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Abstract. We study amenability of de�nable groups and topological groups,
and prove various results, brie�y described below.

Among our main technical tools, of interest in its own right, is an elabora-
tion on and strengthening of the Massicot-Wagner version [20] of the stabilizer
theorem [14], and also some results about measures and measure-like functions
(which we call means and pre-means).

As an application we show that if G is an amenable topological group, then
the Bohr compacti�cation of G coincides with a certain �weak Bohr compact-
i�cation� introduced in [19]. In other words, the conclusion says that certain
connected components of G coincide: G00

top = G000
top . We also prove wide gen-

eralizations of this result, implying in particular its extension to a �de�nable-
topological� context, con�rming the main conjectures from [19]. We also in-
troduce

∨
-de�nable group topologies on a given ∅-de�nable group G (including

group topologies induced by type-de�nable subgroups as well as uniformly de-
�nable group topologies), and prove that the existence of a mean on the lattice
of closed, type-de�nable subsets of G implies (under some assumption) that
cl(G00

M ) = cl(G000
M ) for any model M .

Secondly, we study the relationship between (separate) de�nability of an ac-
tion of a de�nable group on a compact space (in the sense of [11]), weakly almost
periodic (wap) actions of G (in the sense of [9]), and stability. We conclude that
any group G de�nable in a su�ciently saturated structure is �weakly de�nably
amenable� in the sense of [19], namely any de�nable action of G on a compact
space supports a G-invariant probability measure. This gives negative solutions
to some questions and conjectures raised in [17] and [19]. Stability in continuous
logic will play a role in some proofs in this part of the paper.

0. Introduction

The general motivation standing behind this research is to understand relation-
ships between dynamical and model-theoretic properties of de�nable [topological]
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groups. More speci�cally, similarly to [19], in this paper our goal is to understand
model-theoretic consequences of various notions of amenability.
The consequences that we consider in this paper are mainly the equalities be-

tween the appropriate versions of the components G000 and G00 of a de�nable
group G in various categories (e.g. in the category of topological groups).
The notions of amenability are those considered in [19], and they come from

certain natural categories of �ows.
Below we brie�y recall and explain the contexts (or �categories�) which we are

interested in (including the relevant notions of amenability). More detailed dis-
cussions can be found in Section 1; for the proofs the reader is referred to Section
2 of [19]. But before that, recall some issues concerning de�nability. A function
f from a set D(M) de�nable in a structure M to a compact (Hausdor�) space
X is said to be de�nable if the preimages of any two disjoint closed subsets of X
can be separated by a de�nable set; equivalently, f is induced by a continuous
map from the type space SD(M) to X. Let G(M) be a de�nable group. In [11], a
G(M)-�ow (i.e. an action by homeomorphisms of G(M) on a compact space X)
is called de�nable if for every x ∈ X the function g 7→ gx is a de�nable map from
G(M) to X in the above sense. In fact, this should rather be called a separately
(or elementwise) de�nable �ow, and only for simplicity we will further write �de-
�nable �ow�. Recall that in the classical topological situation, if G is a topological
group, then a G-�ow is a jointly continuous action of G on a compact space. In
the model-theoretic context of a de�nable group G(M), it is natural to ask, what
if anything is the right analogue of a jointly continuous action on a compact space.
One might want to call such an action �jointly de�nable�. Finally, recall that an
ambit is a �ow with a distinguished point with dense orbit.

(1) De�nable context. Here, G(M) is a group de�nable in a structure M . By
G we mean the interpretation of G(M) in the monster model. Then the
quotient map G(M)→ G/G00

M turns out to be the de�nable Bohr compact-
i�cation of G(M) (i.e. the universal compacti�cation among the de�nable
group compacti�cations). The de�nable amenability of G(M) means that
there exists a left-invariant, Borel probability measure on the G(M)-ambit
SG(M). (One has to be careful here: (G(M), SG(M), tp(e/M)) is not in
general the universal de�nable G(M)-ambit; it is universal but in the cate-
gory of G(M)-ambits (G(M), X, x0) such that the map from G to X given
by g 7→ gx0 is de�nable.)

(2) Topological context. Let H be a topological group. Then there is a unique
(up to isomorphism) Bohr compacti�cation of H. The classical notion of
amenability ofH is de�ned by saying that there exists a left-invariant, Borel
probability measure on the universal (topological) H-ambit. To recover
these notions model-theoretically, we treat H as a group G(M) de�nable
in a structure M in such a way that all open subsets of H = G(M) are
de�nable (e.g. M = G(M) is the group H expanded by predicates for all
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open subsets ofH). Then, if we de�ne G00
top as µG

00
M (where µ is the group of

in�nitesimals), then the quotient map G(M)→ G/G00
top is exactly the Bohr

compacti�cation of G(M). Analogously, G000
top is de�ned as 〈µG〉G000

M . The
universal topological G(M)-ambit is described as SµG(M) := SG(M)/∼µ,
where p ∼µ q ⇐⇒ µ · p = µ · q.

(3) De�nable topological context. Here, G(M) is a group de�nable in a structure
M which is also a topological group. But we do not assume any relation-
ship between the topology on G(M) and the structureM (i.e. the topology
need not be de�nable in any way). Considering a monster model of an ex-
pansion of M in which all open subsets of G(M) become ∅-de�nable, we
de�ne G00

def,top as µG00
M (where G00

M is computed in the original language);

similarly, G000
def,top := 〈µG〉G000

M . Then the quotient map G(M)→ G/G00
def,top

is the universal de�nable, continuous compacti�cation of G(M). In order
to de�ne the de�nable topological amenability of G(M), we assume ad-
ditionally that there is a basis of neighborhoods of the identity in G(M)
consisting of de�nable sets in the original structureM . Under this assump-
tion, the G(M)-ambit SµG(M) is de�ned as in the previous item. We say
that G(M) is de�nably topologically amenable if SµG(M) supports a left-
invariant, Borel probability measure. (One has to be careful as in the �rst
item: (G(M), SµG(M), tp(e/M)/∼µ) is not in general the universal de�n-
able (jointly continuous) G(M)-ambit; it is universal but in the category of
(jointly continuous) G(M)-ambits (G(M), X, x0) such that the map from
G to X given by g 7→ gx0 is de�nable.)

(4) Weak de�nable [topological] amenability of a de�nable [resp. topological]
group G(M) means that there is a left-invariant, Borel probability mea-
sure on the universal de�nable [resp. jointly continuous] G(M)-ambit (see
Section 1).

Notice that the de�nable topological context is a common generalization of both
the de�nable and the topological context. We have de�ned above the notions of
amenability in various categories by saying that the universal ambit in a given
category supports an invariant, Borel probability measure. Equivalently, one can
say that any ambit (or �ow) in the given category supports such a measure.
The following statement is Conjecture 0.4 in [19].

Conjecture 0.1. Let G(M) be a topological group and assume that the members of
a basis of neighborhoods of the identity are de�nable. If G is de�nably topologically
amenable, then G00

def,top = G000
def,top.

In the de�nable context described above, this conjecture specializes to the the-
orem (easily deduced in [19] from [20]) saying that each de�nably amenable group
G(M) satis�es G00

M = G000
M . On the other hand, in the topological context, Con-

jecture 0.1 specializes to Conjecture 0.2 from [19] which predicts that whenever
G(M) is an amenable topological group, then G00

top = G000
top. One of the main results
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of [19] is Theorem 0.5 there saying that Conjecture 0.1 is true if G(M) has a basis
of open neighborhoods of the identity consisting of de�nable, open subgroups.
In Subsection 2.6, we will prove Conjecture 0.1 in full generality (see Corollary

2.37). In fact, we obtain much more general results (namely, Theorems 2.35 and
2.36) than Conjecture 0.1, which do not assume any topology on G(M). The main
content of these results can be stated as the following

Theorem 0.2. Let H be an M-type-de�nable subgroup of a ∅-de�nable group G,
normalized by G(M). Let N be the normal subgroup generated by H. If SG/H(M)
or SH\G(M) carries a G(M)-invariant, Borel probability measure, then G00

M ≤
NG000

M .

Conjecture 0.1 follows immediately from Theorem 0.2 applied to H := µ.
Similarly to [19], the proof is based on the Massicot-Wagner argument from

[20], but here we use means on certain lattices instead of measures on Boolean
algebras. Moreover, in Subsection 2.3, we give a less numerical variant of the
argument from [20], using a general notion of largeness, discussed in Subsection
2.2, which coincides with non-forking in stable theories and seems interesting also
outside the stable context. It is new and essential in the proofs of our main results
that we work here in the category of

∨
-positively de�nable sets. The proofs of

the main results also require some extension results concerning pre-means, means,
and measures � established in Subsections 2.4 and 2.5 � which additionally yield
several corollaries concerning model-theoretic �absoluteness� (e.g. the existence of
a G(M)-invariant, Borel probability measure on SG/H(M) does not depend on the
choice of the model M) and may prove to be useful also in other situations. In
Subsection 2.7, we apply these kind of arguments to topological groups equipped
with the so-called

∨
-de�nable group topologies (including group topologies induced

by type-de�nable subgroups as well as uniformly de�nable group topologies). The
key property of a

∨
-de�nable group topology on a ∅-de�nable group G is that

for any model M the group G(M) is also a topological group. We prove (using
our version of the Massicot-Wagner theorem) that the existence of a left-invariant
mean on the lattice of closed, type-de�nable subsets of the group G = G(M∗)
(where M∗ �M is a monster model and G is a ∅-de�nable group) equipped with
a
∨
-de�nable group topology, such that the projections of closed, type-de�nable

sets are closed, implies that cl(G00
M) = cl(G000

M ), where cl denotes closure with
respect to the

∨
-de�nable topology; this is Proposition 2.52.

We already recalled the notion of de�nable action of a de�nable group G(M) on
a compact space as well as the notion of weak de�nable topological amenability.
The following generalization of Conjecture 0.1 is stated as Conjecture 0.3 of [19].

Conjecture 0.3. Let G(M) be a topological group de�nable in an arbitrary struc-
ture M . If G is weakly de�nably topologically amenable, then G00

def,top = G000
def,top.

In Section 3, we will refute this conjecture by showing that it is already false in
the �discrete case�. In fact, we show
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Theorem 0.4. Suppose M is ω1-saturated. Then G(M) is weakly de�nably
amenable: for any de�nable action of G(M) on a compact space X, X supports a
G(M)-invariant, Borel probability measure.

Our methods are as interesting as the refutation of the conjecture: under the
saturation assumption, de�nable actions are weakly almost periodic, so support
invariant measures. Our proofs involve stable group theory in a continuous logic
setting. This will also give us the negative answer to the question stated in [17,
Problem 4.11(1)], namely whether the assignment SG(M)/E → G/G000

M given
by tp(a/M)/E 7→ a/G000

M is well-de�ned, where E is the equivalence relation on
SG(M) such that SG(M)/E is the universal de�nable G(M)-ambit. In [17, Propo-
sition 4.10], it was noted that an analogous assignment to G/G00

M is a well-de�ned
continuous semigroup epimorphism (with the natural semigroup structure on
SG(M)/E coming from the fact that this is the universal de�nable G(M)-ambit).
We also provide a description of the universal de�nable G(M)-ambit as the
�Gelfand space� of the algebra of stable continuous functions from SG(M) to
R, and describe the universal minimal de�nable G(M)-�ow as G/G00

M . In this
section, we also discuss de�nable actions when M is not necessarily saturated,
and make the connection between weakly almost periodic actions and continuous
logic stability in a model.

This paper contains the material in Sections 2 and 3 of our preprint �Amenability
and de�nability�. Following the advice of editors and referees we have divided that
preprint into two papers, the current paper being the �rst.

1. Some notions and definitions

We recall here model-theoretic de�nitions of certain components of groups in
various categories, and also the relevant variants of the notion of amenability; for
more details, see Section 2 of [19]. The new notions which we introduce in this
paper will appear in the relevant sections.
As usual, by a monster model of a given theory we mean a κ-saturated and

strongly κ-homogeneous model for a su�ciently large cardinal κ (typically, κ > |T |
is a strong limit cardinal). Where recall that the (standard) expression �strongly
κ-homogeneous� means that any partial elementary map between subsets of the
model of cardinality < κ extends to an automorphism of the model. A set [tuple]
is said to be small [short] if it is of bounded cardinality (i.e. < κ). When G is a
∅-de�nable group (in the monster model) and A a (small) set of parameters, then
G00
A denotes the smallest A-de�nable subgroup of G of bounded index; and G000

A

� the smallest A-invariant subgroup of G of bounded index.
Let us now discuss in more details the �topological context� from item (2) in

the introduction. Let G(M) be a topological group ∅-de�nable in a structure M .
Assume (from now until Conjecture 1.3) that all open subsets of G(M) are also
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∅-de�nable. By G we denote the interpretation of G(M) in a monster model M∗.
De�ne µ to be the intersection of all U = U(M∗) with U(M) ranging over all open
neighborhoods of the identity. So µ is the subgroup of in�nitesimals of G; it is not
necessarily normal, but it is normalized by G(M).

De�nition 1.1. 1) G00
top := µG00

M ; equivalently, this is the smallest M -type-
de�nable subgroup of G of bounded index which contains µ.
2) G000

top := 〈µG〉G000
M ; equivalently, this is the smallest normal, invariant over M

subgroup of G of bounded index which contains µ.

It turns out that G00
top is a normal subgroup of G and the map G(M)→ G/G00

top

is the classical Bohr compacti�cation of G(M) as a topological group (i.e. the
universal group compacti�cation). For a description of G/G000

top as the initial object
in a certain category see [19, Proposition 2.18]. In particular, one gets that both
quotients G/G00

top and G/G000
top are independent as topological groups (equipped

with the logic topology) of the choice of the language (provided that all open
subsets of G(M) are ∅-de�nable) and of the choice of the monster model in which
they are computed. Moreover, the closure of the identity in G/G000

top is exactly
G00

top/G
000
top, so the property G00

top = G000
top is also independent of the choice of the

language and the monster model.
There is also a model-theoretic description of the universal (left) G(M)-ambit

as the quotient SµG(M) := SG(M)/∼µ, where p ∼µ q ⇐⇒ µ · p = µ · q with the
distinguished point tp(1/M)/∼µ and the action of G(M) given by g ∗ (µ · p) :=
µ · (g · p) = g · (µ · p). It is clear that this ambit is isomorphic to Sµ\G(M) � the
space of complete types over M of hyperimaginary elements from µ\G.
Recall the classical de�nition of amenability.

De�nition 1.2. The topological group G(M) is amenable if for every G(M)-
�ow (equivalently, G(M)-ambit) X there is a G(M)-invariant, Borel probability
measure on X; equivalently, there is a G(M)-invariant, Borel probability measure
on the universal ambit SµG(M).

The following is [19, Conjecture 0.2].

Conjecture 1.3. Let G(M) be a topological group. If G(M) is amenable, then
G00

top = G000
top.

Now, we discuss in more details the more general �de�nable topological context�
from item (3) in the introduction, which was studied in Subsection 2.2 of [19]. It is
a bit subtle, so we try to be precise about the notions and de�nitions (although a
full account is given in [19]). So we start with an L-structureM , and a groupG(M)
∅-de�nable inM . We assume that G(M) is also a topological group, although this
is not necessarily �seen� by the structure M . Let M ′ be an expansion of M in a
language L′ containing L such that we have predicates for all open subsets of the
topological group G(M). Let (M ′)∗ � M ′ be a monster model of Th(M ′) whose
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reduct M∗ � M to L is also a monster model. So the dynamics of G(M) as a
topological group is seen through the model theory of M ′ and (M ′)∗ as discussed
earlier in this section. But we are more interested in what is de�nable in M . So
as to avoid too much unnecessary notation, we will rather talk about M,M∗ and
distinguish between de�nability in L (which we just call de�nable) and de�nability
in the richer language L′. G00

M and G000
M are computed in L, and SG(M) denotes

the space of complete types in the sense of L.

De�nition 1.4. 1) G00
def,top := µ ·G00

M = G00
top ·G00

M ; equivalently, this is the small-
est M -type-de�nable (in the sense of L) subgroup of G of bounded index which
contains µ.
2) G000

def,top := 〈µG〉 ·G000
M = G000

top ·G00
M ; equivalently, this is the smallest normal, in-

variant overM (in the sense of L) subgroup of G of bounded index which contains
µ.

Note that we need the L′-structure to make sense of µ, and G00
top, etc., although

G00
def,top is nevertheless still type-de�nable over M in L.
It turns out that G00

def,top is a normal subgroup of G and the map G(M) →
G/G00

def,top is the (unique up to isomorphism) universal compacti�cation of G(M)
among de�nable (in the sense of L), continuous group compacti�cations of G(M).
Note that the de�nitions of G00

def,top := µ · G00
M and G000

def,top := 〈µG〉 · G000
M make

sense even in the wider context when L′ is any extension of L such that all members
of some basis of neighborhoods of the identity in G(M) are de�nable in L′ with
parameters from M (where µ is de�ned as the intersection of all U = U(M∗)
with U(M) ranging over the de�nable in L′ neighborhoods of the identity); the
di�erence is that now more monster models are allowed, because we do not require
L′ to contain predicates for all open subsets of G. By a standard argument, we
get that the quotients G/G00

def,top and G/G000
def,top do not depend on the choice of

both the language L′ and the monster model in which they are computed. The
property G00

def,top = G000
def,top is also independent of the choice of L′ and the monster

model, which follows directly from de�nitions.

Remark 1.5. i) If G(M) is discrete, then G000
def,top = G000

M ≥ G000
top and G00

def,top =

G00
M ≥ G00

top.
ii) If all open subsets of G(M) are de�nable in M (in the language L), then
G000

def,top = G000
top ≥ G000

M and G00
def,top = G00

top ≥ G00
M .

Recall that a group G(M) de�nable in M is de�nably amenable if and only if
there is a left-invariant, Borel probability measure on SG(M). In order to give
a suitable generalization of this notion in the �de�nable topological context�, one
needs to assume that all members of some basis of (not necessarily open) neigh-
borhoods of the identity in G(M) are de�nable in M (in the original language L).
In [19], we assumed more, namely, that there is such a basis consisting of open
neighborhoods of the identity, but in the more general context everything works
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in the same way. In particular, µ is well-de�ned, and SµG(M) de�ned as above is
still a G(M)-ambit. The following de�nition was proposed in [19, Section 3].

De�nition 1.6. Assume that all members of some basis of neighborhoods of the
identity in the topological group G(M) are de�nable in M (in L). We say that
G(M) is de�nably topologically amenable if there exists a left-invariant, Borel prob-
ability measure on the G(M)-ambit SµG(M).

Conjecture 0.1 recalled in the introduction is the main conjecture of [19]. As
was recalled in the introduction, one of the main results of [19] was [19, Theorem
0.5] saying that Conjecture 0.1 is true if G(M) has a basis of open neighborhoods
of the identity consisting of de�nable, open subgroups. This implies Conjecture
1.3 for groups possessing a basis of open neighborhoods of the identity consisting
open subgroups. In Subsection 2.6 of this paper (see Corollary 2.37), we prove
Conjecture 0.1 (and so also Conjecture 1.3) in its full generality.
The de�nition of amenability of a topological group is by saying that there is

a well-behaved measure on the universal topological ambit. The de�nitions of
de�nable amenability or de�nable topological amenability are by saying that there
is a well-behaved measure on the G(M)-ambits SG(M) or SµG(M), respectively.
But these ambits are not universal in any of the categories of ambits considered in
[19] (they are universal ambits in some other categories described in parentheses
in items (1) and (3) in the introduction). So based on [17], we proposed in [19]
more general notions of amenability, which we recall now.
As was pointed out in [17], there is a unique closed equivalence relation E on

SG(M) such that SG(M)/E is the universal de�nable G(M)-ambit; a description
of E can be found in Section 3 of [17]. In [19, Subsection 2.2], we described a closed
equivalence relation E1 on SG(M) such that SG(M)/E1 is the universal de�nable
topological G(M)-ambit (where G(M) is a topological group de�nable in M).

De�nition 1.7. 1) We say that G(M) is weakly de�nably amenable if there exists
a left-invariant, Borel probability measure on the universal de�nable G-ambit, i.e.
on SG(M)/E.
2) We say that G is weakly de�nably topologically amenable if there exists a left-
invariant, Borel probability measure on the universal de�nable topological G-
ambit, i.e. on SG(M)/E1.

Conjecture 0.3 from the introduction is the most general conjecture of [19]. In
Section 3, we will show that it is false, even in the case when G(M) is discrete (i.e.
working in the de�nable category). In Subsection 3.4 of [19], a weaker form of this
conjecture was proposed. Namely, let G000+

def,top be the normal subgroup generated by

all products ab−1 for (a, b) ∈ E ′1, where aE ′1b ⇐⇒ tp(a/M)E1 tp(b/M). It is M -
invariant, and by Proposition 3.10 of [17], we easily get that G000

def,top ≤ G000+
def,top ≤

G00
def,top.
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Conjecture 1.8. Let G(M) be a topological group de�nable in an arbitrary struc-
ture M . If G is weakly de�nably topologically amenable, then G00

def,top = G000+
def,top.

At �rst glance, it seems that this conjecture should be reachable by the methods
of Section 2, but we do not quite see how to prove it.

2. Means and connected components

The main goal of this section is to prove the equality of various connected com-
ponents under the existence of a suitable measure or mean. In particular, we
will prove Conjecture 0.1. As mentioned in the introduction, this conjecture was
proved in [19] but under the stronger assumption that there is a basis of open
neighborhoods of the identity consisting of de�nable open subgroups. Similarly
to [19], our proofs are based on the idea of the proof of Massicot-Wagner version
of the stabilizer lemma. Our key tricks to deal with the general case will be us-
ing means instead of measures (so something like measures but de�ned only on
certain lattices of subsets), positively

∨
-de�nable sets, and a notion of largeness.

As to the Massicot-Wagner result, we will prove a variant of it (see Proposition
2.11 and Corollary 2.12) which is applicable to various situations. The main re-
sults of this section are contained in Subsection 2.6. In Subsection 2.7, we study
groups equipped with

∨
-de�nable group topologies, also proving that existence of

a mean on the appropriate lattice of subsets implies equality of the closures of the
appropriate connected components.

2.1.
∨
-de�nable sets. Let T be any (complete) theory, M |= T , and C be a

monster model of T . By a [type-]de�nable set we usually mean a set which is
[type-]de�nable with parameters in C. We can identify it with the corresponding
formula [or set of formulas]. We will be often talking about sets which are A-type-
de�nable, so using parameters from a set A. One can often incorporate parameters
into the language and work over ∅, e.g. in this and in the next subsection we work
with ∅-de�nability, but sometimes parameters are essential (e.g. in Proposition
2.11 and the applications to Theorem 2.35 and Proposition 2.52).
By the category of

∨
-positively de�nable sets, we mean the category whose

objects are expressions of the form
∨
i∈ωDi, where D0 ⊆ D1 ⊆ . . . are positively

de�nable sets, where two such expressions are considered to be equal if they agree
in any model of T (equivalently, in the monster model; so working in the monster
model, any object can be identi�ed with the corresponding subset of the model).
A morphism F :

∨
i∈ωDi →

∨
i∈ω Ei is a collection of de�nable functions Fi : Di →

Eji , where i ranges over ω and ji is some index in ω, such that
⋃
Fi is a well-

de�ned function, and two such collections of functions are identi�ed if they yield
the same function from

∨
i∈ωDi(M) to

∨
i∈ω Ei(M) for every (equivalently, some)

model M . We write
∨
i∈ωDi ⊆

∨
i∈ω Ei if this holds in every model (equivalently,

in C); this is equivalent to saying that for every i there is ji such that Di ⊆ Eji .
Whenever

∨
i∈ωDi(x̄) is

∨
-positively de�nable and ā is a tuple of parameters, we
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say that
∨
i∈ωDi(ā) holds if there is i such that M |= Di(ā) for some (any) model

M ≺ C containing ā.
In fact, we can consider any

∨
i∈I Di for a countable set I and positively de�nable

sets Di, as then one can replace I by ω and the Di's by the unions of initial sets
Di, i < n. We will be doing this freely without mentioning it. Also, one could
extend the context to uncountable sets I, but countable families are su�cient for
the purpose of our main theorems.
Recall that a subset D of a group G is said to be (left) generic if �nitely many

left translates of it cover G; D is said to be thick if there is n such that for every
g1, . . . , gn ∈ G there is i < j such that g−1

j gi ∈ D. It is clear that each thick subset

of G is generic. As to the converse, if D ⊆ G is generic, then D−1D is thick.
LetG be a group de�nable in T . For a positively de�nable setD(x, ȳ) ` G(x), by

(∃genx)D(x, ȳ) we mean the
∨
-positively de�nable set

∨
l∈ω(∃l-genx)D(x, ȳ), where

(∃l-genx)D(x, ȳ) := (∃x1, . . . , xl)(∀z)
l∨

i=1

D(xiz, ȳ).

(Formally, the quanti�ers in the last formula are restricted to G; if (G, ·) is a sort,
then this formula is clearly positive, so (∃genx)D(x, ȳ) is

∨
-positively de�nable.

Abusing terminology by allowing in positive formulas both the group operation
on G and quanti�cation over G, we can say that (∃genx)D(x, ȳ) is

∨
-positively

de�nable also for any de�nable G.)
In particular, for any parameters b̄, (∃genx)D(x, b̄) holds i� D(M, b̄) := {a ∈

G(M) : M |= D(a, b̄)} is generic in G(M) for some [any] model M containing b̄.
For a

∨
-positively de�nable set D(x, ȳ) =

∨
i∈ωDi(x, ȳ) such that D(x, ȳ) ` G(x)

by (∃genx)D(x, ȳ) we mean the
∨
-positively de�nable set

∨
i∈ω(∃genx)Di(x, ȳ). In

particular, for any parameters b̄, (∃genx)
∨
i∈ωDi(x, b̄) holds i� for some i the set

Di(M, b̄) := {a ∈ G(M) : M |= Di(a, b̄)} is generic in G(M) for some [any] model
M containing b̄. Working in the monster model, this is equivalent to saying that
D(C, b̄) := {a ∈ G(C) : C |= D(a, b̄)} =

⋃
i∈ωDi(C, b̄) is generic in G(C) (but this

equivalence need not be true for a non ℵ0-saturated model).
Analogous de�nitions apply when we replace �generic� by �thick�. The only

di�erence is, of course, that the displayed formula above is now the following

(∃l-thickx)D(x, ȳ) := (∀x1, . . . , xl)
∨
i<j

D(x−1
j xi, ȳ).

2.2. A largeness notion. Throughout, G is a group acting on X. We work in the
language of group actions, (G, ·, X, ·, . . . ). (· refers both to the group operation and
the action, and . . . to possible additional structure.) In the particular case when G
acts on itself via left translations, the results which we will obtain for (G, ·, X, ·, . . . )
transfer automatically to the corresponding statements in the language of groups
(G, ·, . . . ) (i.e. without the extra sort for X), just identifying X with G.
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We de�ne a largeness notion Lk for subsets of X, resembling �rank ≥ k� for
certain model-theoretic ranks. In fact, we de�ne two largeness notions Lgen

k and
Lthick
k . The stronger notion Lthick

k corresponds to non-forking in stable theories (see
Remark 2.6). For our purposes, both notions work in the same way, so later we
will just write Lk. It would be interesting to further investigate Lgen

k and Lthick
k

(and variants) for unstable theories.
In what follows, we deal with Lgen

k , but everything works also for the analogously
de�ned Lthick

k .

De�nition 2.1. Let Y (x, ȳ) ⊆ X(x) be a
∨
-positively de�nable set

∨
i Yi(x, ȳ).

(1) Lgen
0 (Y (x, ȳ)) is the

∨
-positively de�nable set

∨
i(∃x)Yi(x, ȳ) .

(2) For k > 0, Lgen
k (Y (x, ȳ)) is the

∨
-positively de�nable set in variables ȳ

(∃genz)Lgen
k−1(Y (x, ȳ) ∩ Y (z−1x, ȳ)).

In particular, using terminology from Subsection 2.1, for a
∨
-positively de�nable

set Y = Y (x) ⊆ X(x) we have a well-de�ned meaning of �Lgen
k (Y ) holds� (working

in a given theory). Namely, Lgen
0 (Y ) holds i� Y 6= ∅, and Lgen

k (Y ) holds i� {g ∈ G :
Lgen
k−1(Y ∩ gY ) holds} is generic as a

∨
-de�nable set, i.e. writing it as a countable

increasing union of de�nable sets, one of them must be generic. The word �hold�
will be often skipped from now on.

Remark 2.2. Lgen
k (Y (x, ȳ)) can be expressed by a disjunction of positive, trans-

lation invariant formulas ψj(ȳ) of the language (G, ·, X, ·, Yi)i, where Y =
∨
Yi.

(Here, by a translation invariant formula we mean a formula ψ(Yi:i<ω)(ȳ) depend-
ing on the Yi's (and with variables ȳ appearing only in the Yi(x, ȳ)'s) such that
ψ(Yi:i<ω)(ȳ) is equivalent to ψ(gYi:i<ω)(ȳ) for any g ∈ G.)

Proof. The proof is by induction on k. Clearly Lgen
0 (Y (x, ȳ)) can by expressed as∨

i(∃x)Yi(x, ȳ) which does the job. Now, suppose that Lgen
k (Y (x, ȳ)) can be ex-

pressed as
∨
j∈ω ψj,(Yi:i<ω)(ȳ), where each ψj,(Yi:i<ω)(ȳ) is positive and translation in-

variant. Then Lgen
k+1(Y (x, ȳ)) can be expressed as

∨
j,l∈ω(∃l-genz)ψj,(Yi∩zYi:i<ω)(ȳ, z).

By induction hypothesis, it is clear that each (∃l-genz)ψj,(Yi∩zYi:i<ω)(ȳ, z) is positive
and translation invariant. �

It is also easy to express the Lgen
k directly, e.g. Lgen

2 (Y ) ≡
∨
i,l,l′ L

gen,l,l′

2 (Yi),
where

Lgen,l,l′

2 (Yi) ≡ (∃l-genz)(∃l′-genz′)Lgen
0 (Yi ∩ zYi ∩ z′Yi ∩ z′zYi).

Remark 2.3. Let L and L′ be two languages on a given universe, expanding the
language of the action of G on X. Suppose Y = Y (x) ⊆ X(x) and Y =

∨
Yi with

Yi de�nable in both L and L′. Then Lgen
k (Y ) holds with respect to ThL(M) if and

only if it holds with respect to ThL
′
(M).

Let Y = Y (x) ⊆ X(x) and Y =
∨
Yi. By Remark 2.2, Lgen

k is translation
invariant, i.e. Lgen

k (Y ) ⇐⇒ Lgen
k (hY ).
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De�ne

StLgenk (Y ) := {g : Lgen
k (gY ∩ Y )}.

This is an operator from the class of
∨
-positively de�nable sets to itself. Note

that Lgen
k+1(Y ) holds i� StLgenk (Y ) is generic as a

∨
-de�nable set (which remember

means that writing StLgenk (Y ) as a countable increasing union of de�nable sets Un
say, one of the Un's is generic). By Remark 2.2, we get

Remark 2.4. S := StLgenk (Y ) satis�es S = S−1. If additionally Lgen
k (Y ), then

1 ∈ S, so S is symmetric. Even more: S can be expressed by a disjunction
of positive formulas (with parameters over which Y is de�ned) which are closed
under inversion; if additionally Lgen

k (Y ), then these formulas can be chosen to
contain 1, so they are symmetric.

The next basic remark shows in particular that (working in a given theory) the∨
-de�nable set Lgen

k (Y (x, ȳ)) does not depend on the choice of the presentation of
Y as a union of positively de�nable sets.

Remark 2.5. (1) Let Y (x, ȳ) ⊆ Y ′(x, ȳ) ⊆ X(x) be
∨
-positively de�nable sets.

Then Lk(Y (x, ȳ)) ⊆ Lk(Y ′(x, ȳ)) (as
∨
-de�nable sets in variables ȳ). In particular,

if the tuple ȳ is empty, then �Lk(Y ) holds� implies �Lk(Y ′) holds�.
(2) Let Y (x, ȳ) ⊆ X(x) be a

∨
-positively de�nable set. Then for every k ∈

ω, Lthick
k (Y (x, ȳ)) ⊆ Lgen

k (Y (x, ȳ)). In particular, if the tuple ȳ is empty, then
�Lthick

k (Y ) holds� implies �Lgen
k (Y ) holds�.

The whole discussion in Subsection 2.1 and above goes through working with∨
-de�nable sets instead of

∨
-positively de�nable sets. However, the above obser-

vation that the operator StLgenk preserves
∨
-positive de�nability will be crucial in

our applications.
As already mentioned, the above de�nitions and facts have obvious counterparts

with �generic� replaced by �thick�. In the rest of the paper, we can work with any of
these two versions, so we will be writing L in place of Lgen or Lthick. An exception
is the next remark which holds for Lthick.

Remark 2.6. When G = Aut(C) is the automorphism group of a monster model of
a stable theory T , and Y is de�nable (over C), then Lthick

k (Y ) holds for all k ∈ ω
if and only if Y does not fork over ∅. (Here, Lthick

k (Y ) is computed in (G, ·,C, ·)
with C equipped with its original stable structure.)

Proof. Let T = Th(C). The structure in which we will be working is (G, ·,C, ·),
with C equipped with its original stable structure.

(←). It is enough to show this implication working in a monster model
(G∗, ·,C∗, ·) � (G, ·,C, ·). We argue by induction on k.
If Y does not fork over ∅, then Y 6= ∅, so Lthick

0 (Y ). For the induction step,
consider any Y which does not fork over ∅. By inductive hypothesis, it is enough
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to show that
S := {g ∈ G∗ : gY ∩ Y does not fork over ∅}

is thick. Take p∗ ∈ S(C∗) which does not fork over ∅ and contains Y . By sta-
bility, we know that the orbit G∗ · p∗ is bounded (of cardinality at most 2|T |), so
StabG∗(p

∗) is a bounded index subgroup of G∗. Write explicitly Y (x) = ϕ(x, ā).
Then StabG∗(p

∗) is contained in

S ′ := {g ∈ G∗ : gY ∈ p∗} = {g ∈ G∗ : ϕ(x, gā) ∈ p∗} = {g ∈ G∗ : C∗ |= dp∗ϕ(gā)}.
By stability, S ′ is a de�nable subset of G∗ (in the sense of the structure
(G∗, ·,C∗, ·)). All of this implies that S ′ is thick, as otherwise, by the su�cient
saturation of (G∗, ·,C∗, ·), we would get a sequence (gi)i<(2|T |)+ of elements of

G∗ such that g−1
j gi /∈ S ′ for all i < j < (2|T |)+, which contradicts the fact that

[G∗ : StabG∗(p
∗)] < (2|T |)+. On the other hand, S ′ is clearly contained in S.

(→). Suppose Y forks over ∅. Then, by stability, Y k-divides over ∅ for some k.
Then one can easily check that Lthick

k−1 (Y ) does not hold. We will check it for k = 2
and k = 3, leaving the general case for the reader.
Suppose Y 2-divides over ∅. Then, by the strong ℵ0-homogeneity of C, there

are g0, g1, · · · ∈ G such that for all i < j, giY ∩ gjY = ∅. If Lthick
1 (Y ) holds,

then {g : gY ∩ Y 6= ∅} is thick, so there are i < j such that g−1
j giY ∩ Y 6= ∅, a

contradiction. (Note that this argument does not work for �generic� in place of
�thick�.)
Suppose Y 3-divides over ∅. Then there are g0, g1, · · · ∈ G such that for all

i < j < k, giY ∩ gjY ∩ gkY = ∅, and for all i and j, gigj = gi+j. Suppose for a
contradiction that Lthick

2 (Y ) holds. Then there are i < j such that Lthick
1 (g−1

i gjY ∩
Y ) holds. Hence, we can �nd k < l such that (g−1

i gjY ∩ Y ) ∩ (g−1
k glg

−1
i gjY ∩

g−1
k glY ) 6= ∅. In particular, gjY ∩ giY ∩ gl−k+jY 6= ∅, a contradiction as i < j <
l − k + j. �

2.3. Means and stabilizers. Let X be a G-set. By a G-lattice we mean a family
of subsets of X including ∅ and X, which is closed under G-translations, and
intersections and unions of pairs.

De�nition 2.7. Let G be a group acting on X, D a G-lattice of subsets of X.
A mean is a monotone, (non-negative), translation-invariant function m : D → R
satisfying m(∅) = 0, and for Y, Z ∈ D

m(Y ∪ Z) = m(Y ) +m(Z)−m(Y ∩ Z).

The mean m is normalized, if m(X) = 1.
Given a mean m and ε ∈ R, the ε-stabilizer of a set Y ⊆ X is de�ned to be

Stε(Y ) := {g ∈ G : m(gY ∩ Y ) > (1− ε)m(Y )}.

Lemma 2.8. Let X be a G-set and D a G-lattice. Let m be a mean on D (so
m(X) <∞), and let W ∈ D satisfy m(W ) > 0. Then:
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(1) St1(W ) = {g ∈ G : m(gW ∩W ) > 0} is thick (so generic).
(2) We have Lk(W ) for all k (working in (G, ·, X, ·,W, . . . )).

Proof. (1) For some n ∈ N we have n · m(W ) > m(X). Suppose St1(W ) is not
n-thick. Then one can �nd gi ∈ G, i = 1, . . . , n, satisfying g−1

j gi /∈ St1(W ) for all

i < j. Therefore, m(giW ∩ gjW ) = m(g−1
j giW ∩W ) = 0 for all i < j. Hence,

n ·m(W ) ≤ m(X), a contradiction.

(2) Let us work with L = Lthick which clearly implies the version with L =
Lgen. Without loss, we can work in a monster model (G∗, ·, X∗, ·,W ∗, . . . ) �
(G, ·, X, ·,W, . . . ). To see this, apply the standard construction by incorporating
m into the language (as the collection of functions mϕ(x,ȳ), where mϕ(x,ȳ)(b̄) :=
m(ϕ(x, b̄)) when it is de�ned, and say symbol ∞ otherwise), extending to the
monster model, and taking the standard part; this yields a mean (which we still
denote by m) on a certain G∗-lattice of subsets of X∗, includingW ∗, and such that
m(X∗) = m(X) <∞ and m(W ∗) = m(W ) > 0. So without loss (G, ·, X, ·,W, . . . )
is a monster model.
We argue by induction on k. For k = 0, m(W ) > 0 ensures L0(W ). For higher

k, we know by induction that Lk−1(gW ∩W ) holds whenever m(gW ∩W ) > 0.
Thus, {g ∈ G : Lk−1(gW ∩W )} is thick by (1), so Lk(W ) holds by the su�cient
saturation of the model and the de�nition of Lk. (Note that Lk−1(gW ∩ W )
is a

∨
-positively de�nable set

∨
iDi(g), so saturation is needed to deduce that

{g ∈ G : Di(g)} is thick for some i.) �

Remark 2.9. In fact, the ideal Im = {Y : m(Y ) = 0} is an S1-ideal, i.e. Im is a G-
invariant ideal on the lattice D such that wheneverW ∈ D and there are arbitrary
long �nite sequences (gi) of elements of G such that giW ∩ gjW ∈ I, then W ∈ I.
The stabilizer St1 can be de�ned for any S1-ideal I as {g : gW ∩W /∈ I}, and
Lemma 2.8 continues to hold for W /∈ I. The assumption on m′ in Proposition
2.11 below can be replaced by: D′ carries an S1-ideal.

Lemma 2.10. Let X be a G-set and D a G-lattice. Let m be a mean on D. Then,
for any Z ∈ D and ε1, ε2 ∈ R, Stε1(Z) Stε2(Z) ⊆ Stε1+ε2(Z).

Proof. The natural argument uses symmetric di�erences of sets, but here our lat-
tice is not closed under set-theoretic di�erence, so we will mimic means of symmet-
ric di�erences. (In fact, using Proposition 2.21, we could work with the Boolean
algebra generated by D and use symmetric di�erences, but we do not do it here
to keep this argument self-contained and completely elementary.)
Note that, by the invariance of m, for any ε we have

(†) g ∈ Stε(Z) ⇐⇒ m(gZ) +m(Z)− 2m(gZ ∩ Z) < 2εm(Z).

Consider any gi ∈ Stεi(Z) for i = 1, 2. Then, m(giZ) + m(Z) − 2m(giZ ∩ Z) <
2εim(Z) for i = 1, 2. Hence, by invariance, we easily get

m(g1g2Z) + 2m(g1Z) +m(Z)− 2m(g1g2Z ∩ g1Z)− 2m(g1Z ∩Z) < 2(ε1 + ε2)m(Z).
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By (†), it is enough to show that the left hand side of the above inequality is greater
than or equal to m(g1g2Z) +m(Z)−2m(g1g2Z ∩Z). By the modularity of m, this
is easily seen to be equivalent to m(g1Z ∪ (g1g2Z ∩ Z)) ≥ m(g1Z ∩ (g1g2Z ∪ Z))
which is true by the monotonicity of m. �

The following proposition is our strong version of the Massicot-Wagner elabo-
ration of the stabilizer theorem of the �rst author. It will be the engine for most
of our main results. We will actually need it only in case X = G, but the more
general statement clari�es some aspects of the proof. Note that when X = G,
the conclusion Y N ⊆ St1(BA) implies that Y N ⊆ BAA−1B−1. A suitable version
also holds for approximate groups (yielding information on amenable approximate
groups as in Massicot-Wagner), but we will stick with the global assumptions.

Proposition 2.11. Let A ⊆ X, B ⊆ G, N ∈ N. Let D′ be the set of �nite
intersections of translates gB. Let D be a G-lattice including A and B′A for
B′ ∈ D′. Let m be an invariant mean on D, m(A) > 0, and m′ an invariant
mean on the lattice generated by D′, with m′(B) > 0. Then there exists a generic,
symmetric set Y ⊆ G that is positively de�nable in (G, ·, B) over parameters from
G, and such that Y N ⊆ St1(BA).

Proof. In this proof, both largeness and
∨
-de�nability are considered with re-

spect to the theory of the structure (G, ·, B). We use the mean m′ only for the
largeness of B. Namely, by Lemma 2.8, we have Lk(B) for all k ∈ ω. We will show:

(**) for some k and B′ ∈ D′ with B′ ⊆ B and Lk+1(B′), the set Y := StLk(B
′)

is generic as a
∨
-de�nable set, and Y N ⊆ St1(B′A).

This means that if we present (using Remark 2.4) Y as
∨
n Yn with the Yn's

increasing, symmetric and positively de�nable over G, then some Yn is generic,
and, of course, Y N

n ⊆ Y N . So (**) will su�ce.
Let ε = 1/N . Let f(k) be the in�mum of m(B′A) over all B′ ∈ Lk ∩ D′

with B′ ⊆ B. So 0 < m(A) ≤ f(k) ≤ m(X). Thus, we cannot have
f(l) ≥

√
1 + εf(l − 1) for all l > 0. Fix l > 0 with f(l) <

√
1 + εf(l − 1).

Let λ = f(l)
√

1 + ε. Let B′ ∈ D′ with B′ ⊆ B satisfy

(***) Ll(B′) and m(B′A) < λ.

We will show that any such B′ satis�es (**) (with k = l−1.) Let Y = StLl−1
(B′).

Since B′ ∈ Ll, Y is generic as a
∨
-de�nable set. For g ∈ Y we have Ll−1(gB′∩B′),

so

m(gB′A ∩B′A) ≥ m((gB′ ∩B′)A) ≥ f(l − 1) > f(l)/
√

1 + ε > m(B′A)/(1 + ε).

Hence, g ∈ Stε(B
′A). So Y ⊆ Stε(B

′A). By Lemma 2.10, for any Z, Stε(Z)N ⊆
StNε(Z). Thus, we conclude that Y N ⊆ St1(B′A). This proves (**). �

We will also need the following corollary of the proof of Proposition 2.11.
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Corollary 2.12. Let A ⊆ X = G, B ⊆ P(G), N ∈ N. Put D′ = {g1B∩· · ·∩gnB :
B ∈ B, g1, . . . , gn ∈ G}. Let D be a G-lattice containing D′ and including A and
B′A for B′ ∈ D′. Let m be an invariant mean on D with m(A) > 0 and m(B) > 0
for B ∈ B. Then there exist l ∈ N>0, λ ∈ R, B ∈ B and g1, . . . , gn ∈ G such that
for B′ := B ∩ g1B ∩ · · · ∩ gnB we have

Ll(B′) (working in (G, ·, B)) and m(B′A) < λ,

and whenever E ∈ B and h1, . . . , hm ∈ G are chosen so that for E ′ := E ∩
h1E ∩ · · · ∩ hmE one has Ll(E ′) (working in (G, ·, E)) and m(E ′A) < λ, then
S := StLl−1

(E ′) is generic (as a set
∨
-de�nable in (G, ·, E)), symmetric, and

SN ⊆ E ′A(E ′A)−1 ⊆ EA(EA)−1.

The above corollary will be used later for N = 8; in [15], we will use it for
N = 16.

2.4. From pre-mean to mean. We show how to extend a pre-mean to a mean
canonically; if the pre-mean is G-invariant, the resulting mean will therefore be
G-invariant, too. This will be essential in the proofs of the main results of Section
2.

De�nition 2.13. A normalized mean on a lattice (L,∪,∩) of subsets of a set X
is a monotone function ρ : L→ [0, 1], satisfying:

ρ(Y ∪ Y ′) = ρ(Y ) + ρ(Y ′)− ρ(Y ∩ Y ′),
and ρ(∅) = 0, ρ(X) = 1.

Whenever we present a type-de�nable set Z as an intersection
⋂
i Zi, we mean

that the Zi's are de�nable, i ranges over a directed set (I,<), and Zj ⊆ Zi for
i < j.
Let E =

⋂
i∈I Ri be a type-de�nable equivalence relation on a de�nable set X,

where without loss each Ri is re�exive and symmetric.
Working in the monster model, we write Y/E for the image of Y ⊆ X in X/E,

and Y E for the pullback of Y/E in X. For a binary relation R on X, and Y ⊆ X,
by R ◦ Y we mean {x ∈ X : (∃y ∈ Y )R(y, x)}. In particular, Y E = E ◦ Y .
The following de�nition and lemma can be read over any base set of parameters.

De�nition 2.14. A pre-mean for X/E is a monotone function m from de�nable
subsets ofX into [0, 1], withm(∅) = 0, m(X) = 1, andm(Y ∪Y ′) ≤ m(Y )+m(Y ′),
such that equality holds whenever (Ri ◦ Y ) ∩ Y ′ = ∅ for some i.

By compactness, the condition �(Ri ◦ Y ) ∩ Y ′ = ∅ for some i� is equivalent to
�(E ◦ Y ) ∩ Y ′ = ∅�.
Lemma 2.15. Let m be a pre-mean for X/E. Then m induces a normalized mean
ν on the lattice of sets Y/E, with Y type-de�nable, or equivalently on the lattice
of type-de�nable sets Y with Y E = Y , in the following way

ν(Y ) := inf{m(D) : D de�nable, Y ⊆ D}.
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Proof. Let L be the lattice of all
∧
-de�nable sets Y with Y E = Y . For Y ∈ L,

de�ne
ν(Y ) = inf{m(D) : D de�nable, Y ⊆ D}.

Clearly ν(∅) = 0, ν(X) = 1, ν is monotone, and ν(Y ∪ Y ′) ≤ ν(Y ) + ν(Y ′).
If Y, Y ′ ∈ L are disjoint, then

∧
iRi(y, y

′) ∧ y ∈ Y ∧ y′ ∈ Y ′ is inconsistent.
By compactness, for some i and some de�nable D ⊇ Y and D′ ⊇ Y ′, we have
(Ri ◦ D) ∩ D′ = ∅. As m is a pre-mean, we have m(D ∪ D′) = m(D) + m(D′),
and likewise for any de�nable subsets of D,D′. Hence, in this case, ν(Y ∪ Y ′) =
ν(Y ) + ν(Y ′).
Now, L is not complemented, but we do have:

Claim 1: Let Y ⊆ Z be both in L. For any ε > 0 there exists Y ′ ⊆ Z, Y ′ ∈ L, Y ′
disjoint from Y , and with ν(Y ) + ν(Y ′) ≥ ν(Z)− ε.

Proof. Write Y =
⋂
k∈K Yk with de�nable Yk such that Ri(k) ◦ Yj(k) ⊆ Yk (here

i(k) ∈ I and j(k) ∈ K are some functions of k). Similarly write Z =
⋂
l Zl. Find

k such that ν(Y ) ≥ m(Yk)− ε. We have

Yj(k) ∩Ri(k) ◦ (X \ Yk) = ∅.
Let

Y ′ = E ◦ (Z \ Yk) = E ◦

(⋂
l

Zl \ Yk

)
=
⋂
i,l

Ri ◦ (Zl \ Yk).

Then Y ′ ∈ L, and Y ′ ⊆ E ◦ Z = Z. Also, Y ′ ⊆ E ◦ (X \ Yk) ⊆ Ri(k) ◦ (X \ Yk), so
Y ∩ Y ′ = ∅. Finally, ν(Y ′) = infi,lm(Ri ◦ (Zl \ Yk)) ≥ inf lm(Zl \ Yk), so

ν(Y ′) +m(Yk) ≥ inf
l
m(Zl \ Yk) +m(Yk) ≥ inf

l
m(Zl) = ν(Z)

As m(Yk) ≤ ν(Y ) + ε, we obtain ν(Y ′) + ν(Y ) + ε ≥ ν(Z) as required. �(claim)

From this, the equality ν(Y ∪ Z) = ν(Y ) + ν(Z) − ν(Y ∩ Z) can be shown
as follows. Take any ε > 0. Find Y ′ ∈ L such that Y ′ ⊆ Y , Y ′ disjoint from
Y ∩ Z, and δ1 := ν(Y )− ν(Y ′)− ν(Y ∩ Z) ≤ 1

2
ε. Similarly, �nd Z ′ ∈ L such that

Z ′ ⊆ Z, Z ′ disjoint from Y ∩ Z, and δ2 := ν(Z) − ν(Z ′) − ν(Y ∩ Z) ≤ 1
2
ε. Then

Y ∩ Z, Y ′, Z ′ are pairwise disjoint subsets of Y ∪ Z. Finally, �nd T ∈ L such that
T ⊆ Y ∪ Z, T disjoint from Y ∩ Z, and δ := ν(Y ∪ Z) − ν(T ) − ν(Y ∩ Z) ≤ ε.
Put Y ′′ = Y ′ ∪ (T ∩ Y ) ∈ L and Z ′′ = Z ′ ∪ (T ∩ Z) ∈ L. Then Y ′′, Z ′′ and
Y ∩Z are pairwise disjoint subsets of Y ∪Z. Put T ′′ = Y ′′ ∪Z ′′ ∈ L. We see that
δ′′ := ν(Y ∪Z)−ν(T ′′)−ν(Y ∩Z) ≤ δ ≤ ε and T ′′ is disjoint from Y ∩Z. Moreover,
δ′′1 := ν(Y )− ν(Y ′′)− ν(Y ∩ Z) ≤ δ1 ≤ 1

2
ε and δ′′2 := ν(Z)− ν(Z ′′)− ν(Y ∩ Z) ≤

δ2 ≤ 1
2
ε. Note also that δ′′1 , δ

′′
2 , δ
′′ ≥ 0.

We get |ν(Y ∪Z)−ν(Y )−ν(Z)+ν(Y ∩Z)| = |δ′′+ν(T ′′)−ν(Y )−ν(Z)+2ν(Y ∩
Z)| = |δ′′−(ν(Y )−ν(Y ′′)−ν(Y ∩Z))−(ν(Z)−ν(Z ′′)−ν(Y ∩Z))| = |δ′′−δ′′1−δ′′2 |.
Since δ′′ ∈ [0, ε] and δ′′1 , δ

′′
2 ∈ [0, 1

2
ε], we see that |δ′′ − δ′′1 − δ′′2 | ≤ ε. Letting ε→ 0,

we obtain the desired equality. �
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Lemma 2.15 will be su�cient to deal with Case 1 in Subsection 2.6, i.e. to prove
Theorem 2.35. In order to deal with Case 2 and prove Theorem 2.36, we will need
some variant of this lemma. Namely, suppose that the type-de�nable equivalence
relation E is on a de�nable group G.

De�nition 2.16. A G-pre-mean for G/E is a pre-mean for G/E such that m(Y ∪
Y ′) = m(Y ) + m(Y ′) whenever ((g1Ri ∩ · · · ∩ gnRi) ◦ Y ) ∩ Y ′ = ∅ for some
g1, . . . , gn ∈ G and some i ∈ I.

The following variant of Lemma 2.15 follows from Lemma 2.15.

Corollary 2.17. Let m be a G-pre-mean for X/E. Then m induces a normalized
mean ν on the lattice of type-de�nable sets Y with Y (g1E ∩ · · · ∩ gnE) = Y for
some g1, . . . , gn ∈ G, in the following way

ν(Y ) := inf{m(D) : D de�nable, Y ⊆ D}.

2.5. Means and measures. In this subsection, we will prove that, in a certain
general context, the existence of an invariant mean is equivalent to the existence of
an invariant measure on an appropriate space. This is interesting in its own right,
but also yields model-theoretic absoluteness of various notions of �amenability�, i.e.
the existence of invariant measures on appropriate spaces computed for a given
model M does not depend on the choice of M .
Let us recall some de�nitions from measure theory.

De�nition 2.18. Let R be a ring of subsets of a given set X, namely closed under
�nite unions and di�erences; an example is a Boolean algebra of subsets of X.
1) A content on R is a function m : R → [0,+∞] which is �nitely additive and
satis�es m(∅) = 0.
2) A pre-measure on R is a content which is σ-additive, namely if (An)n<ω is
a sequence of pairwise disjoint members of R whose union A is also in R, then
m(A) =

∑
nm(An).

3) A measure is a pre-measure on a σ-algebra of subsets of a given set.

A content m on a ring R of subsets of X is called σ-�nite if X is the union of
an increasing sequence (Xn)n<ω of elements of R with m(Xn) <∞.

Fact 2.19 (Carathéodory extension theorem). Let ν be a σ-�nite pre-measure on
a ring R of subsets of X. Then there is a unique extension of ν to a measure on
the σ-algebra σ(R) generated by R.

From the proof, or from a more precise statement which says that the extended
measure (restricted to σ(R)) is just the outer measure induced by ν, it follows
that if R is a G-ring (for an action of a group G on X) and ν is G-invariant, then
so is the extended measure. It is clear that the converse of the above theorem
is also true, i.e. if a content ν on R extends to a measure on σ(R), then ν is a
pre-measure.
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When (Xn)n<ω is a descending sequence of sets whose intersection is empty, we
will write Xn ↓ ∅; when (Xn)n<ω is an ascending sequence of sets whose union is
X, we will write Xn ↑ X.

Remark 2.20. Let ν be a content on a ring R of subsets of X taking only �nite
values. Then ν is a pre-measure if and only if for every sequence (Xn)n<ω of sets
from R such that Xn ↓ ∅ one has limn ν(Xn) = 0 (in this case we say that ν is
continuous at 0). If R is a Boolean algebra, these conditions are also equivalent to
the condition that for every sequence (Xn)n<ω of sets from R such that Xn ↑ X
one has limn ν(Xn) = ν(X).

Proposition 2.21. If ρ is a normalized mean on a lattice (L,∩,∪) of subsets
of a set X, then it extends uniquely to a content ν on the Boolean algebra B(L)
generated by L. If L is a G-lattice and ρ is G-invariant, then so is ν.

Proof. Case 1: L is �nite, say equal to {A0, . . . , An}.
It is clear that there is a unique possible candidate for ν, namely ν is determined

by the formulas

ν
(
A
ε(0)
0 ∩ · · · ∩ Aε(n)

n

)
= ρ

 ⋂
i∈∆+

ε

Ai

− ρ
(

⋂
i∈∆+

ε

Ai) ∩ (
⋃
i∈∆−ε

Ai)

 ,

for any ε ∈ {0, 1}n+1, where ∆+
ε := {i ≤ n : ε(i) = 1}, ∆−ε := {i ≤ n : ε(i) = 0},

and A0
i := X \ Ai, A1

i := Ai. This follows by �nite additivity of ρ and the fact
that each element of B(L) can be (uniquely) written as a (disjoint) union of sets

of the form A
ε(0)
0 ∩ · · · ∩ Aε(n)

n .
Conversely, it is clear that when we de�ne ν be the above formulas on the atoms

of B(L) and then extend additively, then we get a content. It is also clear that
if ρ is G-invariant, so is ν. The remaining thing to check is that ν extends ρ, i.e.
ν(Ak) = ρ(Ak) for all k ≤ n.
We argue by induction on n, where the base induction step for n = 0 is clear.

Assume the conclusion holds for numbers less then a given n > 0. It is enough to
show that ν(An) = ρ(An).

ν(An) =
∑
ε∈2n

ρ

An ∩ ⋂
i∈∆+

ε

Ai

− ρ
An ∩ (

⋂
i∈∆+

ε

Ai) ∩ (
⋃
i∈∆−ε

Ai)

 = S1 + S2,

where

S1 =
∑
ε∈2n−1

ρ

An ∩ An−1 ∩
⋂
i∈∆+

ε

Ai

− ρ
An ∩ An−1 ∩ (

⋂
i∈∆+

ε

Ai) ∩ (
⋃
i∈∆−ε

Ai)

 ,



20 EHUD HRUSHOVSKI, KRZYSZTOF KRUPI�SKI, AND ANAND PILLAY

S2 =
∑
ε∈2n−1

ρ

An ∩ ⋂
i∈∆+

ε

Ai

− ρ
An ∩ (

⋂
i∈∆+

ε

Ai) ∩ (An−1 ∪
⋃
i∈∆−ε

Ai)

 .

By the modularity of ρ,

S2 =
∑

ε∈2n−1 ρ
(
An ∩

⋂
i∈∆+

ε
Ai
)
− ρ

(
An ∩ (

⋂
i∈∆+

ε
Ai) ∩ (

⋃
i∈∆−ε

Ai)
)

−ρ
(
An ∩ An−1 ∩

⋂
i∈∆+

ε
Ai
)

+ ρ
(
An ∩ An−1 ∩ (

⋂
i∈∆+

ε
Ai) ∩ (

⋃
i∈∆−ε

Ai)
)
.

Thus, S1 + S2 =
∑

ε∈2n−1 ρ
(
An ∩

⋂
i∈∆+

ε
Ai
)
− ρ

(
An ∩ (

⋂
i∈∆+

ε
Ai) ∩ (

⋃
i∈∆−ε

Ai)
)
,

which is equal to ρ(An) by induction hypothesis. Thus, the induction step has
been completed.

Case 2: L is arbitrary.
For uniqueness notice that any content on B(L) extending ρ is determined by

its restrictions to all Boolean algebras generated by �nite sublattices of L and
that these restrictions are unique by Case 1. To show existence, for any �nite
sublattice L0 ⊆ L let νL0 be the unique content on B(L0) extending ρ|L0 , which
exists by Case 1. Then note that by uniqueness in Case 1,

⋃
L0
νL0 is the desired

content. �

The next easy example shows that it may happen that a mean ρ is continuous
at 0, but the unique extension ν to a content on the generated Boolean algebra is
not continuous at 0, i.e. ν is not a pre-measure and so it cannot be extended to a
measure.

Example 2.22. Take any in�nite set X and present it as an increasing union of
sets Xn. Let the lattice L consist of ∅, X0, X1, . . . , X. De�ne a mean on L by:
ρ(∅) = 0, ρ(X) = 1, ρ(Xn) = 1

2
. Then, if An ↓ ∅, where An ∈ L, then eventually

An = ∅, so ρ is continuous at 0. Let ν be the unique extension of ρ to a content
on B(L). Then X \Xn ↓ ∅, but lim ν(X \Xn) = 1

2
6= 0, so ν is not a pre-measure.

The means that we are interested in come from pre-means, and we will see that
this rules out obstacles as in the above example.
From now on, we work in models of a given theory T . As is well-known, a

de�nable family of de�nable sets is given by a formula ϕ(x̄, ȳ), in the sense that
the family is precisely the collection of sets de�ned by the formulas ϕ(x̄, b̄) as b̄
varies (over a given model, or over the monster model). We generalize this to
the notion of a

∨
-de�nable family (of de�nable sets), given now by a collection

{ϕi(x̄, z̄i) : i ∈ I} of formulas. Namely, the family is the collection of sets de�nable
by formulas ϕi(x̄, b̄i) for i ∈ I and varying parameters b̄i.

De�nition 2.23. We will say that a
∨
-de�nable family E := {ϕi(x, y, z̄i) :

i ∈ I, z̄i belongs to any model} de�nes an equivalence relation if for every model
M , EM :=

⋂
EM is an (M -type-de�nable) equivalence relation, where EM :=

{ϕi(x, y, b̄i) : i ∈ I, b̄i ⊆M}.
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By a standard trick, we can and do assume that I is a directed set and for every
i < j, (∀z̄i)(∃z̄j)(ϕj(x, y, z̄j)→ ϕi(x, y, z̄i)).
The above de�nition is introduced in order to capture for example the following

situations. A ∅-type-de�nable equivalence relation E =
⋂
i∈I Ri(x, y) is de�ned by

the
∨
-de�nable family {Ri(x, y) : i ∈ I} (so here there are no parameter variables

z̄i). In particular, the relation of lying in the same left [resp. right] coset of a ∅-type-
de�nable subgroup H of a ∅-de�nable group G is de�ned by a

∨
-de�nable family

(without parameter variables). To get another important example, consider any ∅-
type-de�nable subgroup H =

⋂
i∈I Xi (where I is directed and Xj ⊆ Xi whenever

i < j). Put E = {G(x) ∧ G(y) ∧ z−1(yx−1)z ∈ Xi : i ∈ I, z} (where for z /∈ G or
a /∈ G we put z−1az := a). Then, for any model M , EM is the M -type-de�nable
equivalence relation of lying in the same right coset of

⋂
g∈G(M) H

g. More generally,

when G is equipped with a
∨
-de�nable group topology as in Subsection 2.7, then

the relation of lying in the same left [resp. right] coset of the in�nitesimals (i.e.
µM from De�nition 2.39) is also naturally de�ned by a

∨
-de�nable family.

From now on, let G be a ∅-de�nable group and let E be an equivalence relation
on G de�ned by a

∨
-de�nable family E := {ϕi(x, y, z̄i) : i ∈ I, z̄i}; we assume

that each ϕi(x, y, z̄i) implies that x, y ∈ G. Work in a monster model M∗; so
G = G(M∗).

De�nition 2.24. By a G-pre-mean for EM we mean a G-pre-mean for G/EM
(see De�nition 2.16), i.e. a monotone function m on de�nable (with parameters)
subsets of G into [0, 1], with m(∅) = 0,m(G) = 1, and m(Y ∪Y ′) ≤ m(Y )+m(Y ′),
such that equality holds whenever ((g1ϕi(x, y, b̄1)∩· · ·∩gnϕi(x, y, b̄n))◦Y )∩Y ′ = ∅
for some g1, . . . , gn ∈ G, i ∈ I, and b̄1, . . . , b̄n from M .

By the standard construction (by incorporating the mean into the language, as
was recalled in the proof of Lemma 2.8(2)), we have the following remark.

Remark 2.25. A G-pre-mean for EM , but de�ned only on M -de�nable sets and
satisfying the �equality criterion� only for g1, . . . , gn ∈ G(M), extends to a G-pre-
mean for EM (de�ned on all de�nable sets). In fact, it extends to a G-pre-mean
for EM∗ , which is clearly also a G-pre-mean for EN for any N ≺ M∗. If the initial
G-pre-mean is G(M)-invariant, then the G-pre-mean for EM∗ is G(M∗)-invariant,
so it is also a G-invariant G-pre-mean for EN for any N ≺M∗.

For a model M , let DEM be the G-lattice of type-de�nable (with parameters)
subsetsD of G(M∗) such that (g1EM∩· · ·∩gnEM)◦D = D for some g1, . . . , gn ∈ G.
From Corollary 2.17 and Remark 2.25, we get:

Corollary 2.26. Let m be a G-pre-mean for EM . Then m induces a normalized
mean ρ on the lattice DEM via ρ(Y ) := inf{m(D) : D de�nable, Y ⊆ D}. If m is
G(M)-invariant, then we can replace it by a G-invariant pre-mean, and then the
induced ρ is G-invariant as well.

The converse is easy is check.
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Remark 2.27. A normalized mean ρ on the lattice DEM induces a G-pre-mean m
for EM via m(Y ) := inf{ρ((g1EM ∩ · · · ∩ gnEM) ◦ Y ) : g1, . . . , gn ∈ G}. If ρ is
G(M)-invariant [resp. G-invariant], so is m.

Corollary 2.28. If DEM carries a [G(M)-invariant], normalized mean, then it
carries such a mean ρ which is induced from a [G-invariant] G-pre-mean m for
EM via ρ(Y ) := inf{m(D) : D de�nable, Y ⊆ D}.
Corollary 2.29. The existence of a G-invariant normalized mean on DEM does
not depend either on the choice of M or the monster model M∗ in which the lattice
is computed.

The next proposition is the main observation of this subsection.

Proposition 2.30. Assume EM is G(M)-invariant. The following conditions are
equivalent.

(1) SG/EM (M) carries a G(M)-invariant, Borel probability measure.
(2) There is a G(M)-invariant [G-invariant] G-pre-mean for EM .
(3) The lattice DEM carries a G(M)-invariant [G-invariant], normalized mean.

Proof. First note that EM being G(M)-invariant guarantees that G(M) acts nat-
urally on G/EM , which induces an action of G(M) on SG/EM (M).
(1) → (2). Let µ witnesses (1). For an M -de�nable subset D of G de�ne
m(D) := µ(D̄), where D̄ is the set of complete types (over M) of elements of
D/EM . Since EM is G(M)-invariant, we easily see that m is a G(M)-invariant G-
pre-mean for EM , but de�ned only onM -de�nable sets and satisfying the �equality
criterion� only for g1, . . . , gn ∈ G(M). By Remark 2.25, it extends to an actual
G-invariant G-pre-mean (de�ned on all de�nable sets) for EM .
(2) → (3). This follows from Corollary 2.26.
(3) → (1). Take a G(M)-invariant, normalized mean on DEM . By Corollary 2.28,
there exists a G-invariant, normalized mean ρ induced from a G-invariant G-pre-
mean m for EM via ρ(Y ) := inf{m(D) : D de�nable, Y ⊆ D}. By Proposition
2.21, let ν be the unique extension of ρ to a G-invariant content on the Boolean
algebra B(DEM ). We will show that ν is a pre-measure, which by Carathédory
theorem can be further extended to a G-invariant measure ν̄ on the generated σ-
algebra σ(B(DEM )). Then ν̄ induces a G(M)-invariant, Borel probability measure
on SG/EM (M) via µ(P ) := ν̄({a ∈M∗ : tp((a/EM)/M) ∈ P}) for any Borel subset
P of SG/EM (M), and the proof will be complete. So it remains to show

Claim 1: ν is a pre-measure.

Proof. Put R := B(DEM ). By Remark 2.20, it is enough to show that for every
sequence (Xn)n<ω of sets from R such that Xn ↑ G one has limn ν(Xn) = 1. Take
any ε > 0. We need to show that ν(Xn) > 1− ε for some n.
One can �nd sets Zk ⊆ Yk (for k ∈ ω) from DEM and natural numbers n0 <

n1 < . . . such that
Xi = (Y0 \ Z0) t · · · t (Yni \ Zni)
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for every i < ω (where t stands for disjoint union). Then

ν(Xi) =

ni∑
k=0

ρ(Yk)− ρ(Zk).

For each k we can choose a de�nable set Dk ⊇ Yk such that
∞∑
k=0

m(Dk)− ρ(Yk) < ε.

For each k let Fk be the family of all sets F de�nable over the set of parameters
over which Zk is de�ned and such that Zk ⊆ F ⊆ Dk. Then

⋂
Fk = Zk for every

k. Therefore,

G =
⋃
i

Xi =
⋃
k

Yk \ Zk ⊆
⋃
k

Dk \ Zk =
⋃
k

(
Dk \

⋂
Fk
)

=
⋃
k

⋃
F∈Fk

Dk \ F,

so by the saturation of M∗, there are k1 < · · · < kn < ω and Fk1 ∈ Fk1 , . . . , Fkn ∈
Fkn such that

G = (Dk1 \ Fk1) ∪ · · · ∪ (Dkn \ Fkn).

(Note that this is not necessarily a disjoint union.)
We also have Zkj ⊆ Fkj . Since Zkj ∈ DEM , by compactness, it is easy to see

that there are de�nable sets F ′kj ∈ Fkj contained in Fkj such that ((g1ϕi(x, y, b̄1)∩
· · · ∩ gnϕi(x, y, b̄n)) ◦ F ′kj) ∩ (Dkj \ Fkj) = ∅ for some g1, . . . , gn ∈ G, i ∈ I, and

b̄1, . . . , b̄n from M (all depending on j of course). Hence, m((Dkj \ Fkj) ∪ F ′kj) =

m(Dkj \ Fkj) +m(F ′kj), which implies that m(Dkj \ Fkj) ≤ m(Dkj)−m(F ′kj).
From all these observations, we get

1 = m(G) = m(
⋃n
j=1Dkj \ Fkj) ≤

∑n
j=1m(Dkj \ Fkj) ≤∑n

j=1m(Dkj)−m(F ′kj) < (
∑n

j=1 ρ(Ykj)− ρ(Zkj)) + ε.

Hence, ν(Xkn) ≥ ν((Yk1 \ Zk1) t · · · t (Ykn \ Zkn)) =
∑n

j=1 ρ(Ykj) − ρ(Zkj) >

1− ε. �(claim)

The proof of the proposition is complete . �

Remark 2.31. In Proposition 2.30, one can add one more equivalent condition:

(4) The G(M)-lattice DEM of type-de�nable subsets D of G(M∗) such that
EM ◦D = D carries a G(M)-invariant, normalized mean.

Proof. The implication (3) → (4) is trivial, while (4) → (1) follows similarly to
(3) → (1) (note that, in the proof of (3)→ (1), it is enough to work with G(M)-
invariant pre-means, means and contents in order to get that µ is G(M)-invariant).

�

The reason why we work with the more complicated lattice DEM instead of DEM
is that the former is a G-lattice which is needed in Case 2 in Subsection 2.6.
From Corollary 2.29 and Proposition 2.30, we get
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Corollary 2.32. Assume EM is G(M)-invariant for every model M . Then, the
existence of a G(M)-invariant, Borel probability measure on SG/EM (M) does not
depend on the choice of M .

For the type-de�nable equivalence relation E(x, y) given by x−1y ∈ H, where H
is a ∅-type-de�nable subgroup of G, Corollary 2.32 specializes to

Corollary 2.33. The existence of a G(M)-invariant, Borel probability measure
on SG/H(M) does not depend on the choice of M .

Corollary 2.32 specializes to more absolutness results in the context of
∨
-

de�nable group topologies, which will be discussed in Subsection 2.7 (see Corollary
2.46).

Remark 2.34. If EM is not G(M)-invariant, then there is no natural (left) ac-
tion of G(M) on SG/EM (M). But we can always replace the family E , by E ′ :=
{ϕi(tix, tiy, z̄i) : i ∈ I, ti, z̄i} (where for a /∈ G or b /∈ G we put ab := b). Then,
for any model M , the induced equivalence relation E ′M will be the intersection
of all gEM for g ranging over G(M). And, by Corollary 2.32, the existence of a
G(M)-invariant, Borel probability measure on SG/E′M (M) does not depend on the
choice of M .

2.6. Measures, means, and connected components. Now, consider a struc-
tureM , a ∅-de�nable group G, and anM -type-de�nable subgroup H of G (naming
parameters, we can assume that H is ∅-type-de�nable). Usually G will stand for
the interpretation of G in a monster model M∗ (i.e. G = G∗ = G(M∗)); by G(M)
we denote the interpretation of G in M .
We will be interested in the following two cases.

Case 1: The type space SG/H(M) (i.e. the space of complete types over M of
left cosets modulo H) carries a G(M)-invariant, Borel probability measure.
The discussion below repeats some arguments from the previous subsection in

a special case, but since this will be the context of the main results of Section 2,
we prefer to write it explicitly.
Let m̄ be a G(M)-invariant, Borel probability measure on SG/H(M). We de�ne

a G(M)-invariant pre-mean (see De�nition 2.14, where the equivalence relation is
xH = yH) m′ on M -de�nable subsets of G, by m′(Y ) := m̄(Ȳ ), where Ȳ is the
set of complete types over M of elements of Y/H.
As in the proof of Lemma 2.8, the standard construction allows us to extend

m′ to a G-invariant pre-mean on M∗-de�nable subsets of G = G(M∗). Note that
this extended pre-mean is de�nable over ∅ in some expansion of the language
(meaning that for any closed interval I and for any formula ϕ(x, ȳ) of the original
language the set {b̄ : m′(ϕ(x, b̄)) ∈ I} is ∅-type-de�nable in this expansion of the
language), and M∗ can be chosen so that M ≺ M∗ in the expanded language.
Next, using Lemma 2.15, we obtain a normalized, G-invariant mean m on DH �
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the G-lattice of M∗-type-de�nable subsets Y of G satisfying Y H = Y � which
satis�es m(Y ) = inf{m′(D) : D de�nable, Y ⊆ D}.

Case 2: H is normalized by G(M), and SH\G(M) carries a G(M)-invariant,
Borel probability measure, where the action of G(M) on SH\G(M) is induced by
the action on H\G given by g ∗ (Ha) := gHa = H(ga).
Let m̄ be a G(M)-invariant, Borel probability measure on SH\G(M). As in Case

1, we obtain a G(M)-invariant pre-mean (for the equivalence relation Hx = Hy)
m′ on M -de�nable subsets of G. The standard construction allows us to extend it
to a de�nable over ∅ (in some expansion of the language), G-invariant pre-mean
m′ on M∗-de�nable subsets of G = G(M∗), for some monster model M∗ such that
M∗ �M also in the expand language. Moreover, since H is normalized by G(M),
the standard construction gives us the following additional property ofm′: For any
Y and Z de�nable subsets of G, M -de�nable superset D of H, and g1, . . . , gn ∈ G,
if (Dg1 ∩ · · · ∩ Dgn)Y ∩ Z = ∅, then m′(Y ∪ Z) = m′(Y ) + m′(Z), i.e. m′ is a
G-pre-mean for H\G, using the terminology from De�nition 2.16. By Corollary
2.17, we obtain a normalized, G-invariant mean m on D′H � the G-lattice of
M∗-type-de�nable subsets Y of G satisfying (Hg1 ∩ · · · ∩ Hgn)Y = Y for some
g1, . . . , gn ∈ G � which satis�es m(Y ) = inf{m′(D) : D de�nable, Y ⊆ D}.

We are ready to prove the main results of this section. They concern situations
from the above Cases 1 and 2, respectively. We will give a detailed proof of the
�rst theorem and only explain how to modify it to get the second one.
In the rest of this section, we will write Z4 to mean ZZZ−1Z−1; Z8 denotes

Z4Z4.

Theorem 2.35. Let H be a ∅-type-de�nable subgroup of G, normalized by G(M).
Let N be the normal subgroup generated by H. Then (1)↔ (2)↔ (3)↔ (4)→ (5):

(1) SG/H(M) carries a G(M)-invariant, Borel probability measure.
(2) There is a G(M)-invariant pre-mean for G/H on M-de�nable subsets of

G.
(3) There is a G-invariant pre-mean for G/H which is de�nable over ∅ in some

expansion of the language in which M ≺M∗ (enlarging M∗ if necessary).
(4) The lattice DH carries a normalized, G-invariant mean.
(5) G00

M ≤ NG000
M .

Proof. The equivalence of conditions (1)-(4) essentially follows from Proposition
2.30 applied to E := {G(x) ∧G(y) ∧ x−1y ∈ Xi : i ∈ I}, where H =

⋂
i∈I Xi (with

I directed and Xj ⊆ Xi whenever i < j). For that notice that the relation EM in
this special case is just lying in the same left coset of H, so it is G-invariant, and
the lattice DEM coincides with DH .
However, for the reader's convenience, we explain some of these equivalences

more explicitly. By the above discussion of Case 1, any G(M)-invariant, Borel
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probability measure on SG/H(M) induces a G(M)-invariant pre-mean on M -
de�nable subsets of G, which then can be extended to a G-invariant pre-mean
m′ on de�nable subsets of G which is de�nable over ∅ in some expansion of
the language in which M ≺ M∗ (enlarging M∗ if necessary). This in turn
induces a normalized, G-invariant mean m on the lattice DH , which satis�es
m(Y ) = inf{m′(D) : D de�nable, Y ⊆ D}. So (1) → (2) ↔ (3) → (4). The
implication (4)→ (1) follows from the implication (3)→ (1) in Proposition 2.30.
It remains to prove (4) → (5). So assume (4). By (4) → (2) and the above

discussion, we have a G-invariant mean m on DH given by m(Y ) = inf{m′(D) :
D de�nable, Y ⊆ D} for some pre-mean m′ satisfying (3).
Let p ∈ SG(M) be a wide type of G, in the sense thatm(DH) > 0 for any D ∈ p.

In order to �nish the proof, it is enough to show that (HpH)4 contains G00
M . Indeed,

then, since pp−1 ⊆ G000
M implies ppp−1p−1 ⊆ G000

M , and so (HpH)4 ⊆ NG000
M , we

get G00
M ≤ NG000

M which is the desired conclusion.
As HpH is an intersection of partial types P over M satisfying HPH = P

and m(P ) > 0 (namely the appropriate HDH with D M -de�nable), it su�ces to
show that for each such P , P 4 contains G00

M . For this, it su�ces to �nd for any
M -de�nable set P ′ containing P a generic, M -type-de�nable set Q = HQH with
Q8 ⊆ P ′4, for then m(Q) > 0 and we can �nd an M -de�nable set Q′ containing
Q such that Q′8 ⊆ P ′4, and we can iterate: �nd a generic, M -type-de�nable
R = HRH with R8 ⊆ Q′4 and an M -de�nable R′ containing R and satisfying
R′8 ⊆ Q′4, etc., and at the limit take the intersection P ′4 ∩Q′4 ∩R′4 ∩ . . . � an M -
type-de�nable, bounded index, subgroup contained in P ′4, which clearly contains
G00
M . Since this is true for any M -de�nable P ′ containing P , we get G00

M ⊆ P 4.
So consider a partial type P over M satisfying HPH = P and m(P ) > 0.

Consider any M -de�nable P ′ containing P . We will apply Corollary 2.12 to:
X := G, A := P , and the family

B := {HQH : P ⊆ HQH ⊆ P ′ and Q is M -de�nable}

of subsets of G. Recall that D′ is the collection of all intersections g1B∩· · ·∩gnB,
where B ∈ B and g1, . . . , gn ∈ G, and as D take the lattice generated by: D′, the
set A, and all sets B′A for B′ ∈ D′. Note that D ⊆ DH , so our mean m is de�ned
on D. By Corollary 2.12, we �nd l ∈ N, λ ∈ R, B ∈ B and g1, . . . , gn ∈ G such
that for B′ := B ∩ g1B ∩ · · · ∩ gnB we have

(***) Ll(B′) (working in (G, ·, B)) and m(B′A) < λ,

and whenever E ∈ B and h1, . . . , hm ∈ G are chosen so that for E ′ := E ∩ h1E ∩
· · ·∩hmE one has Ll(E ′) (working in (G, ·, E)) and m(E ′A) < λ, then StLl−1

(E ′) is
generic (as a set

∨
-de�nable in (G, ·, E)), symmetric and has 8th power contained

in E ′P (E ′P )−1 ⊆ E4.
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We can �nd M -de�nable sets C and D such that B ⊆ C ⊆ P ′, P ⊆ D and
for C ′ := C ∩ g1C ∩ · · · ∩ gnC, we have m′(C ′D) < λ (where m′ is the pre-
mean on de�nable subsets of G chosen at the beginning of the proof of (4) →
(5)). Now, choose any M -de�nable set Q such that B ⊆ Q ⊆ HQH ⊆ C. Let
Q′ = Q ∩ g1Q ∩ · · · ∩ gnQ. Then B′ ⊆ Q′, so, by (***) and Remark 2.3, we get
Ll(Q′) (working in (G, ·, Q)). Since Ll(Q′) is a

∨
-de�nable (over ∅) condition on

g1, . . . , gn in the structure (G, ·, Q) and Q is M -de�nable in the original theory, we
see that Ll(Q′) is an M -

∨
-de�nable condition on g1, . . . , gn in the original theory.

On the other hand, m′(C ′D) < λ is a
∨
-de�nable (over ∅) condition on g1, . . . , gn

in the expanded language (in which m′ is de�nable over ∅). Since M ≺ M∗ also
in this expanded language, we can �nd g1, . . . , gn ∈ G(M) such that Ll(Q′) and
m′(C ′D) < λ still holds for the corresponding Q′ and C ′. Finally, take E := HQH
and E ′ := E ∩ g1E ∩ · · · ∩ gnE. We see that E ∈ B, Ll(E ′) (working in (G, ·, E))
and m(E ′A) < λ.
De�ne Y := StLl−1

(E ′). By the the choice of l and λ, we have that Y =
∨
ν Yν

is generic and Y 8 ⊆ E4 ⊆ P ′4.
As H is normalized by g1, . . . , gn, we have HE ′H = E ′. Since HE ′ = E ′,

we have HYH = Y , and moreover Y is a disjunction of sets Yν positively M -
de�nable in (G, ·, E) and satisfying HYνH = Yν . Indeed, let R(x, ȳ) be a new
predicate. By the approximations to Ll mentioned in and after Remark 2.2, we
have that for any s ∈ ω there are increasing sets Pν,s(R)(ȳ), ν ∈ ω, positively
∅-de�nable in (G, ·, X, ·, R) such that Pν,s(R(gx, ȳ))(ȳ) ⇐⇒ Pν,s(R(x, ȳ))(ȳ) for
all g ∈ G, and Ls(R(x, ȳ)) can be presented as the

∨
-positively de�nable set∨

ν Pν,s(R(x, ȳ))(ȳ). In particular, if R(x, ȳ) is positively de�nable in (G, ·, X, ·, E),
then the Pν,s(R)(ȳ) are positively de�nable in (G, ·, X, ·, E) over the same parame-
ters over which R(x, ȳ) is de�ned. Applying this to our situation for s := l−1 and
R(x, y) := (x ∈ (yE ′ ∩ E ′)), we get that Y = {y : Ls(yE ′ ∩ E ′)} can be presented
as
∨
ν Pν,s(R(x, y))(y). Putting Yν(y) = Pν,s(R)(y), we have that Yν is positively

M -de�nable in (G, ·, E), and, since HE ′ = E ′, we get that for any h1, h2 ∈ H:
Yν(h1yh2) ⇐⇒ Pν,s(R(x, h1yh2))(y) ⇐⇒ Pν,s(x ∈ h1yh2E

′ ∩ E ′)(y) ⇐⇒
Pν,s(x ∈ h1yE

′ ∩ E ′)(y) ⇐⇒ Pν,s(x ∈ yE ′ ∩ h−1
1 E ′)(y) ⇐⇒ Pν,s(x ∈

yE ′ ∩ E ′)(y) ⇐⇒ Yν(y). So HYνH = Yν as was claimed at the beginning of
this paragraph.
Since the Yν ⊆ G are positively M -de�nable in (G, ·, E) and E is M -type-

de�nable in the original theory, we easily get that the Yν are M -type-de�nable
in the original theory. Moreover, some Yν will be generic, and HYνH = Yν , and
Y 8
ν ⊆ P ′4. �

In the situation of Case 2, we have

Theorem 2.36. Let H be a ∅-type-de�nable subgroup of G, normalized by G(M).
Let N be the normal subgroup generated by H. Then (1) ↔ (2) ↔ (3) ↔ (4) ↔
(5)→ (6):
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(1) SH\G(M) carries a G(M)-invariant, Borel probability measure.
(2) There is a G(M)-invariant pre-mean for H\G on M-de�nable subsets of

G.
(3) There is a G-invariant G-pre-mean m′ for H\G (i.e. a G-invariant pre-

mean m′ for H\G such that m′(Z ∪Z ′) = m′(Z) +m′(Z ′) whenever D′Z ∩
Z ′ = ∅ for some M-de�nable superset D of H and D′ = Dg1 ∩ · · · ∩ Dgn

for some g1, . . . , gn ∈ G).
(4) There is a G-invariant G-pre-mean for H\G which is de�nable over ∅ in

some expansion of the language in which M ≺M∗ (enlarging M∗ if neces-
sary).

(5) The lattice D′H carries a normalized, G-invariant mean.
(6) G00

M ≤ NG000
M .

Proof. The equivalence of conditions (1)-(5) essentially follows from Proposition
2.30 applied to E := {G(x) ∧G(y) ∧ yx−1 ∈ Xi : i ∈ I}, where H =

⋂
i∈I Xi (with

I directed and Xj ⊆ Xi whenever i < j). For that notice that the relation EM in
this special case is just lying in the same right coset of H, so it is G(M)-invariant
by the assumption that H is normalized by G(M), and the lattice DEM coincides
with D′H . One should also use the above discussion of Case 2.
It remains to justify (5)→ (6).
So assume (5). By (5)→ (2) and the discussion of Case 2, we have a G-invariant

mean m on D′H given by m(Y ) = inf{m′(D) : D de�nable, Y ⊆ D} for some pre-
mean m′ satisfying (4). We follow the lines of the proof of (4) → (5) in Theorem
2.35, but now it is enough to work with right cosets modulo Hg1 ∩ · · · ∩ Hgn for
some g1, . . . , gn ∈ G(M) (in place of two-sided cosets of H), e.g. P is a partial
type over M satisfying (Hg1 ∩ · · · ∩Hgn)P = P (for some g1, . . . , gn ∈ G(M)) and
m(P ) > 0. The way how D′H was de�ned is essential to ensure that D ⊆ D′H (and
so m is de�ned on D). �

Conjecture 0.1 follows immediately from Theorem 2.36, taking H := µ:

Corollary 2.37. 1) Let G(M) be a topological group and assume that the members
of a basis of neighborhoods of the identity are de�nable in M . If G is de�nably
topologically amenable, then G00

def,top = G000
def,top.

2) Let G(M) be a topological group. If G(M) is amenable, then G00
top = G000

top.

2.7.
∨
-de�nable group topologies. In Section 1, we recalled two contexts to

deal with topological groups model-theoretically: one with all open subsets being
de�nable, and a more general one with a basis of open neighborhoods at the iden-
tity consisting of de�nable sets. Notice, however, that in each of these contexts
we do not get a natural group topology when passing to elementary extensions.
In order to get a group topology in an arbitrary elementary extension, one usually
considers a more special context with a uniformly de�nable basis of open neigh-
borhoods at the identity (in other words, when a basis of open sets at the identity
is a de�nable family).
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As usual, let G be a ∅-de�nable group, and M or N denotes a model. Here,
we extend the last context, for example to cover topologies induced on G(M)
by type-de�nable subgroups of G normalized by G(M). Note that any ∅-type-
de�nable subgroup H =

⋂
i∈I Xi (with the de�nable sets Xi, where without loss

I is a directed set such that Xj ⊆ Xi for i < j), normalized by G(M), can be
viewed as topologizing G(M) in the sense that the family {Xi : i ∈ I} is a basis
of (not necessarily open!) neighborhoods at the identity; but on a bigger model it
will not in general give a topology. It is thus natural to consider a slightly stronger
condition.
We �rst elaborate on some terminology introduced brie�y in Subsection 2.5. By

a
∨
-de�nable family of de�nable subsets of G, we mean a class T = {ϕi(x, ȳi) : i ∈

I, ȳi belongs to any model}, where ϕi(x, ȳi) are some formulas implying G(x). In
any model M ,

T (M) := {ϕi(M, ȳi) : i ∈ I, ȳi ∈M}
is an actual collection of subsets of G(M); also, put

TM := {ϕi(x, ȳi) : ȳi ∈M}.
By a standard trick, we can, and will from now on, assume that I is a directed set,
and for every i < j we have (∀ȳi)(∃ȳj)(ϕj(x, ȳj) → ϕi(x, ȳi)); the last condition
is equivalent to the property that for every model M and i < j, each member
of the de�nable family {ϕi(M, ȳi) : ȳi ∈ M} contains a member of the family
{ϕj(M, ȳj) : ȳj ∈ M}. (In fact, by the aforementioned standard trick, we could
even replace the word �contains� by �equals�, but we will not need it.)

De�nition 2.38. A
∨
-de�nable group topology on G is a

∨
-de�nable family T =

{ϕi(x, ȳi) : i ∈ I, ȳi} of de�nable subsets of G containing 1 such that in any model
M , T (M) forms a basis of (not necessarily open) neighborhoods of the identity
for a topology on G(M), making the group operations continuous. Equivalently,
for any model M , T (M) consists of subsets of G(M) containing 1, such that each
of the following sets

(1) the intersection of any two members of T (M),
(2) the inversion of any member of T (M),
(3) the conjugate of any member of T (M) by an element of G(M)

contains a member of T (M), and, additionally, if A ∈ T (M), then there exists
B ∈ T (M) with B2 ⊆ A.

It easy to check that in the above de�nition, it is enough to take a su�ciently
saturated model M .
By compactness, a

∨
-de�nable group topology on G is a

∨
-de�nable family

T = {ϕi(x, ȳi) : i ∈ I, ȳi} of de�nable subsets of G containing 1 such that:

(1) For every i, j ∈ I there is k ∈ I such that (∀ȳi)(∀ȳj)(∃ȳk)(ϕk(x, ȳk) →
(ϕi(x, ȳi) ∧ ϕj(x, ȳj))).

(2) For every i ∈ I there is j ∈ I such that (∀ȳi)(∃ȳj)(ϕj(x−1, ȳj)→ ϕi(x, ȳi)).
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(3) For every i ∈ I there is j ∈ I such that (∀ȳi)(∀z)(∃ȳj)(ϕj(z−1xz, ȳj) →
ϕi(x, ȳi)).

(4) For every i ∈ I there is j ∈ I such that (∀ȳi)(∃ȳj)((∃x1, x2)(ϕj(x1, ȳj) ∧
ϕj(x2, ȳj) ∧ x = x1 · x2)→ ϕi(x, ȳi)).

Let T = {ϕ(x, z̄i) : i ∈ I, z̄i} be a
∨
-de�nable group topology on G. Work in a

�xed monster model M∗ (so M ≺M∗ by convention).

De�nition 2.39. We let µTM be the M -type-de�nable subgroup
⋂
D∈TM D. When

the identity of T is clear, we write µM .

It is clear that µTM is normalized by G(M).

Remark 2.40. For any A-de�nable set D, there exists an A-type-de�nable set cl(D)
such that for any model M , the closure of D(M) is cl(D)(M). Namely, a ∈ cl(D)
i�
∧
i(∀ȳi)(a·ϕi(x, ȳi)∩D(x) 6= ∅) (more formally,

∧
i(∀ȳi)(∃x)(ϕi(a

−1x, ȳi)∧D(x)).
For a type-de�nable set D =

⋂
iDi (where Dj ⊆ Di for i < j), let

cl(D) =
⋂
i cl(Di). For any su�ciently saturated model M , the closure of

D(M) is cl(D)(M).

Remark 2.41. For P M -type-de�nable, cl(P ) ⊆ PµTM . Indeed, cl(P ) =
⋂
{PH :

H ∈ T }, which formally means that cl(P )(z) is the type
∧
i(∀ȳi)(∃x1, x2)(P (x1)∧

ϕi(x2, ȳi)∧z = x1·x2). In particular, µTM is closed. Similarly, cl(P ) ⊆ µTMP . In fact,
cl(P ) is contained in both P ((µTM)g1 ∩ · · · ∩ (µTM)gn) and ((µTM)g1 ∩ · · · ∩ (µTM)gn)P
for any g1, . . . , gn ∈ G.

By CT (or just C) we will denote cl(1). Then C =
⋂
T , so it is ∅-type-de�nable,

and it is a normal subgroup of G. It is clear that C ≤ µM for any M . Note that
formally C coincides with µM∗ which happens to be ∅-type-de�nable in the monster
model M∗.
We say that T is strongly Hausdor� if G(M) is Hausdor� in every model M ;

equivalently C = {1}; equivalently,
⋂
F = {1} for some de�nable family F ⊆ T .

Note that, in contrast with de�nable families, T (M) may be Hausdor� for one M ,
without T being strongly Hausdor�. This occurs when µTM(M) = {1}, see Example
2.45. Note also that given a Hausdor� topological group, we can expand it to a
�rst order structure in which there is a de�nable T which is strongly Hausdor�
and induces the given topology on the group we started from.
De�ne the following G-lattices of subsets of G (a ∅-de�nable group equipped

with a
∨
-de�nable group topology T ).

(1) DµMT � the G-lattice of sets D type-de�nable in M∗ over arbitrary param-
eters, such that DµTM = D.

(2) DµMT
′ � the G-lattice of sets D type-de�nable in M∗ over arbitrary param-

eters, such that ((µTM)g1 ∩ · · · ∩ (µTM)gn)D = D for some g1, . . . , gn ∈ G.
(3) DT � the G-lattice of closed sets D type-de�nable in M∗ over arbitrary

parameters.
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(4) DC � theG-lattice of setsD type-de�nable inM∗ over arbitrary parameters,
such that DC = D.

By Remark 2.41, it is clear that DµMT and DµMT
′ are both contained in DT ⊆ DC.

Now, we give an example showing that type-de�nable subgroups lead, in a nat-
ural way, to

∨
-de�nable group topologies.

Example 2.42. Let H =
⋂
i∈I Xi be any ∅-type-de�nable subgroup of G (and

without loss I is directed, and Xj ⊆ Xi whenever i < j). Let T be the union
of all families Ti,m, where Ti,m is the class of m-fold intersections of conjugates
of Xi, for instance Ti,1 = {g−1Xig : g ∈ G}. It is clear that with the order
(i,m) < (j, n) ⇐⇒ i < j ∧m < n, T can be treated as a

∨
-de�nable family of

de�nable subsets of G containing 1. Clearly, for any model M , µTM =
⋂
TM is a

type-de�nable subgroup of G normalized by G(M); it follows that T (M) de�nes
a group topology on G(M).
In case when H is invariant under conjugation by elements of G(M), we can

recover H as the intersection of all M -de�nable neighborhoods of the identity.
All of this works also for H type-de�nable over M (allowing formulas with

parameters from M in the de�nition of
∨
-de�nable group topology).

In case H is a normal subgroup of G, the family T yields the same topology as
the family {Xi : i ∈ I} (where Xi(x) are de�nable sets which do not depend on
any parameters ȳi), µM = C = H does not depend on M , and cl(P ) = PH for any
type-de�nable set P . In particular, DµMT = DµMT

′ = DT = DC for every M .

Remark 2.43. Example 2.42 shows a connection between
∨
-de�nable group topolo-

gies and G(M)-normal, M -type-de�nable subgroups:

• each
∨
-de�nable group topology T yields the G(M)-normal, M -type-

de�nable subgroup µTM ;
• each G(M)-normal, type-de�nable over ∅ [or over M ] subgroup H yields
the

∨
-de�nable group topology T on G [de�ned over M , if G is de�ned

over M ] described in Example 2.42, such that µTM = H.

However, the former notion, namely that of a
∨
-de�nable group topology is more

precise, as it is a priori given without reference to the particular small model
M . Also, the map from

∨
-de�nable group topologies to G(M)-normal, M -type-

de�nable subgroups (or topologies on G(M)), given by T 7→ µTM , is not injective;
Example 2.42 provides the smallest

∨
-de�nable group topology specializing to a

given topology on G(M), but there can certainly be others, e.g. in the Abelian
case, non-discrete, strongly Hausdor� topologies are never deduced from a single
model in this way (see also Example 2.45).

Remark 2.44. Let us change the notation only for the purpose of this remark. Let
G be an arbitrary topological group. Choose a basis {Xi : i ∈ I} of open sets at
the identity, with Xj ⊆ Xi whenever i < j. Expand the pure group language with
predicates for all Xi's, and denote the resulting structure by M and the resulting



32 EHUD HRUSHOVSKI, KRZYSZTOF KRUPI�SKI, AND ANAND PILLAY

language by L. Let M∗ be a monster model, G∗ = G(M∗) and X∗i = Xi(M
∗).

Then H :=
⋂
X∗i is a ∅-type-de�nable group which is normalized by G = G(M).

So Example 2.42 yields a
∨
-de�nable group topology T which specializes to the

original topology on G. This is the smallest (in a strong sense)
∨
-de�nable group

topology which specializes to the original topology on G, namely, for any other
such topology T ′ which is

∨
-de�nable in an expansion of the pure group structure

on G whose language is denoted by L′, and for any model N �M in the sense of
L∪L′, the topology on G(N) given by T is weaker than the one given by T ′. This
shows that Example 2.42 allows us to extend the given group topology on G to
the canonical (i.e. smallest among topologies

∨
-de�nable in arbitrary expansions)

group topology on elementary extensions.

Let us look at a concrete example illustrating some of the above discussions.

Example 2.45. Take M := (Z,+, ·) and G(M) := (Z,+). Take the ∅-type-
de�nable subgroup H :=

⋂
n∈N n!G. The family T from Example 2.42 coincides

with the
∨
-de�nable family {n!G : n ∈ Z}. So T (M) is Hausdor�, but T is not

strongly Hausdor�. Now, consider the de�nable family F = {g ·G : g ∈ G \ {0}}
of de�nable subsets of G containing 0. It is clear that the family T ′ of �nite
intersections of members of F is a strongly Hausdor�

∨
-de�nable group topology

on G, and T (M) and T ′(M) induce on G(M) the same topology. But for every
ℵ0-saturated model M , the topologies T (M) and T ′(M) on G(M) are di�erent
(as the later is Hausdor�, but the former is not).

We return to the general context where T = {ϕ(x, z̄i) : i ∈ I, z̄i} is a
∨
-

de�nable group topology on G. Recall that the group G(M), with the topology
induced by T (M), is said to be de�nably topologically amenable if there is a
(left) G(M)-invariant, Borel probability measure on SµM\G(M) (equivalently, on
SµMG (M)). A natural question arises, whether the de�nable topological amenability
of (G(M), T (M)) is independent of the choice of M . The positive answer follows
from Corollary 2.32 applied to the family E := {G(x) ∧ G(y) ∧ ϕi(yx−1, z̄i) :
i ∈ I, z̄i}; similarly, applying Corollary 2.32 to the family E := {G(x) ∧ G(y) ∧
ϕi(x

−1y, z̄i) : i ∈ I, z̄i}, we get item (2) of the following corollary.

Corollary 2.46. Let T be a
∨
-de�nable group topology on G. Then:

(1) the de�nable topological amenability of (G(M), T (M)) does not depend on
the choice of M ,

(2) the existence of a G(M)-invariant, Borel probability measure on SG/µM (M)
does not depend on the choice of M .

But the following question remains open.

Question 2.47. 1) Let T be a
∨
-de�nable group topology on G. Does amenability

of (G(M), T (M)) as a topological group depend on the choice of M?
2) Let G be an arbitrary topological group. Let T be the smallest topology among
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topologies
∨
-de�nable in expansions of (G, ·) which specialize to the given topology

on G (see Remark 2.44). Does amenability of G (as a topological group) imply
amenability of (G(N), T (N)) for N �M (where T is de�ned in Th(M)).

It is clear that the positive answer to (1) implies the positive answer to (2).
Question (2) is interesting, as it asks whether there is any chance to transfer
(topological) amenability to elementary extensions. (Note that whenever we have
two group topologies T1 ⊆ T2 on a given group G, then amenability of (G, T2)
implies amenability of (G, T1).)
Still, T = {ϕ(x, z̄i) : i ∈ I, z̄i} is a

∨
-de�nable group topology on G.

De�nition 2.48. 1) A right pre-mean for TM is a G-pre-mean for EM (in the sense
of De�nition 2.24) with E := {G(x) ∧ G(y) ∧ ϕi(x−1y, z̄i) : i ∈ I, z̄i}. Explicitly,
it is a monotone function m on de�nable subsets of G into [0, 1], with m(∅) = 0,
m(G) = 1, and m(Y ∪ Y ′) ≤ m(Y ) + m(Y ′), such that equality holds whenever
Y D ∩ Y ′ = ∅ for some D ∈ TM .
2) A left G-pre-mean for TM is a G-pre-mean for EM (in the sense of De�nition
2.24) with E := {G(x)∧G(y)∧ϕi(yx−1, z̄i) : i ∈ I, z̄i}. Explicitly, it is a monotone
function m on de�nable subsets of G into [0, 1], with m(∅) = 0, m(G) = 1, and
m(Y ∪Y ′) ≤ m(Y )+m(Y ′), such that equality holds whenever (Dg1∩· · ·∩Dgn)Y ∩
Y ′ = ∅ for some D ∈ TM and g1, . . . , gn ∈ G.

Then Proposition 2.30 specializes to the following two statements.

Corollary 2.49. The following conditions are equivalent.

(1) SG/µM (M) carries a G(M)-invariant, Borel probability measure.
(2) There is a G(M)-invariant [G-invariant] right pre-mean for TM .
(3) The lattice DµMT carries a G(M)-invariant [G-invariant], normalized mean.

Corollary 2.50. The following conditions are equivalent.

(1) (G(M), T (M)) is de�nably topologically amenable (i.e. SµM\G(M) carries
a G(M)-invariant, Borel probability measure).

(2) There is a G(M)-invariant [G-invariant] left G-pre-mean for TM .
(3) The lattice DµMT

′ carries a G(M)-invariant [G-invariant], normalized mean.

By Corollary 2.29, we get that the existence of a left-invariant mean on DµMT [or
on DµMT

′, respectively] is independent of the choice of both M and M∗. Similarly,
the existence of an invariant mean on DC is independent of the choice of M∗. A
question is whether the existence of an invariant mean on DT depends on the
choice of M∗.
Along with Remark 2.41, Corollaries 2.49 and 2.50 seem to suggest that one can

get (from amenability) a G-invariant, normalized mean on the lattice DT of closed,
type-de�nable sets; but we do not quite see this. It is certainly not true about
DC. To see this, it is enough to take an amenable (as a topological group) but
not de�nably amenable group G(M) such that G is strongly Hausdor� (as then
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DC consists of all type-de�nable subsets of G = G(M∗), so the restriction of an
invariant mean de�ned on DC to the algebra of all de�nable subsets would be a left-
invariant Keisler measure, contradicting the failure of de�nable amenability). As a
concrete example with these properties one can take the group S∞ = Sym(N) with
the usual topology, considered as a group de�nable in a standard model (M,∈) of
a su�cient fragment of set theory.
The following is a corollary of the proofs of Theorems 2.35 and 2.36 applied for

H := µM ; the set D̂ from the conclusion below will be p4 := ppp−1p−1 for a type
p ∈ SG(M) which is wide in the sense that m(DµM) > 0 [resp. m(µMD) > 0] for
every D ∈ p.
Corollary 2.51. Let T be a

∨
-de�nable group topology. Assume DµMT [or DµMT

′,
respectively] carries a G-invariant mean m. Then G00

M ≤ G000
M 〈µGM〉. More pre-

cisely, there exists an M-type-de�nable set D̂ ⊆ G000
M , with D̂〈µGM〉 ⊇ G00

M . In fact,
for any wide,M-type-de�nable set P = µMPµM we have P 4 := PPP−1P−1 ⊇ G00

M .

The main result of this subsection is the the following

Proposition 2.52. Let T be a
∨
-de�nable group topology such that for all n ∈ N

the projections (to all subproducts) of every type-de�nable, closed set in Gn are
closed. Assume DT carries a G-invariant mean m. Then cl(G00

M) = cl(G000
M ). More

precisely, there exists an M-type-de�nable set D̂ ⊆ G000
M , with cl(D̂) = cl(G00

M). In
fact, for any closed, wide (i.e. of positive mean), M-type-de�nable set P we have
P 4 := PPP−1P−1 ⊇ G00

M .

Proof. We start from

Claim 1: i) The product of any two closed, type-de�nable sets is always closed
(and clearly type-de�nable).
ii) For all type-de�nable sets P and Q, cl(cl(P ) · cl(Q)) = cl(P ·Q).
iii) For all type-de�nable sets P and Q, cl(P ) · cl(Q) = cl(P ·Q).
iv) For every type-de�nable set P =

⋂
Pi (where Pj ⊆ Pi whenever i < j),

cl(P ) =
⋂
i cl(Pi).

Proof. i) This would follow immediately from the assumption that projections of
closed, type-de�nable sets are closed if the topology induced by T on G = G(M∗)
was Hausdor�. But if it is not Hausdor�, we can always pass to the Hausdor�
quotient G/C, where C = cl(1). Working with G/C in place of G, we still have
that projections of closed, type-de�nable sets are closed, so the product of any
two closed, type-de�nable subsets of G/C is closed. Now, take any two closed,
type-de�nable subsets P and Q of G. Then P = PC and Q = QC. So P/C and
Q/C are closed, type-de�nable subsets of G/C, and so PQ/C = P/C ·Q/C is closed
in G/C, hence PQ is closed in G.

ii) is a general property of all topological groups.

iii) Using (ii), we immediately see that (iii) is equivalent to (i).
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iv) follows from Remark 2.40. �(claim)

Claim 2: For any closed, M -type-de�nable set P with m(P ) > 0, there exists a
generic, closed set Q type-de�nable over some parameters and such that Q8 ⊆ P 4.

Proof. We use Proposition 2.11, with G = X the present G/C (where C = cl(1)),
A = B = P/C, N = 8, D being the lattice of closed, type-de�nable subsets of
G/C, and m = m′ being the pushforward of the mean m from the statement of
Proposition 2.52. (Item (i) of the �rst claim is used to ensure that the assump-
tions of Proposition 2.11 hold.) So there exists a generic, symmetric Q̄ ⊆ G/C
positively de�nable in (G/C, ·, P/C), and with Q̄8 ⊆ (P/C)4. By the assumption
that projections of closed, type-de�nable sets are closed (and the fact that G/C is
Hausdor�), it follows that Q̄ is closed and type-de�nable in the original structure
M∗. So the pullback Q of Q̄ by the quotient map G→ G/C is also generic, closed,
type-de�nable, and Q8 ⊆ P 4. �(claim)

Since we are going to deal with G00
M , we need to be more careful about parame-

ters, and force Q to be de�ned over M .
First, we will prove the last statement of Proposition 2.52, and then we will

quickly explain how to deduce the previous one.
So take any closed, wide, M -type-de�nable set P (where wide means that

m(P ) > 0). Consider any M -de�nable set P ′ containing P 4.
By the �rst and last item of the �rst claim, we can �nd an M -de�nable set P ′′

such that P 4 ⊆ P ′′ ⊆ cl(P ′′) ⊆ P ′. Let Q be a set provided by the second claim.
We can �nd an M -de�nable, generic set Q0 such that Q8

0 ⊆ P ′′, and so, by item
(iii) of the �rst claim, cl(Q0)8 = cl(Q8

0) ⊆ cl(P ′′) ⊆ P ′. By the last item of the �rst
claim, we can �nd an M -de�nable set Q1 such that cl(Q0) ⊆ Q1 and cl(Q1)8 ⊆ P ′.
Put

C1 := cl(Q1)4.

Now, apply the above argument to cl(Q0) (which isM -type-de�nable by Remark
2.40) in place of P , and Q4

1 in place of P ′. As a result, we obtain M -de�nable,
generic sets R0 and R1 such that cl(R0) ⊆ R1 and cl(R1)8 ⊆ Q4

1. Put

C2 := cl(R1)4.

Continuing in this way, we obtain a sequence C1, C2, . . . of M -type-de�nable,
generic and symmetric subsets of P ′ such that C2

i+1 ⊆ Ci for all i. Then
⋂
iCi is a

bounded index, M -type-de�nable subgroup contained in P ′. Therefore, G00
M ⊆ P ′.

Since P ′ was an arbitrary M -de�nable set containing P 4, we conclude that G00
M ⊆

P 4, which is the desired conclusion.
Let us prove now the existence of D̂. Let p be a wide type of G over M , in the

sense that m(cl(D)) > 0 for any D ∈ p. Let P = cl(p). By the last item of the
�rst claim, and by what we have just proved, we get that P 4 contains G00

M . Put

D̂ := p4. It is clearly contained in G000
M . On the other hand, by item (iii) of the

�rst claim, cl(D̂) = cl(p4) = cl(p)4 = P 4 ⊇ G00
M . �
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Remark 2.53. The assumption in Proposition 2.52 that the projections of closed,
type-de�nable sets are closed may seem a bit arti�cial, perhaps it can be changed.
At any rate, it holds in each of the following two situations.

(1) The situation from the last paragraph of Example 2.42, namely: H =⋂
i∈I Xi is a normal, type-de�nable subgroup of G (and without loss Xj ⊆

Xi when i < j), and T := {Xi : i ∈ I}.
(2) T is a de�nable family and (G(M), T (M)) is compact (Hausdor�) for some

model M .

Proof. (1) follows from the observation that F ⊆ Gn is closed if and only if F =
F · Cn, where C = cl(1).
(2) By the compactness and Hausdor�ness of G(M), the projections of any closed
subset of G(M)n are closed. Thus, since T = {ϕ(x, ȳ) : ȳ} is a de�nable family,
we easily get that the projections of any closed and de�nable subset F of Gn are
closed. On the other hand, for any type-de�nable, closed set F =

⋂
Fi ⊆ Gn

(where Fj ⊆ Fi whenever i < j), using the last item of the �rst claim of the proof
of Proposition 2.52, we get that F =

⋂
i cl(Fi) and each cl(Fi) is de�nable (by the

de�nability of T ), and, by compactness, any projection of F is the intersection of
the projections of the cl(Fi)'s. So the conclusion follows. �

By virtue of Remark 2.53(1), the following obvious corollary of Theorem 2.35
also follows from Proposition 2.52.

Corollary 2.54. Let N be any normal, ∅-type-de�nable subgroup of G. Assume
the lattice DN (of type-de�nable subsets Y of G such that Y N = N) carries a
G-invariant mean. Then G00

M ≤ NG000
M .

3. Definable actions, weakly almost periodic actions, and stability

One aim of this section is to give a negative answer to Conjecture 0.3 about
de�nable actions of de�nable groups on compact spaces: see Corollary 3.3 below.
But we go rather beyond this, discussing the relationships between the notions in
the title of the section. Weakly almost periodic actions (or �ows) of a (topological)
group G on a compact space X are important in topological dynamics. Weak
almost periodicity (for functions on a topological group) was introduced in [8], and
discussed later in [13]. We will be referring to [9] where weak almost periodicity
of G-�ows is de�ned and studied. The connection of weak almost periodicity
with stability is by now fairly well-known, although much of what is in print or
published, such as [4] and [16], deals with the case where the relevant group G is
the (topological) automorphism group of a countable ω-categorical structure. In
contrast, we are here concerned with an action of a group G(M) de�nable in a
structure M on a compact space X where G(M) is viewed as a discrete group,
but where the action on X is assumed to factor through the action of G(M) on
its space SG(M) of types over M .
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We will give some background below on both continuous logic (in an appropriate
form) and weak almost periodicity. The connection between stability in continuous
logic and weak almost periodicity goes through results of Grothendieck [13] in
functional analysis, which have been commented on in several expository papers
such as [5] and later [24]. However, it is relative stability, namely stability of a
formula in a model M which is relevant, and only equivalent to stability when the
model is saturated enough.
One of our main structural results is Theorem 3.16 below characterizing when

the action of G(M) on X is weakly almost periodic in terms of stable in M for-
mulas. When M is ω1-saturated, another equivalent condition is that the action
of G(M) on X is de�nable, which will yield the desired conclusions (Theorem 3.2
and Corollary 3.3).
Although this is a model theory paper, it is convenient for us to quote heavily

from the topological dynamics literature, especially for results which have not yet
been developed in the parallel model-theoretic environment.
We will generally be assuming any ambient theory T to be countable.

The notion of a de�nable action of a de�nable group on a compact space was
given in [11] and explored in some degree of generality in [17]. We repeat the
de�nition below. As was said in the introduction, it would be more appropriate to
call it a �separately de�nable action�, but for simplicity we are saying �de�nable
action�.

De�nition 3.1. (i) Let X be a set de�nable over M . A function f from X(M) to
a compact space C is said to be de�nable if if for every pair C1, C2 of closed disjoint
subsets of C, there is a de�nable (in M) set Z ⊆ X(M) such that f−1(C1) ⊆ Z,
and f−1(C2) ⊆ G(M) \ Z.
(ii) Suppose G is a group de�nable overM . A group action by G(M) on a compact
space X by homeomorphisms is said to be de�nable if for every x ∈ X the map
from G to X taking g to g · x is de�nable.

When all types overM are de�nable, then the natural action of G(M) on SG(M)
is a de�nable action and is moreover the universal de�nable G(M)-ambit (see [11]).
This is interesting for structures M such as the reals or p-adics where all types
over M are de�nable, although the complete theories are unstable. However,
in general, de�nability of an action of G(M) on a compact space X is a rather
restrictive condition. In [17], it was shown that there is always a universal de�nable
G(M)-ambit (which will of course factor through SG(M)). Recall from De�nition
1.7 that G(M) is said to be weakly de�nably amenable if whenever G(M) acts
de�nably on the compact space X, then X supports a G(M)-invariant, Borel
probability measure, equivalently the universal de�nable G(M)-ambit supports a
G(M)-invariant, Borel probability measure. A special case of Conjecture 0.3 says
that if G(M) is weakly de�nably amenable, then G00

M = G000
M . At the end of
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Subsection 3.2, we will show that this fails drastically, by proving that when M is
su�ciently saturated, then G(M) is always weakly de�nably amenable.

Theorem 3.2. Suppose M is ω1-saturated. Then G(M) is weakly de�nably
amenable: for any de�nable action of G(M) on a compact space X, X supports a
G(M)-invariant, Borel probability measure.

We deduce a negative answer to Conjecture 0.3 (i.e. Conjecture 0.3 of [19]):

Corollary 3.3. There is a model M , and a group G(M) de�nable in M such that
G(M) is weakly de�nably amenable, but G00

M 6= G000
M .

Proof. In fact, whenever G is a group de�nable in a NIP theory T and G00 6= G000,
then choosing an ω1-saturated model M of T , we see from Theorem 3.2 that
G(M) is weakly de�nably amenable. Moreover G00

M = G00 6= G000 = G000
M . There

are many such examples, such as from [7]: T is the theory of the 2-sorted structure
M with sorts (R,+,×) and (Z,+) and no additional structure. As pointed out
there, the universal cover of SL(2,R) is naturally de�nable in M . T is NIP, and if
G is the interpretation of this group in a saturated model, then G00 6= G000. �

3.1. Continuous logic. Continuous logic is about real-valued relations and for-
mulas, or, more generally, formulas with values in compact spaces, and, as such, is
present in a lot of recent work which does not explicitly mention continuous logic
(even in De�nition 3.1 above).
There have been various approaches to continuous logic, starting with [6]. An

attractive formalism was developed in [2] and [3], and our set up will be a special
case. Here, we will give relatively self-contained proofs, for reasons explained
below.
T will be a complete �rst order theory in the usual (non-continuous) sense,

which is countable (for convenience) and we work as earlier in a big saturated (or
monster) model C. We �x a sort X (which will be a de�nable group G in the
applications). As usual, M,N, . . . denote small elementary submodels of C, and
A,B, . . . small subsets of this monster model. There is no harm assuming that
T = T eq.

De�nition 3.4. (i) By a continuous logic (CL) formula on X over A, we mean a
continuous function φ : SX(A)→ R.
(ii) If φ is such a CL-formula, then for any b ∈ X (in the monster model) by φ(b)
we mean φ(tp(b/A)). Hence, we have a map φ : X(N) → R for all models N , in
particular a map φ : X = X(C)→ R. As the notation suggests, we are identifying
a CL-formula on X over A with the latter map, and so may write it as φ(x) where
x is a variable of sort X.
(iii) We consider two such CL-formulas on X, φ, ψ, over sets A,B, respectively to
be equivalent if they agree in the sense of (ii), namely if for all a ∈ X, φ(a) = ψ(a).
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Remark 3.5. (i) The range of any CL-formula is a compact subset of R.
(ii) A CL-formula φ (over some A) is equivalent to a CL-formula over B if φ is
invariant under automorphisms of the monster model which �x B pointwise.
(iii) The maps φ : X(M) → R given by CL-formulas φ over M are precisely the
de�nable maps from X(M) to R in the sense of De�nition 3.1.
(iv) Any CL-formula over a set A is (equivalent to a CL-formula) over a countable
subset of A.

De�nition 3.6. (i) Let M be a model, and φ(x, y) a CL-formula over M , where
x, y are variables of sorts X, Y , respectively. Let a ∈ X. Then tpφ(a/M) is the
function taking b ∈ Y (M) to φ(a, b), and is called a complete φ(x, y)-type over M .
(ii) In the context of (i), tpφ(a/M) is de�nable if it is de�nable in the sense of
De�nition 3.1, equivalently, by Remark 3.5(iii), given by or rather induced by a
CL-formula on Y over M .

Remark 3.7. Suppose M is ω1-saturated, φ(x, y) is a CL-formula over M , and a is
in the big model. Then tpφ(a/M) is de�nable if and only if for each closed subset
C of R, {b ∈ Y (M) : φ(a, b) ∈ C} is type-de�nable over some countable subset of
M .

Proof. This follows from Remark 3.5(iv). �

De�nition 3.8. Let φ(x, y) be a CL-formula over M .
(i) We say that φ(x, y) is stable (for the theory T ) if for all ε > 0 there do not exist
ai, bi for i < ω (in the monster model) such that for all i < j, |φ(ai, bj)−φ(aj, bi)| ≥
ε.
(ii) We say that φ(x, y) is stable in M if for all ε > 0 there do not exist ai, bi for
i < ω in M such that for all i < j, |φ(ai, bj)− φ(aj, bi)| ≥ ε

Remark 3.9. (i) Routine methods show that φ(x, y) is stable (for T ) i� whenever
(ai, bi)i<ω is indiscernible (over M), then φ(ai, bj) = φ(aj, bi) for i < j.
(ii) On the other hand, stability of φ(x, y) in M is easily seen to be equivalent to
Grothendieck's double limit condition: given ai, bi in M for i < ω we have that
limi limj φ(ai, bj) = limj limi φ(ai, bj) if both double limits exist.
(iii) A CL-formula φ(x, y) is stable [in M ] i� φop(x, y) := φ(y, x) is stable [in M ].

The following is due to Grothendieck (modulo a routine translation), and we
give an explanation below.

Proposition 3.10. Let φ(x, y) be a CL-formula over M . Then the following are
equivalent.

(i) φ(x, y) is stable in M .
(ii) Whenever M ≺ M∗, and tp(a/M∗) ∈ Sx(M∗) is �nitely satis�able in M ,

then tpφ(a/M∗) is de�nable over M , namely the function taking b ∈M∗ to
φ(a, b) is given by a CL-formula ψ(y) over M .
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Proof. Consider the (compact) space Z = Sy(M) of complete types over M in
variable y, and let C(Z) be the real Banach space of continuous real valued func-
tions on Z (equipped with the supremum norm). Let A denote the subset of C(Z)
consisting of the functions φ(a, y) for a ∈ M . Note that A is bounded. Let Z0 be
the set of realized types, namely those tp(b/M) for b ∈ M , a dense subset of Z.
With this notation, Grothendieck's Theorem 6 in [13] says that the following are
equivalent.

(i)' If fi ∈ A and qi ∈ Z0 for i < ω, then limi limj fi(qj) = limj limi fi(qj) if
both double limits exist.

(ii)' The closure of A in the pointwise convergence topology on C(Z) is compact.

Now, if fi is φ(ai, y) and qi = tp(bi/M), then (i)' says precisely that
limi limj φ(ai, bj) = limj limi φ(ai.bj) for all sequences ai, bi ∈ M with i < ω
for which both double limits exist, which by Remark 3.9(ii) says that φ(x, y) is
stable in M , namely condition (i) in the proposition.
On the other hand (ii)' implies that the closure of A in C(Z) (in the pointwise

topology) is a compact, so closed, subset of the space RZ of all functions from Z
to R (equipped with the pointwise, equivalently Tychono� topology). So every
function in the closure of A in RZ is already in C(Z), so is continuous. So it is
clear that (ii)' is equivalent to

(ii)� whenever f ∈ RZ is in the closure of A, then f is continuous.

It is now easy to see that if f ∈ RZ is in the closure of {φ(a, y) : a ∈ M},
then f is of the form φ(a∗, y), where M∗ is a saturated model containing M , and
tp(a∗/M∗) is �nitely satis�able in M . So for q ∈ Z = Sy(M), f(q) = φ(a∗, b) for
some (any) realization b of q in M∗. The continuity of f means that it is given by
a CL-formula ψ(y) over M , which precisely means that ψ(y) is a de�nition over
M of tpφ(a∗/M∗). So we get that (ii) implies (ii)�, and it is again easy to see that
they are equivalent. �

Remark 3.11. (a) Actually the original statement of (ii)' in [13] is that the
closure of A in the weak topology on C(Z) is compact. The weak topology
on C(Z) is the one whose basic open neighbourhoods of a point f0 are of the
form {f ∈ C(Z) : |g1(f − f0)| < ε, . . . , |gr(f − f0)| < ε}, where g1, . . . , gr are in
L(C(Z),R) � the space of bounded linear functions on C(Z). This weak topology
is stronger than the pointwise convergence topology on C(Z) whose basic open
neighbourhoods of a point f0 are as above but where gi is evaluation at some
point xi ∈ Z. It is pointed out in [13] that relative compactness of a bounded
subset A of C(Z) in the weak topology is equivalent to relative compactness of A
in the pointwise convergence topology, yielding the statement (ii)' in the proof of
Proposition 3.10.
(b) In [5], which seems to be the �rst model theory paper to recognize
Grothendieck's contribution, only the implication �φ(x, y) stable in M im-
plies that all φ-types over M are de�nable� is deduced from Grothendieck's
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theorem, rather than the stronger equivalence in Proposition 3.10.
(c) Grothendieck's proof in [13] is basically a model theory proof. See [24] for the
case of classical ({0, 1}-valued) formulas.

Proposition 3.12. The CL-formula φ(x, y) is stable (for T ) if and only if every
complete φ(x, y)-type over any model over which φ is de�ned is de�nable.

Proof. In the more general metric structures formalism, this appears in [3] (Propo-
sition 7.7 there) and adapts to our context. However, we give a relatively self
contained account. Left implies right is given by Proposition 3.10. The other di-
rection is the easy one and can be seen as follows. Assume φ(x, y) to be unstable
(for a contradiction). By (or as in) Remark 3.9, we can �nd ai, bi ∈ C for i ∈ Q,
and real numbers r < s that φ(ai, bj) ≤ r for i < j and φ(ai, bj) ≥ s for i > j. Let
M be a countable model containing the bi for i ∈ Q over which φ is de�ned. By
compactness, for each cut C in Q there is some aC ∈ C such that φ(aC , bj) ≥ s
for j < C and φ(aC , bj) ≤ r for j > C. Now, by assumption, each tpφ(aC/M) is
de�nable, so for each C there is some (ordinary) formula ψC(y) over M such that
for any b ∈ M , φ(aC , b) ≤ r implies ψC(b), and φ(aC , b) ≥ s implies ¬ψC(b). This
is a contradiction, as there are continuum many distinct C's but only countably
many (ordinary) formulas over the countable model M . �

Proposition 3.13. Suppose M is ω1-saturated, φ(x, y) is a CL-formula over M ,
and every complete φ(x, y)-type over M is de�nable. Then every complete φ(x, y)-
type over any model N (over which φ is de�ned) is de�nable, and hence, by Propo-
sition 3.12, φ(x, y) is stable.

Proof. Let A ⊂ M be countable such that φ(x, y) is over A. By Proposition 3.12
and by the proof of the right to left implication in Proposition 3.12, it su�ces
to prove that every complete φ-type over a countable model containing A is
de�nable. As M is ω1-saturated, it is enough to prove that every complete φ-type
over any countable submodel M0 of M which contains A is de�nable. So let p(x)
andM0 be such. Let p

′ be a coheir of p overM , namely p′ = tpφ(a/M), p = p′|M0,
and tp(a/M) is �nitely satis�able in M0. By our assumptions, p′ is de�nable. So
to prove that p is de�nable it su�ces to prove:

Claim 1: p′ is de�nable over M0.

Proof. Let C be a compact subset of R, and let Ψ(y, b) be a partial type over a
countable sequence b from M such that for all c ∈M , φ(a, c) ∈ C i� M |= Ψ(c, b).
We will show that in fact Ψ(y, b) is equivalent to a partial type over M0. For this
it is enough to show that if b′ realizes tp(b/M0) in M , then Ψ(y, b′) is equivalent
to Ψ(y, b).
Suppose c′ ∈ M and suppose M |= Ψ(c′, b′). Let c ∈ M be such that

tp(c, b/M0) = tp(c′, b′/M0). As tp(a/M) is �nitely satis�able in M0, φ(a, c) =
φ(a, c′). As M |= Ψ(c, b), we have that φ(a, c) ∈ C. Hence, φ(a, c′) ∈ C, whereby
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M |= Ψ(c′, b). Hence, Ψ(y, b′) is equivalent to Ψ(y, b), as required. This �nishes
the proof of the claim. �(claim)

Hence, the proof of the proposition is also �nished. �

3.2. Weakly almost periodic actions. The context here is a G-�ow (X,G),
where X is a compact space and G a topological group. For f a continuous
function from X to R and g ∈ G, gf denotes the (continuous) function taking
x ∈ X to f(gx). We will take our de�nition of a weakly almost periodic G-�ow
from Theorem II.1 of [9].

De�nition 3.14. (i) A continuous function f : X → R is weakly almost periodic
(or wap) if whenever h ∈ RX is in the closure of {gf : g ∈ G} (in the pointwise
convergence topology) then h is continuous.
(ii) The G-�ow (X,G) is weakly almost periodic (or wap), if every continuous
function f : X → R is weakly almost periodic.

Fact 3.15. Suppose that (X,G) is wap. Then there is a G-invariant, Borel prob-
ability measure on X.

Proof. This is well-known within topological dynamics, but we nevertheless give
an account with some references. We may assume that (X,G) is minimal (by
passing to a minimal sub�ow). By Proposition II.8 of [9], the �ow (X,G) is almost
periodic (also known as equicontinuous). The minimal equicontinuous �ows have
been classi�ed in [1] for example (see [1, Chapter 3, Theorem 6]), as homogeneous
spaces for compact groups (on which G acts as subgroups of the compact groups
in question), whereby the Haar measure induces the required G-invariant measure
on X. �

We now pass to the model-theoretic context, which here means that we consider
actions of a de�nable group G(M) on a compact space X which factor through
SG(M).

Theorem 3.16. Let M be a structure, G(M) a group de�nable in M , and let a
G(M)-�ow (X,G(M)) be given, which factors through the action of G(M) on
SG(M) via a continuous surjective (G(M)-equivariant) map π : SG(M) → X.
Consider the following three conditions:

(i) (X,G(M)) is wap,
(ii) for each continuous function F : SG(M)→ R of the form f ◦π for f : X →

R continuous, the CL-formula F (yx) is stable in M ,
(iii) the action of G(M) on X is de�nable.

Then:

(a) (i) and (ii) are equivalent, and imply (iii),
(b) if M is ω1-saturated, then (i), (ii), (iii) are equivalent, and, moreover, in

(ii) we have that F (yx) is stable for T (not just in M).
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Proof. (a) Suppose (X,G(M)) is wap. Let F = f ◦ π for some f ∈ C(X). Let
h : SG(M)→ R be in the pointwise closure of {gF : g ∈ G(M)}. Then clearly for
any p ∈ SG(M), h(p) depends only on π(p), so h = h1 ◦π for a unique h1 : X → R.
But h1 is in the pointwise closure of {gf : g ∈ G(M)}, so, by assumption, h1 is
continuous. Hence, h is continuous. By the proof of Proposition 3.10, or, more
precisely, by the equivalence of (i) and (ii)� in there, the CL-formula F (xy) is
stable in M , and so is F (yx) by Remark 3.9(iii).
The converse goes the same way: Let f ∈ C(X), and h : X → R be in the

closure, again in the pointwise topology, of {gf : g ∈ G(M)}. Let F = f ◦ π ∈
C(SG(M)). Let h1 = h ◦ π. Then clearly h1 is in the closure of {gF : g ∈ G(M)}.
As F (yx) is assumed to be stable in M , by Remark 3.9(iii) and the equivalence
of (i) and (ii)� in the proof of Proposition 3.10, h1 is continuous, and so h is
continuous.
So far we have shown (i) if and only if (ii). We now show that either of these

equivalent conditions imply that the action of G(M) onX is de�nable. Let x0 ∈ X.

Claim 1: For any continuous function f : X → R, the function from G(M) → R
taking g to f(gx0) is de�nable (over M).

Proof. Let p ∈ SG(M) be such that π(p) = x0. Consider the lift F of f to SG(M)
via π. We use x, y to denote variables of sort G. By (ii), the formula F (yx)
(in variables x, y) is stable in M , so, by Proposition 3.10, the function taking
g ∈ G(M) to F (gp) is de�nable over M , namely induced by a CL-formula ψ(y)
over M . But F (gp) = f(gx0). Hence, the claim is proved. �(claim)

De�nability of the action of G(M) on X now follows from the claim and
Urysohn's lemma: Let X0, X1 be disjoint closed subsets of X. By Urysohn, there
is a continuous function f ∈ C(X) such that f is 0 on X0 and 1 on X1. By
the claim, there is some de�nable (in M) subset Z of G(M), such that for all
g ∈ G(M), if f(gx0) = 0 then g ∈ Z, and if f(gx0) = 1 then g /∈ Z. But this
implies that if gx0 ∈ X0 then g ∈ Z, and if gx0 ∈ X1 then g /∈ Z. As x0 ∈ X was
arbitrary, this shows that the action of G(M) on X is de�nable.

(b) We assume now that M is ω1-saturated. All we have to do is to prove that
(iii) implies the stronger version of (ii) (with stability for T ). Now, exactly as in
the previous paragraph, de�nability of the action of G(M) on X means precisely
that whenever F : SG(M)→ R lifts some continuous function f on X, then every
complete F (yx)-type over M is de�nable. By Proposition 3.13, each such F (yx)
is stable (for T ). �

Proof of Theorem 3.2. We may assume that X is a (de�nable) G(M)-ambit, in
which case, by [11] or [17, Remark 3.2], the action factors through the action
of G(M) on SG(M). By Theorem 3.16(b), and ω1-saturation of M , the action
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of G on X is wap, so, by Fact 3.15, X has a G(M)-invariant, Borel probability
measure. �

3.3. On universal ambits and minimal �ows. We give a description of the
universal de�nable wap ambit and universal minimal de�nable wap �ow for a group
G(M) de�nable in a structure M . As seen by the material above, this is closely
connected to stable group theory in the continuous logic sense, but unless M is
saturated enough, it will be stability in M . Actually, even in the classical case,
stable group theory relative to a model M (i.e. where relevant formulas φ(x, y)
are stable in M) has not been written down, so it is not surprising if we happen to
rely on the topological dynamical literature. By G we mean G(M∗) for a suitably
saturated elementary extension M∗ of M .
M will be an arbitrary structure and G(M) a group de�nable in M . Following

on from notation in the previous section, if F (x) is a CL-formula on G (i.e. where
the variable x ranges over G) over M , then we will call F stable in M if the CL-
formula F (yx) (in variables x, y) is stable in M . Let A be the collection (in fact
algebra) of such stable in M , CL-formulas F (x) on G. Let S be the quotient of
SG(M) by the closed equivalence relation ∼A given by

p ∼A q ⇐⇒ (∀F ∈ A)(F (p) = F (q)).

S is naturally a compact space which we call the type space over M of the stable
in M , CL-formulas over M . Let π0 : SG(M) → S be the canonical surjective
continuous map. Note that G(M) acts on S, and that π0 is a map of G(M)-�ows
(in fact ambits, where π0(e) is taken as the distinguished point of S). With the
above notation we have:

Proposition 3.17. (i) (S, G(M)) is the (unique) universal de�nable wap ambit
of G(M).
(ii) G/G00

M is the unique universal minimal de�nable wap �ow of G(M).

Proof. Let us �rst note:

Claim 1: With above notation, a continuous function F : SG(M)→ R is stable in
M if and only if it is induced, via π0, by a continuous function from S to R.
Proof. This follows from the Stone-Weierstrass theorem and the easy fact that A is
a closed subalgebra of the Banach algebra C(SG(M)) of all real valued continuous
functions on SG(M) (where C(SG(M)) is equipped with the uniform convergence
topology). �(claim)

(i) follows easily from the claim and previous results. First, by Theorem 3.16 and
the claim, (S, G(M)) (with distinguished point s0 = π0(e)) is de�nable and wap.
Secondly, suppose (X,G(M)) is a de�nable wap ambit with distinguished point
x0, and corresponding π : SG(M) → X (taking e to x0). By Theorem 3.16 again,
for every continuous function f on X, F = f ◦ π is stable, hence is in the algebra
A. This easily induces a surjective, continuous, G(M)-equivariant map from S to
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X taking s0 to x0.
(ii) The action of G(M) on G/G00

M is induced by multiplication on the left. Clearly
every orbit is dense, in particular the image of G(M) in G/G00

M under the canonical
homomorphism ι taking g to g/G00

M is dense. The action factors through the type
space. Why is it wap? Let f be a continuous function from G/G00

M to R, and
F : G→ R be f ◦ π, where π : G→ G/G00

M is the canonical homomorphism. So F
is a CL-formula on G over M . We claim that the CL-formula F (yx) in variables
x, y (so on G × G) is stable for the theory, in particular F is stable in M . If
not, we can �nd a large indiscernible over M sequence ((gi, hi) : i ∈ I) such that
for i < j, F (gihj) 6= F (gjhi); but this is impossible, as tp(gi/M) = tp(gj/M)
and tp(hi/M) = tp(hj/M) implies π(gi) = π(gj) and π(hi) = π(hj), and so
π(gihj) = π(gjhi). Thus, using Theorem 3.16, we have shown that the action of
G(M) on G/G00

M is a minimal wap �ow which factors through SG(M), so is also
de�nable by Theorem 3.16.
To see that it is universal such, we will appeal again to the topological dynam-

ics literature. So let (X,G(M)) be a minimal de�nable wap �ow. As already
remarked, we deduce from II.8 of [9] that the �ow (X,G(M)) is equicontinuous.
By Theorem 3.3 from Chapter I of [12], the Ellis semigroup E(X) is a compact
topological group acting by homeomorphisms on X, and, moreover, (X,G(M)) is
isomorphic to E(X)/H for a suitable closed subgroup H of E(X) (with the action
of G(M) on E(X)/H given by g(ηH) = (gη)H). So it remains to show that the
natural homomorphism h : G(M)→ E(X) is de�nable, because in that case E(X)
will be a de�nable group compacti�cation of G(M) (in the sense of [11]) and we
know from Proposition 3.4 of [11] that G/G00

M is the universal such de�nable group
compacti�cation.
The fact that h : G(M)→ E(X) is de�nable follows from the fact that E(X) is

a sub�ow of the product G(M)-�ow XX which is de�nable (because a product of
de�nable �ows is always de�nable [18, Remark 1.12]).
Finally, the uniqueness of a universal minimal de�nable wap G(M)-�ow follows

from the observation every endomorphism of the G(M)-�ow G/G00
M is an automor-

phism, namely it is right translation by an element of G/G00
M . �

The above proposition together with Theorem 3.16 yields

Corollary 3.18. When M is ω1-saturated, the universal de�nable wap ambit co-
incides with the universal de�nable ambit and can be described as the type space of
the collection (algebra) of CL-formulas F on G over M which are stable (for T ).

We can also give a description of the universal de�nable G(M)-ambit for an
arbitrary (not necessarily ω1-saturated) M . For this recall that in the proof of
Theorem 3.16 (Claim 1 and the paragraph afterwards; see also the proof of (b))
we showed that de�nability of the action of G(M) on X means precisely that
whenever F : SG(M) → R lifts some continuous function f on X, then every
complete F (yx)-type over M is de�nable. Thus, applying Stone-Weierstrass as in
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the proof of Claim 1 in the proof of Proposition 3.17 and following the lines of the
easy proof of item (i) of this proposition, we get

Corollary 3.19. Let D be the quotient of SG(M) corresponding to the algebra B
of all CL-formulas F (x) on G over M for which every complete F (yx)-type over
M is de�nable. Then G(M) acts naturally on D, and (D, G(M)) is the universal
de�nable ambit.

Finally, as promised in the introduction, we give a negative answer to Problem
4.11 (1) from [17], concerning whether the natural map from SG(M) to G/G000

M ,
given by tp(g/M) 7→ g/G000

M , factors through the universal de�nable ambit. When
M is su�ciently saturated, Corollary 3.18 says that the universal de�nable ambit
is precisely the universal de�nable wap ambit. So we consider, as in the proof
of Corollary 3.3, a group G de�nable in a countable NIP theory T such that
G000 6= G00. Let M be an ω1-saturated model over which G is de�ned. Then
S, as de�ned above, is, by Proposition 3.17, the universal de�nable wap ambit of
G(M), and likewise, the universal minimal de�nable wap �ow of G(M) is G/G00

M .
The natural map f : SG(M)→ G/G000

M referred to above takes tp(g/M) to g/G000
M .

If I is a minimal sub�ow of SG(M), then f [I] = G/G000
M . Indeed, take any p =

tp(a/M) ∈ I. Then I is the closure of {tp(ga/M) : g ∈ G(M)}. Consider any
b ∈ G, and choose b′ ≡M b with tp(b′/Ma) �nitely satis�able in M . It is easy to
see that tp(b′a/M) ∈ I. Hence, ba/G000

M = b′a/G000
M ∈ f [I], which is enough.

Following earlier notation, let π0 be the canonical map from SG(M) to S. Then
π0[I] is a minimal sub�ow of S.
Now, suppose for a contradiction that f : SG(M)→ G/G000

M factors through π0,
i.e. there is a unique map f0 : S → G/G000

M with f = f0 ◦ π0. Let f1 : G/G000
M →

G/G00
M be the obvious map sending g/G000

M to g/G00
M , and put f2 := f1 ◦ f0 : S →

G/G00
M . All these maps are clearlyG(M)-equivariant, and f2 is a �ow epimorphism.

Since π0[I] is a minimal de�nable wap G(M)-�ow, and G/G00
M is universal such

(and with the property that each �ow endomorphism is an automorphism), we get
that f2|π0[I] is an isomorphism. On the other hand, since f |I is surjective, so is
f0|π0[I]. Therefore, f1 is injective, hence G00

M = G000
M , a contradiction.

4. Final remarks

4.1. Connected components and approximate subgroups. We clarify the
connections between the question of the equality of connected components G000 =
G00, and de�nable approximate subgroups.
Here, we will work in the simpler case where no de�nable topology is present.

Also, we work in a saturated model and over a �xed small set of parameters (even
a small model). De�nability, connected components, etc. will be relative to this
set of parameters.
We consider to begin with a de�nable group G and a de�nable, symmetric subset

X of G. 〈X〉 denotes the subgroup H, say, of G generated by X (an ind-de�nable
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subgroup) and X is said to be an approximate subgroup of G if X is generic in H,
namely a bounded number of translates of X cover H. (It may be of interest to
consider the same notion for type-de�nable X.) In this context, and under various
auxiliary amenability-type hypotheses, one proves the �stabilizer theorem�

(�) H00 ⊆ X4.

This leads to a connection with locally compact groups L, and through them Lie
groups. (See [14], [21], [26], and most relevant to us [20].) Massicot and Wagner
conjecture that �even without the de�nable amenability assumption a suitable Lie
model exists�.
In this paper, we have restricted to the case where the ind-de�nable group

H is actually de�nable, hence may be assumed, notationally, to be G. In this
case, the locally compact group L is compact. This case is not ruled out as
trivial, and indeed is of considerable interest; for instance some of the �rst the-
orems in this line, by Gowers and Helfgott, asserted in e�ect that generic de-
�nable subsets of certain pseudo�nite groups generated the group in boundedly
many steps (3 or 4), and were in turn important in further developments by
Bourgain-Gamburd and many others. Remaining in this de�nable context, it is
known that G000 is generated by a certain partial type, generic in G, namely
P = {a1a

−1
2 : (a1, a2, ...) is indiscernible}. Writing P as an intersection of de�n-

able, symmetric subsets Pn, then each Pn is an approximate subgroup of G. Hence,
if the basic result (�) holds for every generic, de�nable, symmetric subset X of G,
it follows that G00 ⊆ P4, hence G000 = G00.
More generally, in the ind-de�nable setting above (where H = 〈X〉) we can

consider the same notions, and again the truth of (�) for all generic, de�nable,
symmetric subsets of H implies that H000 = H00.
So, we see that any example where the relevant connected components di�er

must include de�nable approximate subgroups where (�) fails (even with 4 replaced
by any de�nite integer).
Starting from another angle, let f : G → A be a quasi-homomorphism to an

abelian group A, namely a map such that f(xy)f(y)−1f(x)−1 has �nite image,
and let F be the graph of f . Then F ∪ F−1, viewed as a subset of G × A, is an
approximate subgroup. There are examples of quasi-homomorphisms for which
one can directly check that F ∪ F−1 does not satisfy (�) (even with 4 replaced by
any de�nite integer); for instance, on the free group on two generators a, b, map

am1bm2am3 · · · bmk (with mi ∈ Z and mi 6= 0 for 1 < i < k) to
∑k

i=1 sgn(mi) (see
[25]).
Regarding the Massicot-Wagner conjecture mentioned above, this shows at least

that any connection to a suitable �Lie model� would have to di�er substantially
from the one proved in the amenable cases.
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4.2. Connected components and complexity. Let us consider these notions
from the point of view of descriptive set theory (see for example [22] for the terms
below.) Fix a countable language L with distinguished sort G (with a binary
operation), and consider the space of complete theories T (with G a group). For
now, G000 etc. will mean G000

∅ etc.
The condition G = G000 is at the �nite level of the Borel hierarchy (�arithmetic�),

and is in fact a countable union of closed sets. This can be seen as follows. First,
it is known that G = G000 is equivalent to Pn = G for some n (see [23, Theorem
3.1]), where P is as in the previous subsection. We can now unwind the statement
Pn = G, using compactness: for any approximation Ik to indiscernibility,

T |= (∀x)(∃yi1, yi2)i≤n

(
x = y11y

−1
12 . . . yn1y

−1
n2 ∧

∧
i

Ik(yi1, yi2)

)
.

The condition G00 = G000 is also Borel. Namely, G00 = G000 is equivalent to
saying that for some n, Pn+1 = Pn (by [23, Theorem 3.1] and the fact that the
sequence (Pn)n is ascending). The last equality can be expressed by: for every k
there is l such that

T |=

(
(∃zi1, zi2)i≤n+1

(
x = z11z

−1
12 . . . z(n+1)1z

−1
(n+1)2 ∧

∧
i

Il(zi1, zi2)

))
−→(

(∃yi1, yi2)i≤n

(
x = y11y

−1
12 . . . yn1y

−1
n2 ∧

∧
i

Ik(yi1, yi2)

))
.

The equality G = G0 requires only one integer quanti�er: for all formulas φ(x),
and each n > 1, the sentence �φ de�nes a subgroup of index n� is false in T .
The condition G = G00 is more mysterious. It is clearly at worst Π1

1, as it can
be expressed as the non-existence of a chain of proper, generic, de�nable subsets
Di ⊆ G with D−1

i+1Di+1 ⊆ Di. This together with the previous paragraphs su�ces
to see that the various connectedness properties (equalities among the various
connected components) are all properties of T itself and do not depend on the
ambient model of set theory. But it remains quite interesting to know if such a
chain, when it exists, can be constructed in some explicit way. In particular, is
the condition G = G00 Borel?
If G is de�nably amenable and we compute everything over parameters from a

given model, then, by [20, Theorem 12] and the short argument in Case 2 on page
1282 in [19], one easily gets that the condition G = G00 is equivalent to the (Borel)
statement that for any generic, symmetric, de�nable set X, X4 = G (the method
from [20] concretely constructs a sequence of generic, symmetric, de�nable subsets
Di with Di+1Di+1 ⊆ Di ⊆ X4). However, in general, the latter condition may be
strictly stronger, which is always the case when G = G00 6= G000 (as G 6= G000

implies G 6= Pn for every n). So the question whether G00 = G is Borel remains
open and quite interesting.
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