that equality holds whenever (D?'N---ND%)Y N
Y’ = () for some D € Ty; and gq,..., g, € G.

Then Proposition 2.30 specializes to the following two statements.

Corollary 2.49. The following conditions are equivalent.

(1) Sc )y (M) carries a G(M)-invariant, Borel probability measure.
(2) There is a G(M)-invariant [G-invariant] right pre-mean for Tyy.
(3) The lattice D™ carries a G(M)-invariant [G-invariant], normalized mean.

Corollary 2.50. The following conditions are equivalent.
(1) (G(M), T (M)) is definably topologically amenable (i.e. S, \a(M) carries
a G(M)-invariant, Borel probability measure).
(2) There is a G(M)-invariant |G-invariant] left G-pre-mean for Ty;.
(8) The lattice D5M' carries a G(M)-invariant [G-invariant], normalized mean.

By Corollary 2.29, we get that the existence of a left-invariant mean on D% [or
on DFM ', respectively| is independent of the choice of both M and M*. Similarly,
the existence of an invariant mean on D, is independent of the choice of M*. A
question is whether the existence of an invariant mean on D7 depends on the
choice of M*.

Along with Remark 2.41, Corollaries 2.49 and 2.50 seem to suggest that one can
get (from amenability) a G-invariant, normalized mean on the lattice D7 of closed,
type-definable sets; but we do not quite see this. It is certainly not true about
Dec. To see this, it is enough to take an amenable (as a topological group) but
not definably amenable group G(M) such that G is strongly Hausdorff (as then
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Dc consists of all type-definable subsets of G = G(M*), so the restriction of an
invariant mean defined on D¢ to the algebra of all definable subsets would be a left-
invariant Keisler measure, contradicting the failure of definable amenability). As a
concrete example with these properties one can take the group Sy, = Sym(N) with
the usual topology, considered as a group definable in a standard model (M, €) of
a sufficient fragment of set theory.

The following is a corollary of the proofs of Theorems 2.35 and 2.36 applied for
H := uys; the set D from the conclusion below will be p* := ppp~ip~! for a type
p € Sg(M) which is wide in the sense that m(Dpups) > 0 [resp. m(ua D) > 0] for
every D € p.

Corollary 2.51. Let T be a \/-definable group topology. Assume DM [or DM,

respectively| carries a G-invariant mean m. Then G899 < GS%(u§,). More pre-

cisely, there exists an M-type-definable set DC G, with ﬁ(,u%) D GY. In fact,
for any wide, M -type-definable set P = pip Py we have P* .= PPP~'P~1 D G%.

The main result of this subsection is the the following

Proposition 2.52. Let T be a \/-definable group topology such that for alln € N
the projections (to all subproducts) of every type-definable, closed set in G™ are
closed. Assume Dy carries a G-invariant mean m. Then cl(G}) = cl(GS). More
precisely, there exists an M-type-definable set D C G99 with cl(D) = cl(GP). In
fact, for any closed, wide (i.e. of positive mean), M-type-definable set P we have
Pt:= PPP'P' D GY.

Proof. We start from

Claim 1: i) The product of any two closed, type-definable sets is always closed
(and clearly type-definable).

ii) For all type-definable sets P and @, cl(cl(P) - cl(Q)) = cl(P - Q).

iii) For all type-definable sets P and Q, cl(P) - cl(Q) = cl(P - Q).

iv) For every type-definable set P = (P, (where P; C P, whenever ¢ < j),
A(P) = N, cl(P).

Proof. i) This would follow immediately from the assumption that projections of
closed, type-definable sets are closed if the topology induced by 7 on G = G(M*)
was Hausdorff. But if it is not Hausdorff, we can always pass to the Hausdorff
quotient G/C, where C = cl(1). Working with G//C in place of G, we still have
that projections of closed, type-definable sets are closed, so the product of any
two closed, type-definable subsets of G/C is closed. Now, take any two closed,
type-definable subsets P and @ of G. Then P = PC and @ = QC. So P/C and
@Q/C are closed, type-definable subsets of G/C, and so PQ/C = P/C-Q/C is closed
in G/C, hence PQ is closed in G.

ii) is a general property of all topological groups.
iii) Using (ii), we immediately see that (iii) is equivalent to (i).
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iv) follows from Remark 2.40. O(claim)

Claim 2: For any closed, M-type-definable set P with m(P) > 0, there exists a
generic, closed set ) type-definable over some parameters and such that Q% C P*.

Proof. We use Proposition 2.11, with G = X the present G/C (where C = cl(1)),
A = B = P/C, N = 8, D being the lattice of closed, type-definable subsets of
G/C, and m = m' being the pushforward of the mean m from the statement of
Proposition 2.52. (Item (i) of the first claim is used to ensure that the assump-
tions of Proposition 2.11 hold.) So there exists a generic, symmetric Q C G/C
positively definable in (G/C,-, P/C), and with Q® C (P/C)*. By the assumption
that projections of closed, type-definable sets are closed (and the fact that G/C is
Hausdorff), it follows that @ is closed and type-definable in the original structure
M*. So the pullback Q of Q by the quotient map G — G//C is also generic, closed,
type-definable, and Q% C P*. O(claim)

Since we are going to deal with G2, we need to be more careful about parame-
ters, and force () to be defined over M.

First, we will prove the last statement of Proposition 2.52, and then we will
quickly explain how to deduce the previous one.

So take any closed, wide, M-type-definable set P (where wide means that
m(P) > 0). Consider any M-definable set P’ containing P*.

By the first and last item of the first claim, we can find an M-definable set P”
such that P* C P” C cl(P") C P'. Let Q be a set provided by the second claim.
We can find an M-definable, generic set @y such that Q5 C P”, and so, by item
(iii) of the first claim, c1(Qg)® = cl(Q3) C cl(P”) C P'. By the last item of the first
claim, we can find an M-definable set @Q; such that cl(Qg) C Q; and cl(Q,)® C P'.
Put

Cy = cl(Q))™.

Now, apply the above argument to cl(Qg) (which is M-type-definable by Remark
2.40) in place of P, and Q1 in place of P’. As a result, we obtain M-definable,
generic sets Ry and R such that cl(Ry) C R; and cl(R;)® C Q}. Put

Cy = cl(Ry)*.

Continuing in this way, we obtain a sequence C4,C5,... of M-type-definable,
generic and symmetric subsets of P’ such that C?,; C C; for all i. Then N, C; is a
bounded index, M-type-definable subgroup contained in P’. Therefore, G8 C P'.
Since P’ was an arbitrary M-definable set containing P*, we conclude that G9% C
P*, which is the desired conclusion.

Let us prove now the existence of D. Let p be a wide type of G over M, in the
sense that m(cl(D)) > 0 for any D € p. Let P = cl(p). By the last item of the
first claim, and by what we have just proved, we get that P* contains G%%. Put
D := p*. Tt is clearly contained in G2, On the other hand, by item (iii) of the
first claim, cl(D) = cl(p*) = cl(p)* = P* D G. O
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Remark 2.53. The assumption in Proposition 2.52 that the projections of closed,
type-definable sets are closed may seem a bit artificial, perhaps it can be changed.
At any rate, it holds in each of the following two situations.

(1) The situation from the last paragraph of Example 2.42 namely: H =
(Nics Xi is a normal, type-definable subgroup of GG (and without loss X; C
X; when i < j), and T :={X, :i € I}.

(2) T is a definable family and (G(M), T (M)) is compact (Hausdorff) for some
model M.

Proof. (1) follows from the observation that FF C G" is closed if and only if F' =
F-C", where C = cl(1).

(2) By the compactness and Hausdorffness of G(M), the projections of any closed
subset of G(M)™ are closed. Thus, since T = {p(z,y) : g} is a definable family,
we easily get that the projections of any closed and definable subset F' of G™ are
closed. On the other hand, for any type-definable, closed set F' = (F; C G"
(where F; C F; whenever ¢ < j), using the last item of the first claim of the proof
of Proposition 2.52, we get that F' = ), cI(F;) and each cl(F}) is definable (by the
definability of 7), and, by compactness, any projection of F is the intersection of
the projections of the cl(F})’s. So the conclusion follows. O

By virtue of Remark 2.53(1), the following obvious corollary of Theorem 2.35
also follows from Proposition 2.52.

Corollary 2.54. Let N be any normal, (-type-definable subgroup of G. Assume
the lattice Dy (of type-definable subsets Y of G such that YN = N) carries a
G-invariant mean. Then G99 < NGP.

3. DEFINABLE ACTIONS, WEAKLY ALMOST PERIODIC ACTIONS, AND STABILITY

One aim of this section is to give a negative answer to Conjecture 0.3 about
definable actions of definable groups on compact spaces: see Corollary 3.3 below.
But we go rather beyond this, discussing the relationships between the notions in
the title of the section. Weakly almost periodic actions (or flows) of a (topological)
group G on a compact space X are important in topological dynamics. Weak
almost periodicity (for functions on a topological group) was introduced in [8], and
discussed later in [13]. We will be referring to [9] where weak almost periodicity
of G-flows is defined and studied. The connection of weak almost periodicity
with stability is by now fairly well-known, although much of what is in print or
published, such as [4] and [16], deals with the case where the relevant group G is
the (topological) automorphism group of a countable w-categorical structure. In
contrast, we are here concerned with an action of a group G(M) definable in a
structure M on a compact space X where G(M) is viewed as a discrete group,
but where the action on X is assumed to factor through the action of G(M) on
its space Sg(M) of types over M.
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We will give some background below on both continuous logic (in an appropriate
form) and weak almost periodicity. The connection between stability in continuous
logic and weak almost periodicity goes through results of Grothendieck [13| in
functional analysis, which have been commented on in several expository papers
such as [5] and later [24]. However, it is relative stability, namely stability of a
formula in a model M which is relevant, and only equivalent to stability when the
model is saturated enough.

One of our main structural results is Theorem 3.16 below characterizing when
the action of G(M) on X is weakly almost periodic in terms of stable in M for-
mulas. When M is wy-saturated, another equivalent condition is that the action
of G(M) on X is definable, which will yield the desired conclusions (Theorem 3.2
and Corollary 3.3).

Although this is a model theory paper, it is convenient for us to quote heavily
from the topological dynamics literature, especially for results which have not yet
been developed in the parallel model-theoretic environment.

We will generally be assuming any ambient theory T to be countable.

The notion of a definable action of a definable group on a compact space was
given in [11] and explored in some degree of generality in [17]. We repeat the
definition below. As was said in the introduction, it would be more appropriate to
call it a “separately definable action”, but for simplicity we are saying “definable
action”.

Definition 3.1. (i) Let X be a set definable over M. A function f from X (M) to
a compact space C' is said to be definable if if for every pair C7, Cs of closed disjoint
subsets of C, there is a definable (in M) set Z C X (M) such that f~1(C;) C Z,
and f~1(C) € G(M) \ Z.

(i) Suppose G is a group definable over M. A group action by G(M) on a compact
space X by homeomorphisms is said to be definable if for every z € X the map
from G to X taking g to g - x is definable.

When all types over M are definable, then the natural action of G(M) on Sg(M)
is a definable action and is moreover the universal definable G(M )-ambit (see [11]).
This is interesting for structures M such as the reals or p-adics where all types
over M are definable, although the complete theories are unstable. However,
in general, definability of an action of G(M) on a compact space X is a rather
restrictive condition. In [17], it was shown that there is always a universal definable
G(M)-ambit (which will of course factor through Sg(M)). Recall from Definition
1.7 that G(M) is said to be weakly definably amenable if whenever G(M) acts
definably on the compact space X, then X supports a G(M )-invariant, Borel
probability measure, equivalently the universal definable G(M)-ambit supports a
G/(M )-invariant, Borel probability measure. A special case of Conjecture 0.3 says
that if G(M) is weakly definably amenable, then G} = GS°. At the end of
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Subsection 3.2, we will show that this fails drastically, by proving that when M is
sufficiently saturated, then G(M) is always weakly definably amenable.

Theorem 3.2. Suppose M is wi-saturated. Then G(M) is weakly definably
amenable: for any definable action of G(M) on a compact space X, X supports a
G(M)-invariant, Borel probability measure.

We deduce a negative answer to Conjecture 0.3 (i.e. Conjecture 0.3 of [19]):

Corollary 3.3. There is a model M, and a group G(M) definable in M such that
G(M) is weakly definably amenable, but G5} # GOP.

Proof. In fact, whenever G is a group definable in a NIP theory T' and G # G,
then choosing an wj-saturated model M of T, we see from Theorem 3.2 that
G(M) is weakly definably amenable. Moreover G = G # G = G%%. There
are many such examples, such as from [7]: T is the theory of the 2-sorted structure
M with sorts (R, +, x) and (Z,+) and no additional structure. As pointed out
there, the universal cover of SL(2,R) is naturally definable in M. T is NIP, and if
G is the interpretation of this group in a saturated model, then G% #£ G°°. [

3.1. Continuous logic. Continuous logic is about real-valued relations and for-
mulas, or, more generally, formulas with values in compact spaces, and, as such, is
present in a lot of recent work which does not explicitly mention continuous logic
(even in Definition 3.1 above).

There have been various approaches to continuous logic, starting with [6]. An
attractive formalism was developed in [2| and [3], and our set up will be a special
case. Here, we will give relatively self-contained proofs, for reasons explained
below.

T will be a complete first order theory in the usual (non-continuous) sense,
which is countable (for convenience) and we work as earlier in a big saturated (or
monster) model €. We fix a sort X (which will be a definable group G in the

applications). As usual, M, N, ... denote small elementary submodels of €, and
A, B, ... small subsets of this monster model. There is no harm assuming that
T ="Te",

Definition 3.4. (i) By a continuous logic (CL) formula on X over A, we mean a
continuous function ¢: Sx(A) — R.

(ii) If ¢ is such a CL-formula, then for any b € X (in the monster model) by ¢(b)
we mean ¢(tp(b/A)). Hence, we have a map ¢: X(N) — R for all models N, in
particular a map ¢: X = X(€) — R. As the notation suggests, we are identifying
a CL-formula on X over A with the latter map, and so may write it as ¢(z) where
x is a variable of sort X.

(iii) We consider two such CL-formulas on X, ¢, 1, over sets A, B, respectively to
be equivalent if they agree in the sense of (ii), namely if for all a € X, ¢(a) = ¢(a).
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Remark 3.5. (i) The range of any CL-formula is a compact subset of R.

(ii) A CL-formula ¢ (over some A) is equivalent to a CL-formula over B if ¢ is
invariant under automorphisms of the monster model which fix B pointwise.

(iii) The maps ¢: X (M) — R given by CL-formulas ¢ over M are precisely the
definable maps from X (M) to R in the sense of Definition 3.1.

(iv) Any CL-formula over a set A is (equivalent to a CL-formula) over a countable
subset of A.

Definition 3.6. (i) Let M be a model, and ¢(z,y) a CL-formula over M, where
x,y are variables of sorts X,Y, respectively. Let a € X. Then tp,(a/M) is the
function taking b € Y (M) to ¢(a,b), and is called a complete ¢(z,y)-type over M.
(ii) In the context of (i), tps(a/M) is definable if it is definable in the sense of
Definition 3.1, equivalently, by Remark 3.5(iii), given by or rather induced by a
CL-formula on Y over M.

Remark 3.7. Suppose M is wi-saturated, ¢(x,y) is a CL-formula over M, and a is
in the big model. Then tp,(a/M) is definable if and only if for each closed subset
Cof R, {beY(M): ¢(a,b) € C} is type-definable over some countable subset of
M.

Proof. This follows from Remark 3.5(iv). O

Definition 3.8. Let ¢(x,y) be a CL-formula over M.

(i) We say that ¢(z,y) is stable (for the theory T') if for all € > 0 there do not exist
a;,b; for i < w (in the monster model) such that for all i < j, |¢(a;, b;) —P(a;, b;)| >
€.
(ii) We say that ¢(x,y) is stable in M if for all € > 0 there do not exist a;, b; for
i <w in M such that for all i < j, |¢(a;,b;) — @(a;,bi)| > €

Remark 3.9. (i) Routine methods show that ¢(x,y) is stable (for T') iff whenever
(@, b;)i<y is indiscernible (over M), then ¢(a;,b;) = ¢(a;,b;) for i < j.

(ii) On the other hand, stability of ¢(x,y) in M is easily seen to be equivalent to
Grothendieck’s double limit condition: given a;,b; in M for ¢+ < w we have that
lim; lim; ¢(a;, b;) = lim; lim; ¢(a;, b;) if both double limits exist.

(iii) A CL-formula ¢(x,y) is stable [in M| iff ¢p°P(x,y) := ¢(y, x) is stable |in M].

The following is due to Grothendieck (modulo a routine translation), and we
give an explanation below.

Proposition 3.10. Let ¢(x,y) be a CL-formula over M. Then the following are
equivalent.

(i) ¢(x,y) is stable in M.

(i) Whenever M < M*, and tp(a/M*) € S,(M*) is finitely satisfiable in M,
then tpy(a/M*) is definable over M, namely the function taking b € M* to
o(a,b) is given by a CL-formula 1 (y) over M.
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Proof. Consider the (compact) space Z = S,(M) of complete types over M in
variable y, and let C(Z) be the real Banach space of continuous real valued func-
tions on Z (equipped with the supremum norm). Let A denote the subset of C'(2)
consisting of the functions ¢(a,y) for a € M. Note that A is bounded. Let Z, be
the set of realized types, namely those tp(b/M) for b € M, a dense subset of Z.
With this notation, Grothendieck’s Theorem 6 in [13] says that the following are
equivalent.

(1)7 If fl € A and q; € Z(] for 7 < w, then lim; hmj fz(QJ) = hmj lim; fl<QJ) if

both double limits exist.

(ii)” The closure of A in the pointwise convergence topology on C'(Z) is compact.

Now, if f; is ¢(a;,y) and ¢; = tp(b;/M), then (i)’ says precisely that
lim; lim; ¢(a;,b;) = lim;lim; ¢(a;.b;) for all sequences a;,b; € M with i < w
for which both double limits exist, which by Remark 3.9(ii) says that ¢(z,y) is
stable in M, namely condition (i) in the proposition.

On the other hand (ii)’ implies that the closure of A in C(Z) (in the pointwise
topology) is a compact, so closed, subset of the space R? of all functions from Z
to R (equipped with the pointwise, equivalently Tychonoff topology). So every
function in the closure of A in RZ is already in C(Z), so is continuous. So it is
clear that (ii)’ is equivalent to

(ii)” whenever f € RZ is in the closure of A, then f is continuous.

It is now easy to see that if f € RZ is in the closure of {¢(a,y) : a € M},
then f is of the form ¢(a*,y), where M* is a saturated model containing M, and
tp(a*/M*) is finitely satisfiable in M. So for ¢ € Z = S,(M), f(q) = ¢(a*,b) for
some (any) realization b of ¢ in M*. The continuity of f means that it is given by
a CL-formula ¢ (y) over M, which precisely means that ¢ (y) is a definition over
M of tpy(a*/M*). So we get that (ii) implies (ii)”, and it is again easy to see that
they are equivalent. 0

Remark 3.11. (a) Actually the original statement of (i)’ in [13| is that the
closure of A in the weak topology on C(Z) is compact. The weak topology
on C(Z) is the one whose basic open neighbourhoods of a point f; are of the
form {f € C(Z) : |g:(f — fo)l < €., |g-(f — fo)| < €}, where ¢1,..., g, are in
L(C(Z),R) — the space of bounded linear functions on C'(Z). This weak topology
is stronger than the pointwise convergence topology on C(Z) whose basic open
neighbourhoods of a point fy are as above but where ¢; is evaluation at some
point x; € Z. It is pointed out in [13] that relative compactness of a bounded
subset A of C'(Z) in the weak topology is equivalent to relative compactness of A
in the pointwise convergence topology, yielding the statement (ii)’ in the proof of
Proposition 3.10.

(b) In [5], which seems to be the first model theory paper to recognize
Grothendieck’s contribution, only the implication “¢(z,y) stable in M im-
plies that all ¢-types over M are definable” is deduced from Grothendieck’s
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theorem, rather than the stronger equivalence in Proposition 3.10.
(c) Grothendieck’s proof in [13] is basically a model theory proof. See [24] for the
case of classical ({0, 1}-valued) formulas.

Proposition 3.12. The CL-formula ¢(x,y) is stable (for T') if and only if every
complete ¢(x,y)-type over any model over which ¢ is defined is definable.

Proof. In the more general metric structures formalism, this appears in |3]| (Propo-
sition 7.7 there) and adapts to our context. However, we give a relatively self
contained account. Left implies right is given by Proposition 3.10. The other di-
rection is the easy one and can be seen as follows. Assume ¢(x,y) to be unstable
(for a contradiction). By (or as in) Remark 3.9, we can find a;,b; € € for i € Q,
and real numbers r < s that ¢(a;,b;) < for i < j and ¢(a;,b;) > s for i > j. Let
M be a countable model containing the b; for i € Q over which ¢ is defined. By
compactness, for each cut C' in Q there is some ac € € such that ¢(ac,b;) > s
for j < C and ¢(ac,b;) < r for j > C. Now, by assumption, each tp,(ac/M) is
definable, so for each C' there is some (ordinary) formula ¥¢(y) over M such that
for any b € M, ¢(ac,b) < r implies o (b), and ¢(ac,b) > s implies =) (b). This
is a contradiction, as there are continuum many distinct C’s but only countably
many (ordinary) formulas over the countable model M. U

Proposition 3.13. Suppose M is w;-saturated, ¢(x,y) is a CL-formula over M,
and every complete ¢(x,y)-type over M is definable. Then every complete ¢(x,y)-
type over any model N (over which ¢ is defined) is definable, and hence, by Propo-
sition 3.12, ¢(x,y) is stable.

Proof. et A C M be countable such that ¢(z,y) is over A. By Proposition 3.12
and by the proof of the right to left implication in Proposition 3.12, it suffices
to prove that every complete ¢-type over a countable model containing A is
definable. As M is wi-saturated, it is enough to prove that every complete ¢-type
over any countable submodel M, of M which contains A is definable. So let p(x)
and My be such. Let p’ be a coheir of p over M, namely p" = tp,(a/M), p = p'| My,
and tp(a/M) is finitely satisfiable in M,. By our assumptions, p’ is definable. So
to prove that p is definable it suffices to prove:

Claim 1: p’ is definable over M.

Proof. Let C' be a compact subset of R, and let W(y,b) be a partial type over a
countable sequence b from M such that for all ¢ € M, ¢(a,c) € C ifft M = U(c,b).
We will show that in fact ¥(y, b) is equivalent to a partial type over Mj. For this
it is enough to show that if ¥’ realizes tp(b/My) in M, then ¥(y, V') is equivalent
to U(y,b).

Suppose ¢ € M and suppose M = V(). Let ¢ € M be such that
tp(c,b/My) = tp(c,b'/My). As tp(a/M) is finitely satisfiable in My, ¢(a,c) =
o(a,d). As M = ¥(c,b), we have that ¢(a,c) € C. Hence, ¢(a, ) € C, whereby
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M E ¥(d,b). Hence, W(y,b) is equivalent to W(y,b), as required. This finishes
the proof of the claim. O(claim)

Hence, the proof of the proposition is also finished. O

3.2. Weakly almost periodic actions. The context here is a G-flow (X, G),
where X is a compact space and G a topological group. For f a continuous
function from X to R and g € G, gf denotes the (continuous) function taking
x € X to f(gx). We will take our definition of a weakly almost periodic G-flow
from Theorem II.1 of [9)].

Definition 3.14. (i) A continuous function f: X — R is weakly almost periodic
(or wap) if whenever h € R is in the closure of {gf : ¢ € G} (in the pointwise
convergence topology) then h is continuous.

(ii) The G-flow (X,G) is weakly almost periodic (or wap), if every continuous
function f: X — R is weakly almost periodic.

Fact 3.15. Suppose that (X, G) is wap. Then there is a G-invariant, Borel prob-
ability measure on X.

Proof. This is well-known within topological dynamics, but we nevertheless give
an account with some references. We may assume that (X, G) is minimal (by
passing to a minimal subflow). By Proposition I1.8 of [9], the flow (X, G) is almost
periodic (also known as equicontinuous). The minimal equicontinuous flows have
been classified in [1]| for example (see [1, Chapter 3, Theorem 6]), as homogeneous
spaces for compact groups (on which G acts as subgroups of the compact groups

in question), whereby the Haar measure induces the required G-invariant measure
on X. U

We now pass to the model-theoretic context, which here means that we consider
actions of a definable group G(M) on a compact space X which factor through

Se(M).

Theorem 3.16. Let M be a structure, G(M) a group definable in M, and let a
G(M)-flow (X,G(M)) be given, which factors through the action of G(M) on
Sc(M) wia a continuous surjective (G(M)-equivariant) map 7: Sg(M) — X.
Consider the following three conditions:
(i) (X,G(M)) is wap,
(ii) for each continuous function F': Sq(M) — R of the form fom for f: X —
R continuous, the CL-formula F(yx) is stable in M,
(11i) the action of G(M) on X is definable.
Then:
(a) (i) and (ii) are equivalent, and imply (iii),
(b) if M is wi-saturated, then (i), (ii), (i) are equivalent, and, moreover, in
(71) we have that F(yz) is stable for T (not just in M ).
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Proof. (a) Suppose (X,G(M)) is wap. Let F = f o for some f € C(X). Let
h: Sg(M) — R be in the pointwise closure of {gF : g € G(M)}. Then clearly for
any p € Sg(M), h(p) depends only on m(p), so h = hy ox for a unique h;: X — R.
But hy is in the pointwise closure of {gf : ¢ € G(M)}, so, by assumption, hy is
continuous. Hence, h is continuous. By the proof of Proposition 3.10, or, more
precisely, by the equivalence of (i) and (ii)” in there, the CL-formula F'(zy) is
stable in M, and so is F'(yx) by Remark 3.9(iii).

The converse goes the same way: Let f € C(X), and h: X — R be in the
closure, again in the pointwise topology, of {gf : g € G(M)}. Let F' = fom €
C(Sg(M)). Let hy = hom. Then clearly hy is in the closure of {gF : g € G(M)}.
As F(yx) is assumed to be stable in M, by Remark 3.9(iii) and the equivalence
of (i) and (ii)” in the proof of Proposition 3.10, h; is continuous, and so h is
continuous.

So far we have shown (i) if and only if (ii). We now show that either of these
equivalent conditions imply that the action of G(M) on X is definable. Let 2y € X.

Claim 1: For any continuous function f: X — R, the function from G(M) — R
taking g to f(gxo) is definable (over M).

Proof. Let p € Sg(M) be such that 7(p) = xo. Consider the lift F' of f to Sg(M)
via m. We use z,y to denote variables of sort G. By (ii), the formula F(yz)
(in variables z,y) is stable in M, so, by Proposition 3.10, the function taking
g € G(M) to F(gp) is definable over M, namely induced by a CL-formula (y)
over M. But F(gp) = f(gzo). Hence, the claim is proved. O(claim)

Definability of the action of G(M) on X now follows from the claim and
Urysohn’s lemma: Let Xy, X; be disjoint closed subsets of X. By Urysohn, there
is a continuous function f € C(X) such that f is 0 on Xy and 1 on X;. By
the claim, there is some definable (in M) subset Z of G(M), such that for all
g € G(M), if f(gxo) = 0 then g € Z, and if f(gzo) = 1 then g ¢ Z. But this
implies that if gzg € X, then g € Z, and if gzo € X; then g ¢ Z. As xg € X was
arbitrary, this shows that the action of G(M) on X is definable.

(b) We assume now that M is wi-saturated. All we have to do is to prove that
(iii) implies the stronger version of (ii) (with stability for 7'). Now, exactly as in
the previous paragraph, definability of the action of G(M) on X means precisely
that whenever F': Sg(M) — R lifts some continuous function f on X, then every
complete F'(yx)-type over M is definable. By Proposition 3.13, each such F(yzx)
is stable (for T'). O

Proof of Theorem 3.2. We may assume that X is a (definable) G(M)-ambit, in
which case, by [11] or [17, Remark 3.2], the action factors through the action
of G(M) on Sg(M). By Theorem 3.16(b), and wi-saturation of M, the action
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of G on X is wap, so, by Fact 3.15, X has a G(M)-invariant, Borel probability
measure. U

3.3. On universal ambits and minimal flows. We give a description of the
universal definable wap ambit and universal minimal definable wap flow for a group
G(M) definable in a structure M. As seen by the material above, this is closely
connected to stable group theory in the continuous logic sense, but unless M is
saturated enough, it will be stability in M. Actually, even in the classical case,
stable group theory relative to a model M (i.e. where relevant formulas ¢(z,y)
are stable in M) has not been written down, so it is not surprising if we happen to
rely on the topological dynamical literature. By G we mean G(M™*) for a suitably
saturated elementary extension M* of M.

M will be an arbitrary structure and G(M) a group definable in M. Following
on from notation in the previous section, if F'(z) is a CL-formula on G (i.e. where
the variable = ranges over GG) over M, then we will call F' stable in M if the CL-
formula F(yz) (in variables z,y) is stable in M. Let A be the collection (in fact
algebra) of such stable in M, CL-formulas F(z) on G. Let S be the quotient of
Sc(M) by the closed equivalence relation ~ 4 given by

p~aq = (VF e A)(F(p)=F(q).

S is naturally a compact space which we call the type space over M of the stable
in M, CL-formulas over M. Let my: Sg(M) — S be the canonical surjective
continuous map. Note that G(M) acts on S, and that 7 is a map of G(M)-flows
(in fact ambits, where my(e) is taken as the distinguished point of S). With the
above notation we have:

Proposition 3.17. (i) (S,G(M)) is the (unique) universal definable wap ambit
of G(M).

(ii) G/GYY is the unique universal minimal definable wap flow of G(M).
Proof. Let us first note:

Claim 1: With above notation, a continuous function F': Sg(M) — R is stable in
M if and only if it is induced, via 7, by a continuous function from § to R.

Proof. This follows from the Stone-Weierstrass theorem and the easy fact that A is
a closed subalgebra of the Banach algebra C(Si(M)) of all real valued continuous
functions on Sg(M) (where C'(Sg(M)) is equipped with the uniform convergence
topology). C(claim)

(i) follows easily from the claim and previous results. First, by Theorem 3.16 and
the claim, (S, G(M)) (with distinguished point sy = m(e)) is definable and wap.
Secondly, suppose (X,G(M)) is a definable wap ambit with distinguished point
xo, and corresponding 7: Sg(M) — X (taking e to xp). By Theorem 3.16 again,
for every continuous function f on X, F' = f o7 is stable, hence is in the algebra
A. This easily induces a surjective, continuous, G(M )-equivariant map from S to
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X taking sg to xg.

(ii) The action of G(M) on G/GYY is induced by multiplication on the left. Clearly
every orbit is dense, in particular the image of G(M) in G/G%} under the canonical
homomorphism ¢ taking ¢ to g/GY%} is dense. The action factors through the type
space. Why is it wap? Let f be a continuous function from G/G% to R, and
F:G— Rbe form, where m: G — G/GY is the canonical homomorphism. So F
is a CL-formula on G over M. We claim that the CL-formula F(yz) in variables
z,y (so on G x G) is stable for the theory, in particular F' is stable in M. If
not, we can find a large indiscernible over M sequence ((g;, h;) : i € I) such that
for i < j, F(g:hj) # F(g;hi); but this is impossible, as tp(g;/M) = tp(g;/M)
and tp(h;/M) = tp(h;/M) implies w(g;) = m(g;) and 7w(h;) = =w(h;), and so
7(gih;) = m(g;hi). Thus, using Theorem 3.16, we have shown that the action of
G(M) on G/GYY is a minimal wap flow which factors through Sg (M), so is also
definable by Theorem 3.16.

To see that it is universal such, we will appeal again to the topological dynam-
ics literature. So let (X,G(M)) be a minimal definable wap flow. As already
remarked, we deduce from IL.8 of [9] that the flow (X, G(M)) is equicontinuous.
By Theorem 3.3 from Chapter I of [12], the Ellis semigroup F(X) is a compact
topological group acting by homeomorphisms on X, and, moreover, (X, G(M)) is
isomorphic to F(X)/H for a suitable closed subgroup H of E(X) (with the action
of G(M) on E(X)/H given by g(nH) = (gn)H). So it remains to show that the
natural homomorphism h: G(M) — E(X) is definable, because in that case E(X)
will be a definable group compactification of G(M) (in the sense of [11]) and we
know from Proposition 3.4 of [11] that G/GY} is the universal such definable group
compactification.

The fact that h: G(M) — E(X) is definable follows from the fact that F(X) is
a subflow of the product G(M)-flow X* which is definable (because a product of
definable flows is always definable [18, Remark 1.12]).

Finally, the uniqueness of a universal minimal definable wap G(M)-flow follows
from the observation every endomorphism of the G(M)-flow G/G9? is an automor-
phism, namely it is right translation by an element of G/G9. Ul

The above proposition together with Theorem 3.16 yields

Corollary 3.18. When M 1is wy-saturated, the universal definable wap ambit co-
incides with the universal definable ambit and can be described as the type space of
the collection (algebra) of CL-formulas F' on G over M which are stable (for T ).

We can also give a description of the universal definable G(M)-ambit for an
arbitrary (not necessarily wi-saturated) M. For this recall that in the proof of
Theorem 3.16 (Claim 1 and the paragraph afterwards; see also the proof of (b))
we showed that definability of the action of G(M) on X means precisely that
whenever F': Sg(M) — R lifts some continuous function f on X, then every
complete F'(yz)-type over M is definable. Thus, applying Stone-Weierstrass as in
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the proof of Claim 1 in the proof of Proposition 3.17 and following the lines of the
easy proof of item (i) of this proposition, we get

Corollary 3.19. Let D be the quotient of Sq(M) corresponding to the algebra B
of all CL-formulas F(z) on G over M for which every complete F(yz)-type over
M is definable. Then G(M) acts naturally on D, and (D,G(M)) is the universal
definable ambit.

Finally, as promised in the introduction, we give a negative answer to Problem
4.11 (1) from [17], concerning whether the natural map from Sg(M) to G/GSP,
given by tp(g/M) — g/GS%P, factors through the universal definable ambit. When
M is sufficiently saturated, Corollary 3.18 says that the universal definable ambit
is precisely the universal definable wap ambit. So we consider, as in the proof
of Corollary 3.3, a group G definable in a countable NIP theory 7' such that
GO0 £ G, Let M be an w;-saturated model over which G is defined. Then
S, as defined above, is, by Proposition 3.17, the universal definable wap ambit of
G(M), and likewise, the universal minimal definable wap flow of G(M) is G/GY).
The natural map f: Sqg(M) — G/GSP referred to above takes tp(g/M) to g/G9%P.
If I is a minimal subflow of Sg(M), then f[I] = G/GSP. Indeed, take any p =
tp(a/M) € I. Then [ is the closure of {tp(ga/M) : g € G(M)}. Consider any
b € G, and choose V/ =), b with tp(b'/Ma) finitely satisfiable in M. It is easy to
see that tp(b'a/M) € I. Hence, ba/GSP = b'a/GSP € f[I], which is enough.

Following earlier notation, let my be the canonical map from Sg(M) to S. Then
mo[I] is a minimal subflow of S.

Now, suppose for a contradiction that f: Sg(M) — G/GSP factors through o,
i.e. there is a unique map fo: S — G/GSP with f = fyom. Let f1: G/GY° —
G /GY) be the obvious map sending g/GS% to g/G%), and put fo := fio fo: S —
G/GY). All these maps are clearly G(M )-equivariant, and f, is a flow epimorphism.
Since m[I] is a minimal definable wap G(M)-flow, and G/GY% is universal such
(and with the property that each flow endomorphism is an automorphism), we get
that fo|mo[/] is an isomorphism. On the other hand, since f|I is surjective, so is
folmo[I]. Therefore, f is injective, hence G99 = G, a contradiction.

4. FINAL REMARKS

4.1. Connected components and approximate subgroups. We clarify the
connections between the question of the equality of connected components G =
G, and definable approximate subgroups.

Here, we will work in the simpler case where no definable topology is present.
Also, we work in a saturated model and over a fixed small set of parameters (even
a small model). Definability, connected components, etc. will be relative to this
set of parameters.

We consider to begin with a definable group G and a definable, symmetric subset
X of G. (X) denotes the subgroup H, say, of G generated by X (an ind-definable
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subgroup) and X is said to be an approzimate subgroup of G if X is generic in H,
namely a bounded number of translates of X cover H. (It may be of interest to
consider the same notion for type-definable X.) In this context, and under various
auxiliary amenability-type hypotheses, one proves the “stabilizer theorem”

(o) H® C X*.

This leads to a connection with locally compact groups L, and through them Lie
groups. (See [14], [21], [26], and most relevant to us [20].) Massicot and Wagner
conjecture that “even without the definable amenability assumption a suitable Lie
model exists”.

In this paper, we have restricted to the case where the ind-definable group
H is actually definable, hence may be assumed, notationally, to be G. In this
case, the locally compact group L is compact. This case is not ruled out as
trivial, and indeed is of considerable interest; for instance some of the first the-
orems in this line, by Gowers and Helfgott, asserted in effect that generic de-
finable subsets of certain pseudofinite groups generated the group in boundedly
many steps (3 or 4), and were in turn important in further developments by
Bourgain-Gamburd and many others. Remaining in this definable context, it is
known that G°? is generated by a certain partial type, generic in G, namely
P = {a1a;" : (a1,as,...) is indiscernible}. Writing P as an intersection of defin-
able, symmetric subsets P, then each P, is an approximate subgroup of G. Hence,
if the basic result (¢) holds for every generic, definable, symmetric subset X of G,
it follows that G% C P*, hence GO = G,

More generally, in the ind-definable setting above (where H = (X)) we can
consider the same notions, and again the truth of (o) for all generic, definable,
symmetric subsets of H implies that H"° = H%,

So, we see that any example where the relevant connected components differ
must include definable approximate subgroups where (¢) fails (even with 4 replaced
by any definite integer).

Starting from another angle, let f: G — A be a quasi-homomorphism to an
abelian group A, namely a map such that f(zy)f(y)~'f(z)~! has finite image,
and let I be the graph of f. Then FF U F~!, viewed as a subset of G x A, is an
approximate subgroup. There are examples of quasi-homomorphisms for which
one can directly check that F'U F'~! does not satisfy (¢) (even with 4 replaced by
any definite integer); for instance, on the free group on two generators a, b, map
a™bm2a™s .- b (with m; € Z and m; # 0 for 1 < i < k) to o5, sgn(m;) (see
25]).

Regarding the Massicot-Wagner conjecture mentioned above, this shows at least
that any connection to a suitable “Lie model” would have to differ substantially
from the one proved in the amenable cases.
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4.2. Connected components and complexity. Let us consider these notions
from the point of view of descriptive set theory (see for example [22] for the terms
below.) Fix a countable language L with distinguished sort G (with a binary
operation), and consider the space of complete theories T' (with G a group). For
now, G etc. will mean G etc.

The condition G = G is at the finite level of the Borel hierarchy (“arithmetic”),
and is in fact a countable union of closed sets. This can be seen as follows. First,
it is known that G = G is equivalent to P = G for some n (see |23, Theorem
3.1]), where P is as in the previous subsection. We can now unwind the statement
P" = @, using compactness: for any approximation I to indiscernibility,

T = (Vo) (Jyir, Yiz)i<n <$ = Y11Yry - Yn1lps N /\Ik(yila yz2)> :

The condition G = G is also Borel. Namely, G% = G is equivalent to
saying that for some n, P"*1 = P" (by [23, Theorem 3.1] and the fact that the
sequence (P™), is ascending). The last equality can be expressed by: for every k
there is [ such that

T = ((322'1, 2i2)i<n+1 (CU =21y - Z(n+1)12(_nl+1)2 A /\ I (21, Zz2)>> —

<(E|yi17 Yiz)i<n (x = Y1l - Yn1Ypa N /\ I (yar, %2))) :

(2

The equality G = G° requires only one integer quantifier: for all formulas ¢(z),
and each n > 1, the sentence “¢ defines a subgroup of index n” is false in 7'

The condition G = G® is more mysterious. It is clearly at worst ITj, as it can
be expressed as the non-existence of a chain of proper, generic, definable subsets
D; C G with D;rllDiH C D;. This together with the previous paragraphs suffices
to see that the various connectedness properties (equalities among the various
connected components) are all properties of T' itself and do not depend on the
ambient model of set theory. But it remains quite interesting to know if such a
chain, when it exists, can be constructed in some explicit way. In particular, is
the condition G = G Borel?

If GG is definably amenable and we compute everything over parameters from a
given model, then, by [20, Theorem 12| and the short argument in Case 2 on page
1282 in [19], one easily gets that the condition G = G% is equivalent to the (Borel)
statement that for any generic, symmetric, definable set X, X% = G (the method
from [20] concretely constructs a sequence of generic, symmetric, definable subsets
D; with D; 1D;;1 C D; C X*). However, in general, the latter condition may be
strictly stronger, which is always the case when G = G% # G (as G # G
implies G # P™ for every n). So the question whether G = G is Borel remains
open and quite interesting.
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