LOCALLY COMPACT MODELS FOR APPROXIMATE RINGS

KRZYSZTOF KRUPINSKI

ABSTRACT. By an approximate subring of a ring we mean an additively symmetric subset
X such that X - X U (X + X) is covered by finitely many additive translates of X. We
prove that each approximate subring X of a ring has a locally compact model, i.e. a ring
homomorphism f: (X) — S for some locally compact ring S such that f[X] is relatively
compact in S and there is a neighborhood U of 0 in S with f~'[U] € 4X 4+ X - 4X (where
4X := X + X + X + X). This S is obtained as the quotient of the ring (X) interpreted
in a sufficiently saturated model by its type-definable ring connected component. The main
point is to prove that this component always exists. In order to do that, we extend the basic
theory of model-theoretic connected components of definable rings (developed in [GJK22] and
[KR22]) to the case of rings generated by definable approximate subgrings and we answer a
question from [KR22] in the more general context of approximate subrings. Namely, let X
be a definable (in a structure M) approximate subring of a ring and R := (X). Let X be the
interpretation of X in a sufficiently saturated elementary extension and R := (X' >. It follows
from [MW15] that there exists the smallest M-type-definable subgroup of (R, +) of bounded
index, which is denoted by (R, +)%7. We prove that (R, +)3% + R - (R, +)%7 is the smallest
M-type-definable two-sided ideal of R of bounded index, which we denote by R3. Then S
in the first sentence of the abstract is just R/R% and f : R — R/R3? is the quotient map.
In fact, f is the universal “definable” (in a suitable sense) locally compact model.

1. INTRODUCTION

A subset X of a group is called an approzimate subgroup if it is symmetric (i.e. e € X
and X~! = X) and XX € FX for some finite F' € (X). Approximate subgroups were
introduced by Tao in [Tao08] and have become one of the central objects in additive combina-
torics. A breakthrough in the study of the structure of approximate subgroups was obtained
by Hrushovski in [Hrul2], where a locally compact model for any pseudofinite approximate
subgroup (more generally, near-subgroup) X was obtained by using model-theoretic tools, and
in consequence also a Lie model was found for some approximate subgroup commensurable
with X. This paved the way for Breuillard, Green, and Tao to give a full classification of all
finite approximate subgroups in [BGT12].

Let X be an approximate subgroup and G := (X). By a locally compact [resp. Lie] model
of X we mean a group homomorphism f: (X) — H for some locally compact [resp. Lie] group
H such that f[X] is relatively compact in S and there is a neighborhood U of the neutral
element in S with f1[U] € X™ for some m < w. (In this paper, locally compact spaces are
Hausdorff by definition.)

By a definable (in some structure M) approrimate subgroup we mean an approximate
subgroup X of some group such that X, X2 X3 ... are all definable in M and :|xynxxn :
X" x X™ — X?" is definable in M as well. Naming the appropriate parameters, we will be
assuming that the definable approximate subgroups are 0-definable (i.e. without parameters).
If the approximate subgroup X is definable in M, then in the definition of a locally compact
model, one usually additionally requires definability of f in the sense that for any open U € H
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and compact C' € H such that C € U, there exists a definable (in M) subset Y of G such
that f~'[C] € Y < f~![U]. Note that in the abstract situation of an arbitrary approximate
subgroup X, we can always equip the ambient group with the full structure (i.e. add all
subsets of all finite Cartesian powers as predicates), and then X becomes definable and the
additional requirement of definability of locally compact models is automatically satisfied. In
other words, definable approximate subgroups generalize abstract approximate subgroups.

It is folklore (see Corollary 3.4) that for a definable (in a structure M) approximate subgroup
X, the existence of a definable locally compact model is equivalent to the existence of some
(equivalently, the smallest) M-type-definable subgroup of G := (X of bounded index, where
X is the interpretation of X in a monster model extending M (see Subsection 2.2). This
smallest subgroup is denoted by 6_19\9[. By compactness, any type-definable subgroup of G is
contained in some power X™; in particular, if 69\9[ exists, it is necessarily contained in some
X™. The existence of é%} together with the requirement é%} < X™ for a given m is precisely
equivalent to saying that there exists a sequence (Dp,), <, of definable, symmetric subsets of
X™ with the properties Dy, 11D, 1 € D, and D,, is generic (i.e. finitely many left translates
of D,, cover X) for all n < w. We have that if a definable locally compact model for X exists
(equivalently, G0 exists), then the quotient map G — G /G99 is the universal definable locally
compact model (see Proposition 3.3).

Having a pseudofinite approximate subgroup X of a group M, one can equip M with a
sufficiently rich structure (e.g. the full structure where all subsets of all finite Cartesian powers
are added as predicates). Let G = (X). Hrushovski proved that for X being the interpretation
of X in the monster model extending M and G := (X), the component G%} exists and is
contained in X*. Then the quotient map G — G/ G%} is the universal locally compact model
for X. Next, using Yamabe’s theorem, he deduced that there exists an approximate subgroup
Y commensurable with X (i.e. finitely many left translates of Y cover X and vice versa) and
contained in X* such that Y has a Lie model. He proved a much more general result for
the so-called near-subgroups (see [Hrul2, Theorem 4.2]). This was obtained as a consequence
of a suitable “stabilizer theorem” in a stable context proved in [Hrul2]. Some variants of
Hrushovski’s stabilizer theorem were established later in several papers by various authors.
For example, Massicot and Wagner proved the existence of definable locally compact models
for definably amenable approximate subgroups. More precisely, from [MW15, Theorem 12] it
follows that if X is a definable (in a structure M) definably amenable approximate subgroup,
then in the monster model the group G := (X) has the component C_r’%} contained in X*
(see also Fact 4.2). Definable amenability of X means that there is an invariant under left
translation, finitely additive measure p on definable subsets of G := (X such that u(X) = 1.
In particular, this applies in the case when G is abelian, as then G is an amenable group, and
so X is definably amenable (even amenable) by [Hru20, Lemma 6.1].

Wagner conjectured (see [Masl8, Conjecture 0.15] and the paragraph after Theorem 1 in
[MW15]) that a definable locally compact model always exists. This conjecture was refuted
in [HKP22, Section 4] (even in the abstract situation, where definability can be erased). In
[Hru20], Hrushovski proved the existence of locally compact and Lie models in a generalized
sense involving quasi-homomorphisms, and used them to give complete classifications of ap-
proximate lattices in SL;,,(Z) and SL,(Q,). This work is very advanced; among various tools,
it uses a new locally compact group attached to a theory invented by Hrushovski as a coun-
terpart of the Ellis group (or rather its canonical Hausdorff quotient) of a first order theory
which was defined and studied in [KPR18], [KNS19], and [KR22].

The goal of the present paper is to see whether definable locally compact models for definable
approximate rings always exist. In contrast to approximate groups, our main result yields a
positive answer in full generality. We obtain it as an easy corollary of our main theorem which
concerns some fundamental issues on model-theoretic connected components of approximate
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rings, answering in particular the main question from [KKR22], but in a more general context
of approximate rings. Let us give some details.

In this paper, rings need not be commutative or unital. There are various possible definitions
of approximate subrings. One can define an approximate subgring of a ring as an additively
symmetric subset X such that XX u (X + X)) € (F u {1})X n (F + X) for some finite subset
F of the subring (X) generated by X. We will work with a more general definition saying that
XXu(X+X) < F+X for some finite F' € (X ); in particular, X is additively an approximate
subgroup. Define recursively X,,, n < w, by: Xo:= X and X,,+1 := X, X,, + (X, + X,,). As
we will see in Fact 2.1, if X is an approximate subring, then each X, is covered by finitely
many additive translates of X. Important structural results on finite approximate subrings
were obtained by Tao in [Tao09].

By a definable (in some structure M) approzimate subring we mean an approximate subring
X such that Xy, Xy,... are all definable in M and + and - restricted to any X, are also
definable in M.

A [definable] locally compact model of a [definable] approximate subring X is defined as a
counterpart of a [definable| locally compact model of a [definable] approximate subgroup (see
the paragraph preceding Proposition 3.3). As in the case of definable approximate subgroups,
the existence of a definable locally compact model is equivalent to the existence of a suitable
model-theoretic ring component of the ring R := (X) generated by the interpretation X
of X in the monster model. Namely, we observe in Corollary 3.4 that a definable locally
compact model for X exists if and only if there exists some (equivalently, the smallest) M-
type-definable two-sided ideal in R. This smallest ideal is denoted by R%}. By compactness,
any type-definable subgroup of (R, +) is contained in some X,,,; in particular, if R exists, it is
contained in some X,,,. Various model-theoretic connected components of definable rings were
defined and studied in [GJK22] and [KR22]. In particular, it was shown in [GJK22] that in the
definition of R3) “two-sided ideal” can be replaced by “left ideal” or “right ideal” or “subring”
and in each case we get the same notion. The proofs also work for R = (X). By compactness,
one easily shows that the existence of R%} together with the requirement R?\?[ c X, for a
given m is precisely equivalent to saying that there exists a sequence (D, )n<w of definable,
additively symmetric subsets of X,,, with the properties D, +1Dn11 + (Dpt1 + Dpy1) € Dy
and D, is generic (i.e. finitely many left additive translates of D,, cover X) for all n < w.

In [KR22, Theorem 1.2], it was shown that for a unital definable ring R we have (R, +)3) +
R-(R, )Y+ R-(R,+)% = R} (so we say that (R, +)® generates an ideal in 21 steps), and
for a definable ring of finite characteristic we have (R, +)3) + R- (R, +)% = R} (i.e. (R, +)})
generates an ideal in 1% steps). It was left as a question (see [KR22, Question 1.3]) if finitely
many steps are enough for arbitrary definable rings (besides unital or finite characteristic rings
a positive answer was also obtained for finitely generated rings, but with higher numbers of
steps). It was also shown in Examples 8.1 and 8.2 of [KR22] that 13 steps is an optimal (i.e.
cannot be decreased) bound on the number of steps needed to generate an ideal.

In this paper, we prove that 1% steps is enough not only for arbitrary definable rings (an-
swering [KR22, Question 1.3]), but also for rings generated by definable approximate subrings,
ie. for R = (X) where X is a definable approximate subring. Namely, in Theorem 4.1, we
show that (R,+)% + R - (R, +)% = R}); in particular, R} exists. From this, we deduce
in Corollary 4.11 that a definable locally compact model exists for an arbitrary definable
approximate subring, and the quotient map R — R/ R%} is the universal such model.

In fact, we show that for an arbitrary small subset A of the monster model (R, —I—)%0 +R-
(R, +)® is an invariant over A two-sided ideal of bounded index (actually the smallest one,
denoted by RY?). For a definable R it gives us (R, +)% + R+ (R, +)% = RY. In our general
context of R = (X) (where X is a O-definable approximate subring), we get the last equality
assuming that R € dcl(A) (so e.g. for A= Ror A= M).
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2. PRELIMINARIES

2.1. Approximate rings. By an approximate subring of a ring we mean an additively sym-
metric subset X of this ring such that X - X u (X + X) € F + X for some finite subset
F of the ring generated by X, which will be denoted by (X). Then X is clearly addi-
tively an approximate subgroup. The sequence (X, )n<w is defined recursively: Xy := X and
Xpt1 = Xpn X, + (X, + Xp,). For m e N let m(X=") denote the set of sums of m elements
which are products of at most m elements of X. Adapting the proof of [Brell, Lemma 5.5],
we get the following fact.

Fact 2.1. If X is an approzimate subring, then for every m € N~g, m(X<=™) is covered by
finitely many additive translates of X. In particular, every X, is covered by finitely many
additive translates of X .

Proof. The second part follows directly from the first, as X,, is contained in m(X=") for a
sufficiently large m.
Let FF < (X) be such that XX u (X + X) € F + X.

Claim 1. For every x € (X), zX is covered by finitely many additive translates of X.

Proof. First, by induction on m, we show that for any zg,...,z,_1 € X one has that
Ty—1-.-ToX is covered by finitely many additive translates of X. For m = 1 we have
zoX € XX € F + X. For the induction step, assume that z,, 1...20X S G + X for
some finite G. Then z, ... 20X € (G + X) = 2, G+ XX € 2,G + F + X and z,,G + F
is clearly finite.

Next, by induction on m, we show that whenever zy, ..., z,,—1 € {(X) are such that for every
i <m,x; X € F;+X for some finite F;, then (z,,—1+- - -+z0)X is also covered by finitely many
additive translates of X. For the induction step, assume that (z,,—1 +---+29)X € G+ X for
some finite G. Then (zp, + - +20) X S Fp + X +G+X S F,+G+F+X and F,, + G+ F
is clearly finite. o(claim)

Claim 2. X™ c F,, + X for some finite Fy,.

Proof. We prove it by induction on m. For m = 1 it is trivial. For the induction step, assume
that X™ € F,,, + X for some finite F;,. By Claim 1, for every x € F},, there exists a finite F}
such that X € F, + X. Hence, ;X S X + Uyep, Fr and G := (Jyep, Fr is finite. So
Xl = X"XCF,X+XX<CGn+X+F+X<CGn+F+F+XandG,,+F+Fis
finite. o(claim)

Since X< = X' U---u X" by Claim 2, we get X< € F! + X for some finite F/,. By
an easy induction, we conclude that m(X="") is covered by finitely many additive translates
of X. O

2.2. Model theory. Let T be a complete first order theory in a language £. For a model M
of T'and A € M, a type over A is a consistent collection of formulas with parameters from A. A
monster model of T' (often denoted by €) is a k-saturated and strongly x-homogeneous model
of T for a sufficiently large cardinal x; usually it suffices to assume that x is a strong limit
cardinal greater that |£]| (i.e. the cardinality of the set all formulas in £). k-saturation means
that every type over a set of parameters from € of cardinality less that s has a realization in
&; strong K-homogeneity means that every elementary map between subsets of € of cardinality
smaller than x extends to an automorphism of €. It is a common thing in model theory to
work in a fixed monster model, which always exists (by using model-theoretic compactness
and a suitable recursive construction). A subset of € is said to be small if its cardinality is
smaller than k; a cardinal is bounded if it is smaller than x. It is very convenient to work in
a monster model, especially when one deals with definable approximate groups or rings and
with the model-theoretic connected components of the groups or rings generated by them.



LOCALLY COMPACT MODELS FOR APPROXIMATE RINGS 5

Working in a model M of T, for A € M, an A-definable set is the set of realizations in M
of a formula with parameters from A; a definable set is an M-definable set; instead of “{J-
definable” we will write “0-definable”. Working in €, for a small A € €, an A-type-definable
set is a set of realizations in € of a type over A; a type-definable set is an A-type-definable set
for some small A € €. (The empty set is also considered as type-definable if needed.) Finally,
a subset of € (or of a Cartesian power of €) is said to be A-invariant, if it is invariant under
Aut(€/A) (= the pointwise stabilizer of A); in contrast to definability and type-definability,
invariance means O-invariance (i.e. invariance under Aut(€)). Throughout the paper, € is
always chosen as a monster model with respect to M, that is € > M and the degree of
saturation (i.e. k above) of € is bigger than |M|.

A group [ring] G is said to be A-definable if both the universe G and the group opera-
tion [resp. - and +| are A-definable. Type-definable and invariant groups [rings| are defined
analogously (working in €).

Definable (in M) approximate subgroups and subrings were defined in the introduction.
Adding finitely many parameters from M to the language, we can and do assume that they
are O-definable. More general notions are those of \/-definable (or ind-definable) groups and
rings, but we will not go into that in this paper.

For a definable subset D of M, by D we will usually denote its interpretation in €, but with
one exception. If X is a definable (in M) approximate subgroup [or subring] and R := (X),
then X is the interpretation of X in @, but R will stand for (X). It may happen that R is
definable in M, and if it is not the case that R = X™ [or R = X, in the case of rings| for some
m, then R is not the interpretation of the definable R in €. This is because, by saturation of
¢, the fact that R is definable is equivalent to R = X™ [or R = X,, in the case of rings| for
some m.

For any a € € and A € €, by tp(a/A) we denote the type of a over A, that is the collection
of all formulas over A realized by a. By dcl(A) we denote the definable closure of A, i.e. the
collection of all elements which are fixed by Aut(€/A).

When D is a definable set in M and C' is a compact space, then a function f: D — C is
said to be definable if the preimages of any two disjoint closed subsets of C can be separated
by a definable subset of D. (This is essentially saying that f is a continuous logic formula,
but we will not use any continuous logic terminology in this paper.) By [GPP14, Lemma 3.2],
this is equivalent to saying that f extends to an M-definable map f: D — C in the sense that
the preimage of any closed subset of C' is M-type-definable. Such an extension f is unique
and given by f(a) = ﬁw(x)etp(a/M) cl(f[e(M) n D]) (where cl denotes the closure in C). In
Section 3, we extend these considerations to definable approximate subgroups and subrings.

2.3. Model-theoretic connected components of definable groups and rings. We re-
call below some facts on model-theoretic connected components of definable groups and rings.
While definable groups have played an important role in model theory for many years, the
components of rings were introduced recently in [GJK22] where they were used to compute
Bohr compactifications of some groups of matrices, e.g. both the discrete and continuous
Heisenberg group. They were further studied in [KR22].

Let R be a 0-definable group [resp. ring], R = R(€), and A € € be a small set of parameters.

. }:281 is the intersection of all A-definable, finite index subgroups [ideals] of R.
e RY is the smallest A-type-definable, bounded index subgroup [ideal] of R.

o RYY is the smallest A-invariant, bounded index subgroup [ideal] of R.

We did not specify whether the ideals above are left, right, or two-sided. This is because
of Proposition 3.6, Corollary 3.7, and Proposition 3.10 from [GJK22] which tell us that
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Fact 2.2. The above components of the ring R do not depend on the choice of the version
(left, right, or two-sided) of the ideals. Moreover, instead of “ideal” we can equivalently write
“subring” in the above definitions.

In the case of a definable group R, it is easy to see (cf. for example [Gisll, Lemma 2.2(3)])
that R%, R%O, R%OO are always normal subgroups of R.

For a definable group [or ring] R and a small A € €, RY? < RY < RY. Tt is easy to see
(cf. [Gisl1, Lemma 2.2(1)]) that all these components exist and their indices in R are in fact
bounded by 21£/+14l,

If S is a type-definable, normal subgroup [two-sided ideal] in R of bounded index, then R/S
is equipped with the logic topology: closed sets are those whose preimages under the quotient
map are type-definable. This makes the quotient R/S a compact (topological) group [ring]
(for the case of groups see [Pil04, Section 2]; for rings it remains to check that multiplication
is continuous which is an easy exercise).

A compactification of a (discrete) group [resp. ring] R is a homomorphism f: R — C with
dense image, where C' is a compact group [ring|. A definable compactification of R is a com-
pactification which is a definable map as defined in Subsection 2.2. The Bohr compactification
of R is the unique (up to isomorphism) universal compactification h: R — U of R (univer-
sality means that for any other compactification f: R — C there exists a unique continuous
homomorphism g : U — C such that f = g o h); and similarly in the definable version.

By [GPP14, Proposition 3.4] and [GJK22, Proposition 3.28], we know that the quotient map
R — R/RY} is the definable Bohr compactification of the group [ring] R. The idea of the proof
is very simple. If f: G — C is a definable compactification, one extends it uniquely to an M-
definable map f: R — C and checks that f is also a homomorphism which factors through the
quotient map R — R/ R?\g. Similarly, the quotient map R — R/R%/I is the universal definable
profinite compactification of R. So for example the equality R}) = R}, means precisely
that both compactifications coincide. When R is equipped with the full structure, we can
erase the adjective “definable” and we get classical notions of compactification (described in
a model-theoretic way).

Using the classical fact that compact unital or finite characteristic rings are profinite, we
get that whenever a 0-definable ring R is unital or of finite characteristic, then RY = R%O (see
[KR22, Corollary 2.10]). The following is [KR22, Theorem 1.2]:

Fact 2.3. Let R be a 0-definable ring and A € € a small set of parameters.

(1) If R is unital, then (R, +)% + R- (R, +)® + R- (R, +)% = RY° = RY = RY,.

(2) If R is of positive characteristic (not necessarily unital), then (R, +)% + R- (R, +)%Q =

RO = RO =
It was asked in [KR22] whether a similar fact holds for arbitrary O-definable R (except

“= RO”, which fails in general; e.g. in some rings with zero multiplication) and if yes, how
many steps are needed. In Section 4, we will answer this question by proving that for every
O-definable ring R, (R, +)% + R - (R, +)% = RY° = RY, so 15 steps always suffice. On the
other hand, Examples 8.1 and 8.2 of [KR22] show that one cannot decrease the number of
steps to 1 (i.e. (Ru {1}) (R, +)% need not be an additive subgroup), even for commutative,
unital rings of finite characteristic.

3. MODEL-THEORETIC CONNECTED COMPONENTS OF DEFINABLE APPROXIMATE GROUPS
AND RINGS

For a definable (in some M) approximate subgroup [subring] X, R := (X), R = (X), and
a small set of parameters A € €, we define the following components.

. R%O is the smallest A-type-definable, bounded index subgroup [two-sided ideal] of R.
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e RY0 is the smallest A-invariant, bounded index subgroup [two-sided ideal] of R.

In contrast to definable groups, the existence of R%O for definable approximate subgroups
[subrings] is a non-trivial issue.

Both above components for definable approximate subgroups were studied in Section 4 of
[HKP22]. In particular, Proposition 4.3 of [HKP22] yields the existence and a description of
RY° which implies that [R : RY°] < 2/F1+14l. On the other hand, [HKP22, Subsection 4.3]
yields an example where RY does not exist. The existence of RY is equivalent to the existence
of some A-type-definable subgroup of R of bounded index (as then the intersection of all such
subgroups is A-type-definable of index < 2ALI+1Al 50 equals R%O).

In the context of definable approximate subrings, we will prove in Section 4 that (R, +)940 +
R-(R,+)® = RY° which further equals RY provided that R < dcl(A); in particular, in
contrast to definable approximate subgroups, R%O always exists for definable approximate
subrings (under the assumption that R < dcl(A)). For completeness notice that the existence
of R%OO is clear: the intersection of all A-invariant, bounded index, two-sided ideals of R will
be A-invariant and of bounded index < [R : (R, +)%°] < 2/4I+141,

The proofs of statements 3.3, 3.5, and 3.6(i,ii) of [GJK22] go through with very minor
adjustments to conclude with

Proposition 3.1. The components R?Llo and R%OO of the ring R do not depend on the choice
of the version (left, right, or two-sided) of the ideals. Moreover, instead of “two-sided ideal”
we can equivalently write “subring” in the above definitions.

Let R be as in the first sentence of this section. If T is a type-definable, normal subgroup
[two-sided ideal] in R of bounded index, then R/S is equipped with the logic topology: a
subset F' € R/S is closed if the sets 7 '[F] n X™ [resp. 7 '[F] n X,,] are type-definable
for every m € w, where 7: R — R/I is the quotient map. This makes the quotient R/I a
locally compact topological group [resp. ring]. For groups it appeared first time in Section 7
of [HPPO7], and then stood behind the model-theoretic approach to approximate subgroups.
For rings one additionally has to check that multiplication is continuous, which is an easy
exercise. Let us only remark that by compactness (or rather saturation of ¢), I € X™ [resp.
I € X,,] for some m € w. A compact neighborhood of e [resp. of 0] is for example the set
X"/I [resp. X,/I] for any n > m, with an open neighborhood of e [resp. 0] contained in it
being {a/I : a + I S X"} [resp. {a/I : a + I S X,}]. The compact subsets of R/I are those
with type-definable preimage under 7 (and so contained in some X" [resp. X,]).

As was already explained in the introduction, one can extend the notion of a definable map
from a definable set to a compact space to homomorphisms from groups [rings] generated
by definable approximate subgroups [subrings] to locally compact groups. Namely, for a
definable approximate subgroup [subring] X and a locally compact group [resp. ring] H, a
homomorphism f: R — H such that f[X] is relatively compact in H will be called definable
if for any open U € H and compact C' € H such that C' € U, there exists a definable (in M)
subset Y of R such that f1[C] € Y < f1[U].

Lemma 3.2. Let X be a definable approximate subgroup [subring] and H a locally compact
group [ring]. Let f: R — H be a homomorphism such that f|X] is relatively compact in H.

(1) If f is definable, then it extends uniquely to a map f: R — H such that f~1{C] n X™
[resp. f~HC] n X,n] is M-type-definable for every m and for every closed C < H.
This unique f is a homomorphism.

(2) Assume additionally that there is a neighborhood V' of e [resp. of 0] in H such that
fUVI € X™ [resp. f~YV] S X,/ for some m. Then, if f extends to some f: R —
H as in (1), then f is definable.
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Proof. Let us focus on the case of an approximate subgroup X; the case of an approximate
subring is completely analogous (working with X, in place of X™).

(1) Let Hp, := cl(f[X™]). Since Hy = cl(f[X]) is compact by assumption and H,, =
c(f[X]™), we get that H,, = H{" is also compact. Therefore, by the assumption of (1),
flxm: X™ — H,, is a definable map from a definable set to a compact space. So it extends
uniquely to an M-definable function f,: X™ — H,,, as explained in the last paragraph
of Subsection 2.2. By the explicit formulas for the f,,’s, we see that f; € f» € .... So
f = Un fm is the desired extension of f. Its uniqueness follows from the uniqueness of the
fm’s after noticing that for any other f': R — H as in (1) we have f'[X™] € H,, (which holds
as f'U[H,] n X™ is an M-type-definable set containing X™, and so f'~'[H,,] n X™ = X™).

To see that f is a homomorphism, one can apply the argument from [GPP14, Proposition
3.4]. Namely, since f,, € f and any a € R = (X) belongs to some X™, we have f(a) =
ﬂ¢(x)€tp(a/M) cl(f[o(M) n X™]). Consider any a,b € R. Choose m such that a,b,ab € X™.
Let p = tp(a/M), g = tp(b/M), and r = tp(ab/M). Then

{flab)} = [ AdfleM)n X" [)  cl(fled) (M)A X™]) =

p(x)er w(z)ep,h(z)eq

(N dfle(M) n X7 flu(M) n X™]) =

o(z)ep,y(z)eq

N dUfleM) A X™) - cl(f[e(M) A X™]) =

o(x)ep,v(x)eq

[ dUfleM) n X™])- () d(f[p(M) A X™]) = {f(a)f(b)},
p(x)ep P(z)eq
where the third and fourth equality uses compactness of H,,.

(2) Consider a compact C € H and an open U € H such that C' € U. Choose a neigh-
borhood W of e such that W 1W < V (where V is from the assumption in (2)). Since C is
compact, C € | J;_,, ;W for some n < w and g; € H. Hence, f1[C] € |,_, f [g:W]. Pick
a; € f~[g;W] (if there is any) for i < n. Then f~[g;W] € a;f " [(WW] € a;f}[V] <
a;X™. So f~1[C] € X* for some k. On the other hand, by the property of f, we have that
fHCI~ X* and f~[H\U] ~ XF are disjoint M-type-definable sets. So they can be separated
by Y for some (M-)definable subset Y of X*. Hence, f~'[C] € Y < f~U]. O

By a definable locally compact model of R we mean a definable homomorphism f: R — S
for some locally compact group [resp. ring] S such that f[X] is relatively compact in S and
there is a neighborhood U of e [resp. 0] with f~1[U] € X™ [resp. f [U] € X,,] for some
m < w. It is well-known (at least for approximate groups) that for A € M, the quotient map
R— R/ ]:2940 is a definable locally compact model of R. We give a proof below for the readers
convenience, and we additionally prove universality of this model for A := M.

Proposition 3.3. Let A € M and assume that R%O exists. The quotient map h: R — R/R%O
s a definable locally compact model, which for A := M is universal in the sense that for any
other definable locally compact model f: R — S there is a unique continuous homomorphism

g: R/RY) — S such that f = go h.

Proof. We skip the proof that R/RY is a locally compact group [ring] (see the discussion
after Proposition 3.1). Since h[X] € X/RY and the last set is compact, we get that h[X] is
relatively compact. Asremarked above, if we choose m with R%O C X™ [resp. R%O C X,u], then
U:={a/RY :a+ RY < X™} [resp. U := {a/RY : a + RY < X,,,}] is an open neighborhood
of e [resp. 0]; and clearly h='[U] < X™ [resp. h~![U] S X™]. To show definability of h,
consider any compact C' € R/RY and open V < R/RY such that C € V. Let h: R — R/RY
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be the quotient map. Then A~'[C] is a type-definable subset of some X™ which is disjoint
from the type-definable set A~ [(R/RY)\V] ~ X". It remains to show that these disjoint sets
are M-invariant, as then they are M-type-definable, so, being disjoint, they can be separated
by Y for some definable subset Y of X™; then clearly h~'[C] € Y < h™![V], as required. The
fact that these type-definable sets are M-invariant follows from the fact that the relation of
having the same type over M is the finest M-invariant, bounded equivalence relation on R
and so it refines the relation of lying in the same coset of RY (as A € M).

Observe that R/RY is dense in R/RY. Indeed, take a non-empty open V € R/RY. Then
the preimage i_z_l[V] is a union of definable sets; and, as above we can find these sets to
be definable over M. Since this union is non-empty, at least one of these M-definable sets
is non-empty, and so it intersects R, which shows that V n (R/R%) is non-empty. By the
density of R/ RY, uniqueness in the universal property becomes clear.

For the existence, consider any definable locally compact model f: R — S. By Lemma
3.2, f extends to a homomorphism f: R — S such that f~1[C] n X* [resp. f~[C] n Xp] is
M-type-definable for every k and for every closed C' € S. Since by assumption ker(f) € X"
[resp. X, for some n, we get that ker(f) is an M-type-definable subgroup [two-sided ideal] of
R of bounded index (it is bounded by the cardinality of the closure of f[R] in S, so by 22“2‘)
Therefore, R < ker(f), and so f factors through the quotient map h: R — R/R i.e. there
is a homomorphism g: R/R00 — S such that f = goh. Since h € h and = f, we get [ =goh.

It remains to check that g is continuous. Take any closed C' < S. Then h g7 [C]] = FHC]
has type-definable intersections with all the X"’s [resp. X,,’s]. Therefore, g7'[C] is closed
by the definition of the logic topology. O

Corollary 3.4. The existence of a definable locally compact model of X is equivalent to the
existence of R(])\?.

Proof. 1f R%} exists, then the quotient map R — R/R[J)\f} is a definable locally compact model.
Conversely, if f: R — S is a definable locally compact model, then, by the last paragraph of
the proof of Proposition 3.3, ker(f) is an M-type-definable subgroup [two-sided ideal] of R of
bounded index. Hence, R} exists. O

4. GENERATING IN 17 STEPS AND A LOCALLY COMPACT MODEL

Here, we prove the main results of this paper, answering the main question from [KR22]
and providing locally compact models for arbitrary definable approximate subrings (so, in
particular, abstract approximate subrings by taking the full structure). The goal is to prove:

Theorem 4.1. Let X be a 0-definable (in M) approvimate subring, R := (X), R =(X), and
let AC € be a sm_all set of parameters. Then (R, + )00 + R (R,+)Y = RY°. Moreover, if
R < dcl(A), then RY exists and equals RY° = (R, +)% + X (R, +)%.

First of all, we have

Fact 4.2. If Z is a definably amenable 0-definable (in M) approzimate subgroup, then {Z)%
exists (where (Z) is the group genemted by Z). Moreover, (Z)% € Z8, and if A = M, then
(ZYQ < Z*. In particular, (R, +)% ewists and is contained in 8X, and if A = M, then it is
contained in 4X.

Proof. The part concerning Z follows from [MW15, Theorem 12 or Corollary 13] and [Mas18,
Theorem 5.2]. If we work with A = M, then instead of [Masl8, Theorem 5.2], an easy
compactness argument from the proof of Claim 1 of [KP19] in Case 2 (on page 1282) can
be used to make sure that the parameters are taken from M, and it gives us <Z>(])\9I c Z4.
For the second part (concerning R), note that since the additive group generated by X,



10 KRZYSZTOF KRUPINSKI

say G, is abelian and so amenable, by [Hru20, Lemma 6.1], we get that X is an amenable
(and so definably amenable) approximate subgroup, hence G%O exists and satisfies the desired
inclusions by the first part. Then G% = (R, +)%, because G is of bounded (even countable)
index in (R, +) by Fact 2.1. O

We will need the notion of thick subset of R, as given in [HKP22, Definition 4.1].

Definition 4.3. A definable, additively symmetric subset D of R is thick if for every sequence
(ri)i<x of unbounded length which consists of elements of R there are i < j < A withr;j—r; € D.

Using compactness, one gets

Remark 4.4. A definable, symmetric subset D of R is thick if and only if for every m € w
there exists a positive integer M such that for every ro,...,ra 1 € Xy, there are i < j < M
with r; —r; € D. For any M with this property, we will say that D is M-thick in X,,.

Using this remark together with finite Ramsey theorem (exactly as in the proof of [Gis10,
Lemma 1.2]), we get that the class of thick subsets of R is closed under finite intersections.
Remark 4.4 also implies that in Definition 4.3 the adjective “unbounded” can be replaced by
“uncountable”.

The following basic observation will be crucial in the proof of the main lemma below. From
now on, in this section, H := (R, +)%.

Remark 4.5. Every definable, additively symmetric subset of R which contains H is thick.
Thus, H is the intersection of a downward directed family of A-definable thick subsets of R.

Proof. Since [R: H] < 21£1+141 e have that for any X > 2/€1H141 for every sequence (7;);<x
of elements of R there are i < j < \ with rj —r; € H. Hence, the same is true for any superset
of H, and so all definable, additively symmetric supersets of H are thick. The second part
follows from that, since H is clearly the intersection of the family of all A-definable, additively
symmetric subsets of R containing H and this family is downward directed. O

We will also need the following definition and remark from [KR22].

Definition 4.6. We will say that two subgroups Hi and Hs of an abelian group G are coset-
independent if any coset of Hp intersects any coset of Hy. They are coset-dependent if they
are not coset-independent.

Remark 4.7. Let G be an abelian group and H;, Ho < G. The following conditions are
equivalent.
(i) Hy and Hy are coset-independent.
(ii) Hi intersects any coset of Hs.
(iii) Hy+ Hy =G.
Thus, H; and Hy are coset-dependent if and only if H; + Hs is a proper subgroup of G.

The next lemma is the technical core of the proof of Theorem 4.1. This lemma is a variant
of Lemma 4.4 from [KR22], and its proof is a non-trivial elaboration on the proof of that
lemma.

Lemma 4.8. Let G be the intersection of all sets of the form RK/H, where K ranges over
all bounded index subgroups of (R, +) which are type-definable over some sets of parameters

of cardinality at most 22 Then G is a subgroup of (R/H,+).

Proof. 1t is clear that 0/H € G and G is closed under additive inverses. Thus, we need to
show that it is closed under +. So consider any a,b € G, and we will show that a + b€ G.

The family of subgroups of (R, +) over which K ranges in the statement of the lemma will
be denoted by K.
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By Remark 4.5, H = (),c; D; for some downward directed family {D;};er of A-definable
thick subsets of R. We can assume that |I| < |£]|+|A|. Using Remark 4.4 and the terminology
introduced there, for every i € I and m € w we can choose a positive integer M; ,, such that
D; is M; p,-thick in X

For every i € I, s € R, and K € K, define:

n;s i = max{|Y]:Y < sK and for every distinct z,y € Y we have x — y ¢ D;}.

Note that since sK € X}, for some k € w, we have N,k < M; . Since for any fixed m € w
and K € K there is k such that X,, K € X, for every fixed ¢ € I and m € w there exists a
smallest n;,, € w for which there exists K; ,,, € K such that

(VS € Xm)(b € SKi,m = Nj5,Kim < nivm).

(In particular, if there is no s € X,,, for which b € 5K m, then n;,, = 0.) Put

EKro={ ) Kim.

1€l mew

Since |I| < |L]| + |Al, we get K, € K. By the above choices, we also have

(*) (VieI)(Vmew)(Vse Xm)(b €sKrw=nisK;, < Nim)-

For r € R let g,: R — R/H be given by g,(x) := ra/H. It is a group homomorphism. Note
that [R : ker(g,)] < |R/H| < 21F1+141
Case 1. For every K € K with K < K, there are r,s € R with a € rK/H and b € sK/H
such that ker(g,) n K and ker(gs) n K are coset-independent subgroups of K.

Then, since g; ' (a) " K and g;1(b)n K are cosets of ker(g,)n K and ker(gs) n K, respectively,
they have a non-empty intersection, i.e. there is k € K with rk/H = a and sk/H = b. Hence,
a+b=(r+s)k/He RK/H. Since this holds for every K € K with K < K, (so also for
every K € K), we conclude that a + b € G.

Case 2. There exists K € K with K < Ky, such that for all r,s € R with a € 7K /H and
be sK/H, ker(g,) n K and ker(gs) n K are coset-dependent subgroups of K.

By the definition of G, pick 79 € R with a € ro/K/H. By Remark 4.7, for any s € R with

be sK/H (by the definition of G, at least one such s exists),

(xx)  ker(gr,) N K < (ker(gy,) N K) + (ker(gs) n K) < K.
Put L, := (ker(g,,) n K)+ (ker(gs) n K). Since [K : ker(gr,) n K| < |R/H| < 2IF1+141 there
are at most 227" possibilities for Ls; when s varies as above. Let K },w be the intersection
of all these Ly’s. Since each Ly is type-definable over the parameters over which K is defined

together with 7, s, we see that Ly € K. Hence, K} € K.

Since there are at most 227" possibilities for L, by (**), there exists a set £ € K with
|E| < 22114 quch that

(¢x%) (Vse R)(besK/H = (ke E)(ke K\Ly)).
Note that the condition k € K\Lg implies that sk ¢ sLs + H.

Claim. For every m € w there exists iy, € I such that for every s € X,, with b e sK/H there
is k€ E such that sk ¢ sLs+ D, .

Proof. Suppose this fails, which is witnessed by some m € w. Note that the sets L; are type-
definable uniformly in s, that is there is a type 7(x, y) (with some fixed parameters) such that
Ls = w(€,s) for every s in question. Thus, since E is small and {D;};es is downward directed,
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by compactness (or rather saturation of €), there exists s € X,, with b € sK/H such that
(Vk € E)(sk € sLs + H), a contradiction with (s = ). o(claim)

Now, by the definition of G, we can find sy € R for which b € soK}M/H. Choose m < w
such that sg € X,,. By the claim, we get

(VS S Xm)(b S SK/H = Ni,s,Ls < ni”“&K).
Since K},w < Ly < K < Ky, we conclude that

(Vs e )_(m)(b € sK},w/H =N, s K, < ”im,s,KI,w)-

By (*), this implies that

(Vse X)) (be sKr,/H = i K} < Mipy )

which contradicts the minimality of n;,, , (as there is at least one s € X,,, with b€ sK },w /H,
namely sg). O

In order to prove Theorem 4.1, we need one more non-trivial ingredient stated below. For a
proof in the context of definable groups see the proof of Fact 2.2 of [KR22]. It works the same
for definable approximate subgroups, as the facts on which it relies (i.e. [MW15, Theorem 12]
and [Mas18, Theorem 5.2]) are stated for definable approximate subgroups. Also, instead of
Lemmas 2.2(2) and 3.3 of [Gisl1], one should use their versions for approximate subgroups
stated in Propositions 4.3 and 4.5 of [HKP22].

Fact 4.9. If Z is a definably amenable 0-definable approzimate subgroup, then (Z)%Q = (Z)%.
In particular, (R, +)% = (R, +)%°.

Now, we are ready to prove Theorem 4.1.

Proof of Theorem J.1. Let K be the family of all bounded index subgroups of (R, 4) which
are type-definable over some sets of parameters of cardinality at most 22 et ¢ o=
Nikex RK/H, as in Lemma 4.8. By Lemma 4.8, G is a subgroup of R/H which is clearly
A-invariant.

Since |G| < |R/H| < 2/#+I G is an intersection of at most 22 gets RK/H, i.e.
G = ke, RK /H for some Ky € K of cardinality bounded by 22 Lot Ko = Hn () Ko.
Then Koy € K and G = RKy/H.

Let Ho := (\,ep9r [G], where g.: H — R/H is given by g,(z) := rx/H. Since G is
a subgroup of R/H and G and H are both A-invariant, we get that Hy is an A-invariant
subgroup of H. It is clear that Ky < Hy, so Hy is of bounded index in (R, +). Therefore,
(R, H)%° < Hy < H = (R, +)%. Since by Fact 4.9 (R, +)% = (R, +)%°, we conclude that
Hy=H.

On the other hand, RHy/H = G ((S) follows by the definition of Hy, while (2) follows
from the fact that Ky < Hy and RKo/H = G).

Putting the last two paragraphs together, we get G = RH/H. Hence, 7 '[G] = H + RH
is an A-invariant, bounded index subgroup of R, where 7: R — R/H is the quotient map. It
follows that H + RH is closed under left multiplication by the elements of R, and so it is a
left ideal. Therefore, by Proposition 3.1 and Fact 4.9, we get

R c H+RH =R, +)%° + R(R, +)%° < RY° + RRY° = RY",

and hence H + RH = R%OO as required.
For the “moreover” part, it is enough to prove that
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(R, )+ RR, )Y = (R, )% + X(R, +).
Indeed, since the right hand side is A-type-definable and the left hand side equals R0 by
the first part of the theorem, we conclude that both sides are equal to R%, which will complete
the proof.

The inclusion (2) is obvious. So we prove (S). By Fact 2.1, we can choose a countable
subset Y of R so that Y + X = R. It is enough to show that

(Vy e V)(y(R, )%’ € (R, +)2).

So pick y € Y. Let l,: R — R be given by [,(t) := yt. This is a {y}-invariant group
homomorphism. Choose m € w so that (R, +)% € X,,. Since lylx,, is {y}-definable, and, by
the assumption that R S dcl(A) we have y € dcl(A), we get I,[(R, +)%] = (I,[R], +)%. On
the other hand, (I,[R], +)% < (R, +)%, for if not, then ([,[R], +)% N (R, +)% would be a
proper A-type-definable subgroup of (I,[R], +)% of bounded index. Therefore, y(R, +)% =
(R, H)P] = (4[R], 9P < (R, +)%P. O

The next corollary answers positively Question 1.3 of [KR22].

Corollary 4.10. If R is definable, then (R, +)Q + R- (R, +)% = RV = RY for an arbitrary
small A € €.

Proof. Tt follows from Theorem 4.1, because (R, +)% + R - (R, +)% is A-type-definable. O

The next corollary yields the existence and a description of the universal definable locally
compact model for an arbitrary definable approximate subgring.

Corollary 4.11. Let X be a 0-definable (in M ) approzimate subring, R := (X), and R = (X).
Then X has a definable locally compact model. More precisely, the quotient map h: R —
R/R?\f} is the universal definable locally compact model of X, and U := {a/RS)\?[ ta+ R%} c
4X + X -4X} is an open neighborhood of 0/RS} such that h~[U] € 4X + X -4X.

Proof. By the “moreover” part of Theorem 4.1 and Proposition 3.3, we get that }_29\9[ exists
and the quotient map h: R — R/ R?\f} is the universal definable locally compact model of X.

By Fact 4.2, we know that (R, +)% < 4X. So, by the “moreover” part of Theorem 4.1,
we get RY) = (R, +)% + X(R,+)%® < 4X + X -4X. Thus, 0/R} € U. The fact that
U is open follows easily from the definition of the logic topology on R/R%}. The fact that
h~[U] € 4X + X -4X is obvious by the definition of U. O

5. THE O-COMPONENTS

In the case of a O-definable (in the monster model €) ring R, we have Fact 2.2 for RY,
and we know by Corollary 2.10 of [KR22] that RY’ = R) whenever R is unital or of positive
characteristic. In particular, in those two cases, R/RY = R/RY is a profinite ring. In this
subsection, we explain that all of this drastically fails for approximate subrings.

A natural counterpart of R% for approximate subrings is as follows. From now on, let X
be a 0-definable (in M) approximate subring, R := (X), R = (X), and let A € € be a small
set of parameters.

Definition 5.1. R?M deal 18 the intersection of all A-definable two-sided ideals of R of countable

(equivalently, bounded) index. Rgmm ; is the intersection of all A-definable subrings of R of
countable index.
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The existence of R%ideal [resp. R%J,mg] is clearly equivalent to the existence of some A-
definable two-sided ideal [resp. subring] of countable index. We will see in the examples
below that it may happen that R%’ng does not exist as well as that it exists but R?q,ideal does

not. Even (R, —i—)% need not exist. Moreover, even for unital R, R/R% need not be totally
disconnected. If R is of positive characteristic, then R/RY is totally disconnected but need
not have a basis of neighborhoods of 0 consisting of open ideals. Let us go to some details.

Note that “RY .., exists” implies “R% ring €Xists” implies “(R, +)9 exists”.

Example 5.2. Let M := (R, +,-,0,1) and X := [—1, 1] which is clearly a 0-definable ap-
proximate subring (and here R = R). Then (R, +)}, does not exist. Also, R} = (R, +)%% =
Mpew In =t 11, where I, := [-1 1] and I, is the interpretation of I,, in € (i.e. p is the sub-
group of the infinitesimals of R), and R/R%?[ is isomorphic to R as a topological ring, so it is

not totally disconnected.

Proof. By compactness, the fact that (R, +)9, does not exist is equivalent to the fact that there
is no definable subgroup of (R, +) contained in some nX = [—n,n] and whose finitely many
additive translates cover nX. And the right hand side clearly holds, as the only subgroup of
(R, +) contained in some [—n,n] is {0}.

For the second part, the analysis of Example 3.2 of [GJK22] applies with minor adjustments
(note that still we have a well-defined standard part map st: R — R and we show that
ker(st) = RY9). O

If one prefers to work in the abstract context, one can equip the reals with the full structure
(where all subsets of all finite Cartesian powers are added as predicates on M). Then, by the
same reason as above, (R, +)9\4 does not exist. Regarding the second part, we get a continuous
epimorphism from R/R$} to R which implies that R/R}) is not totally disconnected.

Example 5.3. Let M :=F,((t)) be the field of formal Laurent series (over the finite field F),)
equipped with the full structure. Let X be the subset (in fact, additive subgroup) consisting
of the series of the form >;° ;a;t. This is clearly a 0-definable approximate subring, and
R :=(X) =TF,((t)). Then R?w’ideal does not exist, while R%/erg does exist. The ring R/R3Y
is totally disconnected but does not have a basis of neighborhoods of 0 consisting of open
ideals.

Proof. The existence of RS]\M deal 18 €quivalent to the existence of a definable ideal of R con-
tained in some X,, and whose finitely many additive translates cover X,,. But R is a field,
so it does not have such an ideal. Thus, R?\/[,ideal does not exist. On the other hand, since the
set Fp[[t]] of all formal power series is a definable subring of R whose p translates cover X,
we get that R(J)\/l,ring exists. Since the additive group of R/R%} is a torsion, locally compact
abelian group, we get that it is totally disconnected (e.g. see [Arm81, Theorem 3.5]). Let
st: R — R be the standard part map (where R is equipped with the usual valuation topology
which makes it a locally compact field). Then ker(st) = ., In, Where I, is the set of formal
power series of the form Y*° a;t!. We have that R/ker(st) is topologically isomorphic to R,
and the obvious map R/RY) — R/ker(st) is a continuous epimorphism. Thus, if R/R3} had
a basis of neighborhoods of 0 consisting of open ideals, then the images of these ideals would

form a basis at 0 in R consisting of open ideals, which is a non-sense as R is a non-discrete
field. O

_Theorem 1.1 of [KR22] tells us that if R is definable and H is an A-definable subgroup of
(R, +) of finite index, then H + RH contains an A-definable two-sided ideal of finite index.
From that it is deduced that (R, +)% + R(R, +)% = R% (see Theorem 1.5 and Proposition

3.4(2) of [KR22]). In our general context of R generated by X, both observations fail: Example
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5.3 is a counter-example to both statements (where in the first statement we replace “finite
index” by “countable index”, and in the second one we assume that (R, —i—)% exists) . However,
the following remains unclear.

Question 5.4. Suppose (R, +)Y ewists. Is it true that (R, +)% + R(R, +)% is a subgroup of
(R, +)?

Recall that Corollary 8.11 of [KR22] yields an example of a definable, commutative, unital
ring R and a 0-type-definable subgroup H of (R, +) which is an intersection of a countable
descending sequence of definable subgroups of finite index (so (R, —i—)% < H), but RH does

not additively generate a subgroup in finitely many steps; in particular, H + RH is not a
subgroup.

Proposition 5.5. Assume that R is of positive characteristic. Then (R, +)0A exists and coin-
cides with (R, +)%. Thus, if also R < dcl(A), then (R, +)% + R(R, +)% = RY (is a subgroup).

Proof. R/(R,+)% is a torsion, locally compact abelian group, and as such it has a basis { H; }ier
of neighborhoods of 0 consisting of open (so clopen) subgroups (see [Arm81, Theorem 3.5]).
Take m such that (R, +)% € X,,, (e.g. m = 3 works, but it does not matter here). Then U :=
{a/(R,+)% : a+(R,+)% < X,,} is an open neighborhood of 0 in R/(R, +)%, and without loss
of generality we can assume that each H; is contained in U. Let 7: R — R/(R, +)% be the
quotient map. Then both 7 1[H;] € X,, and its complement in X,, are type-definable and so
definable sets. Hence, 7~'[H;] S X, are definable subgroup of (R, +) of bounded index (for
i€ I). And clearly (R,+)% is the intersection of all of them, so (R, +)% = (R, +)%. Thus,
the second part of the proposition follows by Theorem 4.1. O
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