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Abstract. For a group G de�nable in a �rst order structure M we develop
basic topological dynamics in the category of de�nable G-�ows. In particular,
we give a description of the universal de�nable G-ambit and of the semigroup
operation on it. We �nd a natural epimorphism from the Ellis group of this �ow
to the de�nable Bohr compacti�cation of G, that is to the quotient G∗/G∗00

M

(where G∗ is the interpretation of G in a monster model). More generally, we
obtain these results locally, i.e. in the category of ∆-de�nable G-�ows for any
�xed set ∆ of formulas of an appropriate form. In particular, we de�ne local
connected components G∗00

∆,M and G∗000
∆,M , and show that G∗/G∗00

∆,M is the ∆-
de�nable Bohr compacti�cation of G. We also note that some deeper arguments
from [14] can be adapted to our context, showing for example that our epimor-
phism from the Ellis group to the ∆-de�nable Bohr compacti�cation factors
naturally yielding a continuous epimorphism from the ∆-de�nable generalized
Bohr compacti�cation to the ∆-de�nable Bohr compacti�cation of G. Finally,
we propose to view certain topological-dynamic and model-theoretic invariants
as Polish structures which leads to some observations and questions.

0. Introduction

Topological dynamics was introduced to model theory by Newelski in [20, 21]
and then further developed by various authors, e.g. in [8], [10], [29], [2], [14]
and [15]. There are several natural categories to develop topological dynamics in
model theory. The most natural are the categories of de�nable and externally
de�nable �objects�. So far, however, mostly the externally de�nable category has
been studied (the de�nable one was investigated under the extra assumption of
de�nability of types, which makes both categories the same). In this paper, we
develop basic topological dynamics in the category of de�nable �ows, without the
de�nability of types assumption.
Recall that a G-�ow is a pair (G,X), where G is a group acting on a compact,

Hausdor� space by homeomorphisms. We always consider discrete �ows, i.e. with
no topology on G (or, if one prefers, with the discrete topology on G). A G-ambit
is a G-�ow (G,X, x0) with a distinguished point x0 whose G-orbit is dense. With
the obvious notion of a homomorphism of G-ambits, a universal G-ambit always
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exists and is unique; this universal ambit is exactly (G, βG, e) (see [9, Chapter 1,
Proposition 2.6]), where βG is the Stone-Čech compacti�cation of G.
Now, we recall some �ows which have been investigated in model theory.
Let G be a group ∅-de�nable in a �rst order structure M . By SG(M) we denote

the space of complete types over M containing the formula de�ning G; equiva-
lently, this is the space of ultra�lters in the Boolean algebra of all de�nable (with
parameters fromM) subsets of G, equipped with the Stone topology. By SG,ext(M)
we denote the space of all externally de�nable complete types over M containing
G, that is the space of ultra�lters in the Boolean algebra of all externally de�n-
able subsets of G (i.e. subsets which are intersections with G of sets de�nable in
arbitrary elementary extensions of M).
Following [8] and [14], we will use the notion of [externally] de�nable G-�ows.

Namely, let C be a compact, Hausdor� space. A map f : G → C is said to be
[externally] de�nable if for all disjoint, closed subsets C1 and C2 of C the preimages
f−1[C1] and f−1[C2] can be separated by an [externally] de�nable subset of G. An
[externally] de�nable G-�ow is a G-�ow (G,X) such that for every x ∈ X the
map fx : G → X de�ned by fx(g) = gx is [externally] de�nable. An [externally]
de�nable G-ambit is an [externally] de�nable G-�ow (G,X, x0) with a distinguished
point x0 such that the orbit Gx0 is dense in X.
Now, G acts by translations as groups of homeomorphisms of the compact

spaces SG(M), SG,ext(M) and βG, turning them into G-�ows. As mentioned be-
fore, (G, βG, e) is the universal G-ambit. Similarly, (G,SG,ext(M), tpext(e/M))
is the universal externally de�nable G-ambit. In particular, by the universality,
there is a left-continuous semigroup operation on SG,ext(M) turning it into a semi-
group isomorphic to the Ellis semigroup E(SG,ext(M)) (for the de�nitions of Ellis
[semi]groups see Section 1). So one can consider both the minimal ideals and
the Ellis group inside SG,ext(M) instead of in E(SG,ext(M)). However, the ambit
(G,SG(M), tp(e/M)) is not necessarily de�nable (it is so if all types in SG(M)
are de�nable in which case SG(M) = SG,ext(M)), and we do not have a natural
semigroup operation on SG(M). This makes SG,ext(M) and the category of exter-
nally de�nable G-�ows easier to work with, and that is why topological dynamics
has been developed in this context. On the other hand, SG(M) and de�nable
�ows are simpler and more natural objects from the point of view of model theory.
This motivates our interest in the category of de�nable G-�ows. Another, more
concrete motivation stems from the fact that even if the language and the model
M are both countable, the universal externally de�nable G-ambit SG,ext(M) may
be �big� (e.g. not metrizable) which causes some di�culties in the application of
topological dynamics to Borel cardinalities of bounded invariant equivalence re-
lations [15]. In contrast, as we explain in this paper, under such a countability
assumption, the universal de�nable G-ambit is always metrizable, which may lead
to simpli�cations of some proofs concerning Borel cardinalities or even to new re-
sults. On the other hand, our research leads to interesting questions and relations
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with Polish structures introduced in [12] and further developed by several authors,
e.g. in [16].
In this paper, we will consider even a more general category than that of de�n-

able G-�ows, namely the category of ∆-de�nable G-�ows, where ∆ is an arbitrary
set of formulas δ(x; y, z, t̄) of the form ϕ(y ·x·z, t̄) which contains a formula de�ning
G. The de�nitions of ∆-formulas, the space SG,∆(M), and ∆-de�nable G-�ows are
given in Section 1.
In Section 2, we present the universal ∆-de�nable G-ambit as the quotient of

SG,∆(M) by some closed equivalence relation E∆, we describe the semigroup op-
eration on SG,∆(M)/E∆, and, using it, we give a description of the relation E∆.
In Section 3, we de�ne local versions of the connected components G∗00

M and
G∗000

M , namely G∗00
∆,M and G∗000

∆,M , and we show that G∗/G∗00
∆,M is the ∆-de�nable

Bohr compacti�cation of G. The proof follows the lines of the argument from [8]
showing that G∗/G∗00

M is the de�nable Bohr compacti�cation, but it also requires
some additional observations (in particular, the fact that G∗00

∆,M is a normal sub-
group is not completely obvious, and we need Lemma 3.4 in order to show that
the quotient map G → G∗/G∗00

∆,M is ∆-de�nable). Using results from Section 2,
we �nd an explicitly given epimorphism θ from the universal ∆-de�nable G-ambit
SG,∆(M)/E∆ to G∗/G∗00

∆,M , whose restriction to the Ellis group is also an epimor-
phism. We formulate interesting questions concerning an analogous statement for
G∗/G∗000

∆,M .
In Section 4, we explain that some deeper arguments from [14] can be adapted

to the ∆-de�nable context, which results in Theorems 4.4, 4.7 and 4.8. We also
use [2, Theorem 5.6] to get a variant of this theorem in our de�nable context (see
Corollary 4.10).
In Section 5, we explain how to treat various invariants (e.g. the Ellis group

or the ∆-de�nable generalized Bohr compacti�cation of G) as Polish structures,
which suggests that in some situations one could expect to get structural and
topological theorems about these invariants via application of theorems on small
Polish structures. We make a few observations in this direction and formulate
some questions.

1. Preliminaries

Detailed preliminaries concerning topological dynamics in model theory were
given in several papers, so here we only recall a few things. For more details,
see e.g. [14, Section 1]. A good reference for classical topological dynamics is for
example [1] or [9].

De�nition 1.1. The Ellis semigroup of the �ow (G,X), denoted by E(X), is
the closure of the collection of functions {πg : g ∈ G} (where πg : X → X is
given by πg(x) = gx) in the space XX equipped with the product topology, with
composition as semigroup operation.
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This semigroup operation is continuous in the left coordinate, E(X) is also a
G-�ow, and minimal sub�ows of E(X) are exactly minimal left ideals with respect
to the semigroup structure on E(X), in particular they are cosed and so compact.
The following was proved by Ellis (e.g. see [4, Propositions 3.5, 3.6] and [9, Chapter
1, Propositions 2.3, 2.5]).

Fact 1.2. LetM be a minimal left ideal in E(X), and let J(M) be the set of all
idempotents inM. Then:
i) For any p ∈M, E(X)p =Mp =M.
ii)M is the disjoint union of sets uM with u ranging over J(M).
iii) For each u ∈ J(M), uM is a group with the neutral element u, where the
group operation is the restriction of the semigroup operation on E(X).
iv) All the groups uM (for u ∈ J(M)) are isomorphic, even when we vary the
minimal idealM.

For a given group G we say that a G-ambit (G,X, x0) is universal if for every
G-ambit (G, Y, y0) there exists a (unique) homomorphism h : X → Y of G-�ows
mapping x0 to y0. The following fact is fundamental [9, Chapter 1, Proposition
2.6].

Fact 1.3. (G, βG, e) is the unique up to isomorphism universal G-ambit.

Using this fact, one gets an �action� of βG on any G-�ow (G,X), namely for
x ∈ X there is a unique �ow homomorphism hx : (G, βG, e) → (G,X, x), and for
p ∈ βG we de�ne px = hx(p). More explicitly, this action is given by px = lim gix
for any net (gi) of elements of G converging to p in βG. In particular, βG acts
on itself, and denoting this action by ∗, one has (p ∗ q)x = p(qx) for all p, q ∈ βG
and x ∈ X. In particular, ∗ is a semigroup operation on βG which is continuous
on the left and whose restriction to G × G is the original group operation on
G. One easily checks that (βG, ∗) ∼= E(βG) (by sending p ∈ βG to the function
(x 7→ px) ∈ E(βG)). In particular, Fact 1.2 applies to (βG, ∗) in place of E(βG).

In this paper, M denotes a model of a �rst order theory in a language L, and
C � M is a monster model; G will be a group ∅-de�nable in M , and G∗ its
interpretation in C. Group multiplication, denoted by ·, will be often skipped for
simplicity, but sometimes we will write it explicitly.

As above, a universal [externally] de�nable G-ambit is de�ned as an [externally]
de�nable G-ambit which maps homomorphically (by a (unique) homomorphism
of G-ambits) to an arbitrary [externally] de�nable G-ambit. It is clear (by gen-
eral category theory reasons) that, in each of these two categories, if a universal
G-ambit exists, then it is unique up to isomorphism. As mentioned in the in-
troduction, (G,SG,ext(M), tpext(e/M)) is the unique up to isomorphism universal
externally de�nable G-ambit, so, in the same way as above, we get a semigroup op-
eration on SG,ext(M). The existence of the universal de�nable G-ambit is justi�ed
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in Remark 2.1. The main point of the current paper is to describe the universal
de�nable G-ambit as well as its local versions.
Let ∆ be a subset of the set of all formulas (without parameters) in the language
L in the variable x of the same sort as G and some parametric variables. By
a ∆-formula over M we mean a Boolean combination of instances of formulas
from ∆ with parameters from M . By SG,∆(M) we denote the compact space of
complete ∆-types overM concentrating on G, equivalently, the space of ultra�lters
of relatively ∆-de�nable overM subsets of G. In the case when ∆ is the collection
of all formulas in the variable x of the same sort as G and arbitrary parametric
variables, ∆-formulas over M are just all formulas over M in the variable x, and
SG,∆(M) = SG(M).
Sometimes we will be using ∆-types over sets of parameters other than M .

In such situations, all the de�nitions of �∆-objects� are analogous, except we
take the convention that by a ∆-formula over A we mean a formula over dcl(A)
which is equivalent to a Boolean combination of instances of formulas from ∆ with
parameters from dcl(A) (we do it in order to avoid writing �dcl� many times in the
paper). Another option is to de�ne ∆-formulas over A as those formulas over A
which are equivalent to Boolean combinations of instances of formulas from ∆ with
arbitrary parameters (but then some statements would be slightly less general).
We naturally extend the de�nition of a de�nable function from G to a compact

space C to a ∆-de�nable context.

De�nition 1.4. Let C be a compact space. A map f : G → C is ∆-de�nable if
for all disjoint, closed subsets C1 and C2 of C the preimages f−1[C1] and f−1[C2]
can be separated by a ∆-de�nable subset of G.

Now, we recall the de�nition of a de�nable map de�ned on the monster model
and we extend it to local versions.

De�nition 1.5. Let C be a compact space.
i) A function f : G∗ → C is M-de�nable if for every closed C1 ⊆ C the preimage
f−1[C1] is type-de�nable over M .
ii) A function f : G∗ → C is ∆-de�nable over M if for every closed C1 ⊆ C the
preimage f−1[C1] is ∆-type-de�nable over M (i.e. the intersection of sets de�ned
by ∆-formulas over M).

The �rst item of the next fact is [8, Lemma 3.2], and the second one (generalizing
the �rst one) can be proved analogously. As usual, C denotes a compact, Hausdor�
space.

Lemma 1.6. 1) De�nable context:
i) If f : G → C is de�nable, then it extends uniquely to an M-de�nable
function f ∗ : G∗ → C. Moreover, f ∗ is given by the formula {f ∗(a)} =⋂
ϕ∈tp(a/M) cl(f [ϕ(M)]).

ii) Conversely, if f ∗ : G∗ → C is an M-de�nable function, then f ∗|G : G → C is
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de�nable.
2) ∆-de�nable context:
i) If f : G→ C is ∆-de�nable, then it extends uniquely to a function f ∗ : G∗ → C
which is ∆-de�nable over M . Moreover, f ∗ is given by the formula {f ∗(a)} =⋂
ϕ∈tp∆(a/M) cl(f [ϕ(M)]).

ii) Conversely, if a function f ∗ : G∗ → C is a ∆-de�nable over M , then
f ∗|G : G→ C is ∆-de�nable.

Remark 1.7. If f : G → C is ∆-de�nable, then the unique function f ∗ : G∗ → C
which extends f and is ∆-de�nable over M is also given by {f ∗(a)} =⋂
ϕ∈tp(a/M) cl(f [ϕ(M)]).

Proof. This follows from the formula in point 2)(i) of Lemma 1.6 and the observa-
tions that

⋂
ϕ∈tp(a/M) cl(f [ϕ(M)]) is non-empty (which follows from the compact-

ness of C) and contained in
⋂
ϕ∈tp∆(a/M) cl(f [ϕ(M)]). �

The following remark follows easily from de�nitions.

Remark 1.8. A function f : G∗ → C is ∆-de�nable over M if and only if there is a
continuous function h : SG,∆(M)→ C such that f = h◦r, where r : G∗ → SG,∆(M)
is the obvious map a 7→ tp∆(a/M). In particular, a function f : G∗ → C is M -
de�nable if and only if there is a continuous function h : SG(M) → C such that
f = h ◦ r, where r : G∗ → SG(M) is the obvious map.

We extend the notion of the de�nable �ow in a natural way. Namely, a �ow
(G,X) will be called ∆-de�nable if for every x ∈ X the map fx : G→ X given by
fx(g) = gx is ∆-de�nable.
The �rst part of the following observation was made in [14, Remark 1.12], and

the generalization to the second part can be obtained analogously.

Remark 1.9. i) A product of de�nable G-�ows is a de�nable G-�ow.
ii) A product of ∆-de�nable G-�ows is a ∆-de�nable G-�ow.

Whenever we consider the quotient of G∗ by a bounded,M -invariant equivalence
relation E, we can equip it with the logic topology which is de�ned by saying that a
subset of the quotient is closed if its preimage in G∗ is type-de�nable (equivalently,
type-de�nable overM). If E is type-de�nable, then G∗/E is a compact, Hausdor�
space; if E is only invariant, then G∗/E is only quasi-compact. The de�nition
of the logic topology applies in particular to the quotient G∗/H, where H is an
arbitrary bounded index,M -invariant subgroup of G∗. If H is type-de�nable, then
G∗/H is a compact, Hausdor� group. For details on the logic topology see e.g.
[13] and [23, Section 2]. The following basic remark will be useful later.

Remark 1.10. Let E be an bounded,M -invariant equivalence relation on G∗. Then
G/E is dense in G∗/E
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Proof. Consider any non-empty, open subset U of G∗/E, and let π : G∗ → G∗/E
be the quotient map. Then π−1[U ] is a non-empty,

∨
-de�nable over M subset of

G∗, and as such it has a point in G. �

2. Universal ∆-definable G-ambit

From now on, we �x a set ∆ of formulas about which we assume that:

(1) It consists of some formulas δ(x; y, z, t̄) of the form ψ(y · x · z; t̄).
(2) The formula G(y · x · z) is in ∆, where G(x) is a formula over ∅ which

de�nes G.

This makes sure that any left or right translate of a ∆-formula by an element of
G is still a ∆-formula. Note that if all formulas as in (1) are included in ∆, then
being �a subset of G which is ∆-de�nable over M � is the same thing as being �a
subset of G which is de�nable over M �, so we are in the de�nable context.

Remark 2.1. There exists a unique (up to isomorphism) universal ∆-de�nable G-
ambit.

Proof. Uniqueness is clear. To show existence, consider a set (G,Xi, xi)i∈I of all
up to isomorphism ∆-de�nable G-ambits (such a set exists, as there is a common
bound on the cardinalities of all G-ambits). Now, let X ′ =

∏
iXi, x = (xi)i, and

let X be the closure of the orbit of x under the coordinatewise action of G. Then
(G,X ′) is ∆-de�nable by Remark 1.9, and so (G,X, x) is a ∆-de�nable G-ambit.
From the construction, we see that (G,X, x) maps on any ∆-de�nable G-ambit,
i.e. it is universal. �

By the assumption on the form of the formulas in ∆, we see that G acts on
SG,∆(M) by

g tp∆(a/M) = tp∆(ga/M)

so that (G,SG,∆(M), tp∆(e/M)) is a G-ambit.
Let (G,U , x) be the universal ∆-de�nable G-ambit. Then, fx : G→ U given by

fx(g) = gx is ∆-de�nable. Thus, by Fact 1.6, it extends to the function f ∗x : G∗ →
U which is ∆-de�nable over M . Hence, by Remark 1.8, there exists a continuous
function h : SG,∆(M) → U such that f ∗x = h ◦ r, where r : G∗ → SG,∆(M) is the
obvious map (namely a 7→ tp∆(a/M)). The function h is uniquely determined by
f ∗x , and we see that h(tp∆(e/M)) = x.

Remark 2.2. The above map h yields a homomorphism from the G-ambit
(G,SG,∆(M), tp∆(e/M)) to (G,U , x).

Proof. It remains to show that h(gp) = gh(p) for any g ∈ G and p ∈ SG,∆(M). By
the explicit formula for f ∗x , we have

{gh(p)} = g
⋂
ϕ∈p

cl(fx[ϕ(M)]) =
⋂
ϕ∈p

cl(fx[gϕ(M)]) =
⋂
ψ∈gp

cl(fx[ψ(M)]) = h(gp).

�
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If (G,SG,∆(M), tp∆(e/M)) was a ∆-de�nable G-ambit, we could proceed with
the development of the theory exactly as in the well-understood externally de-
�nable context. However, in general, this ambit is not necessarily ∆-de�nable
(see Example 3.13). Recall that if all types in SG(M) are de�nable, then
(G,SG(M), tp(e/M)) is de�nable and coincides with (G,SG,ext(M), tpext(e/M)),
and the categories of de�nable and externally de�nable G-�ows coincide. Our
goal is to start to develop a theory of de�nable G-�ows without the de�nability of
types assumption.
Let E∆ be the equivalence relation on SG,∆(M) given by

E∆(p, q) ⇐⇒ h(p) = h(q).

In the de�nable context (i.e. when ∆ consists of all formulas of the appropriate
form), we will write E instead of E∆.

Corollary 2.3. (G,SG,∆(M)/E∆, tp∆(e/M)/E∆) is the universal ∆-de�nable G-
ambit.

Proof. By Remark 2.2, E∆ is closed and invariant under the action of G. This
implies that (G,SG,∆(M)/E∆, tp∆(e/M)/E∆) naturally becomes a G-ambit.
From the very de�nition of E∆, we get that h factors through the quotient
map SG,∆(M) → SG,∆(M)/E∆ yielding an isomorphism from the G-ambit
(G,SG,∆(M)/E∆, tp∆(e/M)/E∆) to (G,U , x). This completes the proof as
(G,U , x) was chosen to be the universal ∆-de�nable G-ambit. �

Remark 2.4. i) E∆ is the unique equivalence relation F on SG,∆(M) for which
(G,SG,∆(M)/F, tp∆(e/M)/F ), with the action of G de�ned by g(p/F ) := (gp)/F ,
is the universal ∆-de�nable G-ambit.
ii) In the de�nable context (i.e. when ∆ consists of all formulas of the appropriate
form), if all types in SG(M) are de�nable, then E is trivial (i.e. it is the equality).

Proof. i) Suppose F1 and F2 are two such relations. It is enough to show
that F1 ⊆ F2. By the universality of (G,SG,∆(M)/F1, tp∆(e/M)/F1), there is
f : SG,∆(M)/F1 → SG,∆(M)/F2 which is a homomorphism of G-ambits. Let
f ′ : SG,∆(M) → SG,∆(M)/F2 be the composition of f with the quotient map
SG,∆(M) → SG,∆(M)/F1. We see that f ′ is a homomorphism from the G-ambit
(G,SG,∆(M), tp∆(e/M)) to (G,SG,∆(M)/F2, tp∆(e/M)/F2). But there is only
one such homomorphism, and it is given by p 7→ p/F2. Therefore, f(p/F1) = p/F2

for any p, hence F1 ⊆ F2.

ii) By assumption, (G,SG(M), tp(e/M)) is a de�nable G-ambit. Hence, Corollary
2.3 implies that (G,SG(M), tp(e/M)) is the universal de�nable G-ambit (literally,
the quotient SG(M)/E is universal de�nable, but this implies the universal
property of SG(M)). And we �nish using (i). �

De�ne an equivalence relation E ′∆ on G∗ by

E ′∆(a, b) ⇐⇒ E∆(tp∆(a/M), tp∆(b/M)).
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In the de�nable context, we will skip ∆ and write E ′. We see that E ′∆ is a type-
de�nable over M , bounded equivalence relation on G∗ which is coarser than the
relation of having the same complete ∆-type overM . We have a natural topological
identi�cation of SG,∆(M)/E∆ with G∗/E ′∆, which we will be using freely.
Our main goal is to give an explicit description of the relation E∆, equivalently

of E ′∆.
By Corollary 2.3, a standard argument (a sketch of which we give below for the

reader's convenience) shows that there is a left continuous semigroup operation ∗
on SG(M)/E∆ which is given by

(1) p/E∆ ∗ q/E∆ = lim
g→p/E∆

g(q/E∆),

equivalently,

a/E ′∆ ∗ b/E ′∆ = lim
g→a/E′∆

g(a/E ′∆).

(When we write �g tends to p/E∆�, we mean �tp∆(g/M)/E∆ tends to p/E∆ with
g ranging over G�, i.e. limg→p/E∆

g(q/E∆) = r/E∆ if and only if for every open
neighborhood U of r/E∆ there is an open neighborhood V of p/E∆ such that for
all g ∈ G such that tp∆(g/M)/E∆ ∈ V one has g(q/E∆) ∈ U . And analogously in
the equivalent de�nition.)

Sketch of the proof. To simply notation, denote (G,SG,∆(M)/E∆, tp∆(e/M)/E∆)
by (G,U , x0). By the universality of (G,U , x0), for every x ∈ U there is a unique
fx : U → U which is a G-�ow homomorphism mapping x0 to x. For p ∈ U put

p ∗ x = fx(p).

From the choice of fx, the following properties follow immediately.

(i) ∗ is continuous in the left coordinate.
(ii) ∗ extends the action of G, i.e. (gx0) ∗ x = gx for all g ∈ G and x ∈ U .
(iii) limg→p gq = p ∗ q for all p, q ∈ U (here g → p means that gx0 tends to p).

Finally, we leave as an exercise (using nets and limits) to check that ∗ is associative.
�

Next, we give an explicit formula for ∗, which is similar to the one in the exter-
nally de�nable case.

Proposition 2.5. For any p, q ∈ SG,∆(M), p/E∆ ∗ q/E∆ = tp∆(a · b/M)/E∆,
where b |= q and a realizes a ∆-coheir extension of p over M, b (i.e. tp∆(a/M, b)
is �nitely satis�able in M).

Proof. Note that a basis of open neighborhoods of tp∆(ab/M)/E∆ ∈ SG,∆(M)/E∆

consists of the sets

Uϕ := {r/E∆ : [r]E∆
⊆ [ϕ]}



10 KRZYSZTOF KRUPI�SKI

with ϕ ranging over all ∆-formulas over M such that tp∆(ab/M)/E∆ ∈ Uϕ, where
[r]E∆

= {q ∈ SG,∆(M) : E∆(r, q)} and [ϕ] = {q ∈ SG,∆(M) : ϕ ∈ q}. Indeed,
�rst of all, each set Uϕ is open in the quotient topology, because the preim-
age of the complement of Uϕ under the quotient map consists of all the types
r ∈ SG,∆(M) for which there exists a type r′ ∈ SG,∆(M) such that E∆(r, r′) and
¬ϕ(x) ∈ r′ (and so we see that this preimage is closed as a projection of a closed
set in a product of compact, Hausdor� spaces). Secondly, take any open neigh-
borhood U of tp∆(ab/M)/E∆. Then [tp∆(ab/M)]E∆

is contained in the preim-
age U ′ of U under the quotient map. Since [tp∆(ab/M)]E∆

is closed and U ′ is
open, by the compactness of SG,∆(M), we can �nd a ∆-formula (over M) ϕ(x)
such that [tp∆(ab/M)]E∆

⊆ [ϕ(x)] ⊆ U ′, and so Uϕ is an open neighborhood of
tp∆(ab/M)/E∆ contained in U .
Consider any ϕ as above. Then tp∆(ab/M) ` E ′∆(ab, x) ` ϕ(x). So there is

ψ(x) ∈ tp∆(ab/M) such that

(2) (∃y)(ψ(y) ∧ E ′∆(x, y)) ` ϕ(x).

Clearly |= ψ(ab).
Consider any δ(w) ∈ p. As |= δ(a)∧ ψ(ab), we get δ(w)∧ ψ(wb) ∈ tp∆(a/M, b).

(Note that in order to have that ψ(wb) is a ∆-formula over M, b, we use our
convention which allows Boolean combinations of instances of formulas from ∆
with parameters from dcl(M, b); namely, we have to use parameters which are
products of the form b · g ∈ dcl(M, b) where g ∈ G.) By the assumption that
tp∆(a/M, b) is �nitely satis�able in M , there exists gδ,ϕ ∈ G such that |= δ(gδ,ϕ)∧
ψ(gδ,ϕ · b). By (2), we conclude that E ′∆(gδ,ϕ · b, x) ` ϕ(x), and so

(3) gδ,ϕ(q/E∆) = tp∆(gδ,ϕ · b/M)/E∆ ∈ Uϕ.

The collection of all formulas ϕ as above forms a directed set (with ϕ1 ≤ ϕ2

i� ϕ2 ` ϕ1) and similarly the collection of all δ's from p forms a directed set; the
product of these two directed sets is also a directed set with the product preorder,
and the limits below are computed with respect to this product preorder.
By (3), we conclude that

(4) lim
δ,ϕ

gδ,ϕ(q/E∆) = tp∆(ab/M)/E∆.

On the other hand,

lim
δ,ϕ

tp∆(gδ,ϕ/M) = p,

so

lim
δ,ϕ

tp∆(gδ,ϕ/M)/E∆ = p/E∆,

which by virtue of (1) implies that
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(5) lim
δ,ϕ

gδ,ϕ(q/E∆) = p/E∆ ∗ q/E∆.

From (4) and (5), we get p/E∆ ∗ q/E∆ = tp∆(ab/M)/E∆. �

De�ne a relation F0∆ on G∗ as follows. F0∆(α, β) holds if there exist a, b, a1, b1 ∈
G∗ such that the following conditions hold:

(1) α = a · b and β = a1 · b1,
(2) tp∆(a/M) = tp∆(a1/M) and tp∆(b/M) = tp∆(b1/M),
(3) tp∆(a/M, b) and tp∆(a1/M, b1) are both �nitely satis�able in M .

The relation F0∆ is clearly re�exive and symmetric, but there is no obvious
reason why it should be transitive. Let F∆ be the transitive closure of F0∆. We
see that F0∆ and F∆ are M -invariant. Finally, let F̄∆ be the �nest type-de�nable
over M equivalence relation on G∗ containing the relation F∆. We easily see that
all the relations F0∆, F∆ and F̄∆ are coarser than the relation of having the same
complete ∆-type over M , so the last two are bounded equivalence relations.
As usual, in the de�nable context (i.e. when ∆ consists of all formulas of the

appropriate form), we skip the index ∆ and write F0, F and F̄ .

Remark 2.6. The relations F0∆, F∆ and F̄∆ are all invariant under the action of
G, so (G,G∗/F̄∆, e/F̄∆) is a G-ambit.

Proof. First, we check that F0∆ is invariant under G. Consider any g ∈ G and
α, β ∈ G∗ such that F0∆(α, β). Take a, b, a1, b1 from the de�nition of F0∆ witness-
ing that F0∆(α, β) holds. Since g ∈ G ⊆ M , one easily checks that ga, b, ga1, b1

witness that F0∆(gα, gβ) holds.
Since F0∆ is invariant under G, so is F∆. For any g ∈ G, the equivalence relation

gF̄∆ is type-de�nable over M and contains gF∆ = F∆, so F̄∆ ⊆ gF̄∆. This implies
that F̄∆ is invariant under G, which yields the natural action of G on G∗/F̄∆ given
by g(h/F̄∆) := (gh)/F̄∆. By the de�nition of the logic topology, we see that this is
an action by homeomorphisms. Finally, the G-orbit of e/F̄∆ equals G/F̄∆, which
is dense in the logic topology by Remark 1.10. �

We will also need the following general remark.

Remark 2.7. If D is a type-de�nable subset of G∗ which is a union of sets of
realizations of complete ∆-types over M , then D is ∆-type-de�nable over M .

Proof. Let π : G∗ → SG,∆(M) be the map given by π(a) := tp∆(a/M), and let
p(x) be a partial type de�ning D. Then π[D] is the subset of SG,∆(M) consisting
o� all types consistent with p(x), so π[D] is closed, i.e. it is the set of all types
in SG,∆(M) extending some partial ∆-type p′ over M . Since D is a union of
sets of realizations of complete ∆-types over M , we see that D = π−1[π[D]], so
D = p′(G∗) is ∆-type-de�nable over M . �
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Theorem 2.8. F̄∆ = E ′∆, so (G,G∗/F̄∆, e/F̄∆) is the universal ∆-de�nable G-
ambit.

Proof. First, we prove that F̄∆ ⊆ E ′∆. For this, it is enough to show that F0∆ ⊆ E ′∆,
because then clearly F∆ ⊆ E ′∆ which implies that F̄∆ ⊆ E ′∆ by the de�nition of
F̄∆ and the fact that E ′∆ is type-de�nable over M .
So, consider any α, β ∈ G∗ such that F0∆(α, β). Then we have a, b, a1, b1

satisfying (1), (2) and (3) from the de�nition of F0∆. Let p = tp∆(a/M) and
q = tp∆(b/M). By Proposition 2.5, we get tp∆(α/M)/E∆ = tp∆(a · b/M)/E∆ =
p/E∆ ∗ q/E∆ = tp∆(a1 · b1/M)/E∆ = tp∆(β/M)/E∆. Hence, E

′
∆(α, β).

Now, we will prove that E ′∆ ⊆ F̄∆. Note that it is enough to show
that (G,G∗/F̄∆, e/F̄∆) is a ∆-de�nable G-ambit. Indeed, if we know that
(G,G∗/F̄∆, e/F̄∆) is ∆-de�nable, then, by the universality of (G,G∗/E ′∆, e/E

′
∆)

(see Corollary 2.3), there exists a G-�ow homomorphism σ1 : G∗/E ′∆ → G∗/F̄∆

such that σ1(g/E ′∆) = g/F̄∆ for all g ∈ G. On the other hand, by the already
proven fact that F̄∆ ⊆ E ′∆, there is aG-�ow homomorphisms σ2 : G∗/F̄∆ → G∗/E ′∆
given by σ2(a/F̄∆) := a/E ′∆. Therefore, (σ1 ◦ σ2)|G/F̄∆

= idG/F̄∆
, hence

σ1 ◦ σ2 = idG∗/F̄∆
, so σ2 is injective which implies that F̄∆ = E ′∆.

So, our goal is to prove that (G,G∗/F̄∆, e/F̄∆) is ∆-de�nable. This means that
for any a ∈ G∗ the function fa : G → G∗/F̄∆ given by fa(g) = (g · a)/F̄∆ is
∆-de�nable. Fix any a ∈ G∗.
De�ne f̄a : G∗ → G∗/F̄∆ by f̄a(α) = (α′ · a)/F̄∆ for any (equivalently, some)

α′ ∈ G∗ such that tp∆(α′/M) = tp∆(α/M) and tp∆(α′/M, a) is �nitely satis�able
inM . By the de�nition of F̄∆, this function is well-de�ned. We see that f̄a extends
fa. Hence, it remains to show that f̄a is ∆-de�nable over M .
So, consider any D ⊆ G∗/F̄∆ which is closed. Let π : G∗ → G∗/F̄∆ be the

quotient map. Then π−1[D] is type-de�nable over M by a partial type p(x). We
see that f̄−1

a [D] is the set of all α ∈ G∗ for which there exists α′ ∈ G∗ such that

tp∆(α′/M) = tp∆(α/M) and tp∆(α′/M, a) �nitely satis�able inM and |= p(α′a).

Hence, f̄−1
a [D] is type-de�nable (over M ∪ {a}) and it is also a union of sets of

realizations of complete ∆-types overM . Therefore, it is ∆-type-de�nable overM
by Remark 2.7. �

Question 2.9. 1) Is F0∆ type-de�nable?
2) Is F∆ generated by F0∆ in �nitely many steps?
3) Is F̄∆ equal to F∆?

The answers are probably negative in general and the problem is to �nd appropri-
ate counter-examples. It would be also interesting to understand when the answers
are positive. Note that they are trivially positive when we work in the de�nable
context and all types in SG(M) are de�nable, as then F0(α, β) ⇐⇒ α ≡M β.
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3. Connected components and ∆-definable Bohr compactification

A very important aspect of the topological-dynamic approach to model the-
ory have been connections of some topological-dynamic invariants (e.g. the Ellis
group) with model-theoretic invariants (such as quotients by various connected
components of groups). Here, we try to say something about such connections in
our ∆-de�nable context. In particular, we introduce two ∆-de�nable connected
components and relate one of them to the Ellis group of the universal ∆-de�nable
ambit. We also give a desciption of the ∆-de�nable Bohr compacti�cation.
Recall that:

• G∗00
M is the smallest M -type-de�nable subgroup of G∗ of bounded index,

• G∗000
M is the smallest M -invariant subgroup of G∗ of bounded index.

Take ∆ as in the previous section. We extend the �rst de�nition to the local
context in the following way.

De�nition 3.1. G∗00
∆,M is the smallest ∆-type-de�nable over M subgroup of G∗

of bounded index.

Note that G∗ is ∆-de�nable over M (even over ∅) by the formula de�ning G, so
G∗00

∆,M exists as the intersection of all ∆-type-de�nable over M subgroups of G∗

of bounded index.
Another de�nition of G∗00

∆ has been proposed by E. Hrushovski in his lecture
notes on approximate equivalence relations, but the above de�nition is more ap-
propriate in our current situation of ∆-de�nable topological dynamics. Later, we
will also propose a local version of G∗000

M , which leads to some questions.
It is well-known that G∗000

M ≤ G∗00
M are both normal subgroups of G∗ (e.g. see

[6, Lemma 2.2]).

Proposition 3.2. G∗00
∆,M is a normal subgroup of G∗.

Proof. Note that G∗00
∆,M is normalized by G, which follows from the fact that the

conjugate of a ∆-formula over M by any element of G remains a ∆-formula over
M . Therefore,

G∗00
∆,M =

⋂
ϕ(x)∈A

ϕ(G∗)

for some family A of formulas over M which is closed under conjugations by
elements of G.
Let {gi : i ∈ I} be a bounded set of representatives of right cosets of G∗00

∆,M in
G∗. Then clearly ⋂

g∈G∗
(G∗00

∆,M)g =
⋂
i∈I

(G∗00
∆,M)gi .
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So this intersection is invariant over M and also type-de�nable, and hence it is
type-de�nable over M . Thus,⋂

g∈G∗
(G∗00

∆,M)g =
⋂

ϕ(x)∈B

ϕ(G∗)

for some family B of formulas over M .
It is enough to show that G∗00

∆,M ⊆
⋂
g∈G∗(G

∗00
∆,M)g. So take any ϕ(x) ∈ B.

Then there are ϕ1(x), . . . , ϕn(x) ∈ A and a1, . . . , an ∈ {gi : i ∈ I} such that
ϕ1(G∗)a1 ∩ · · · ∩ ϕn(G∗)an ⊆ ϕ(G∗). Since M ≺ C, there are h1, . . . , hn ∈ G for
which ϕ1(G∗)h1 ∩ · · · ∩ ϕn(G∗)hn ⊆ ϕ(G∗). Since A is closed under conjugations
by elements of G, we get G∗00

∆,M ⊆ ϕ1(G∗)h1 ∩ · · · ∩ ϕn(G∗)hn . We conclude that

G∗00
∆,M ⊆ ϕ(G∗), and the proof is complete. �

Let µ be the subgroup of G∗ generated by all elements of the form a−1b for
tp∆(a/M) = tp∆(b/M) ∈ SG,∆(M). Since there are only boundedly many com-
plete ∆-types over M , we get

Remark 3.3. µ has bounded index in G∗.

Lemma 3.4. µ ≤ G∗00
∆,M .

Proof. By compactness and the fact that G∗00
∆,M is a group ∆-type-de�nable over

M , we can present G∗00
∆,M as the intersection of some family {ϕi(G∗)}i∈I of sets

∆-de�nable over M such that for every i ∈ I:
(1) ϕi(G

∗) is symmetric, i.e. e ∈ ϕi(G∗) = ϕi(G
∗)−1,

(2) there is j ∈ I for which ϕj(G
∗) · ϕj(G∗) ⊆ ϕi(G

∗).

Since G∗00
∆,M is of bounded index, each ϕi(G

∗) is left generic, i.e. there exist
gi,1, . . . , gi,ni

∈ G such that gi,1ϕ(G∗) ∪ · · · ∪ gi,ni
ϕi(G

∗) = G∗.
We need to show that if tp∆(a/M) = tp∆(b/M), then a−1b ∈ G∗00

∆,M . For this
it is enough to show that for any i ∈ I, a−1b ∈ ϕi(G∗). Choose j ∈ I for which
ϕj(G

∗) ·ϕj(G∗) ⊆ ϕi(G
∗). Since each gj,kϕj(x) is a ∆-formula over M , we get that

gj,kϕj(x) ∈ tp∆(a/M) for some k ∈ {1, . . . , nj}. But then gj,kϕj(x) ∈ tp∆(b/M).
Hence, a−1b ∈ ϕj(G∗)−1ϕj(G

∗) = ϕj(G
∗)ϕj(G

∗) ⊆ ϕi(G
∗). �

The quotients G∗/G∗00
M and G∗/G∗00

∆,M will be always equipped with the logic
topology (see the end of Section 1).
Recall that a de�nable compacti�cation of G is a de�nable homomorphism from

G to a compact, Hausdor� group with dense image. The de�nable Bohr compact-
i�cation of G is a unique (up to ∼=) universal de�nable compacti�cation G, that is
a de�nable compacti�cation f : G→ H such that for an arbitrary de�nable com-
pacti�cation f1 : G → H1 there is a unique morphism from f to f1 (i.e. a group
homomorphism h : H → H1 such that h ◦ f = f1).
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In [8, Proposition 3.4], it was proven that the natural homomorphism from G to
G∗/G∗00

M is the de�nable Bohr compacti�cation of G. Here, we extend this result
to the ∆-de�nable context.
By a ∆-de�nable compacti�cation of G we mean a ∆-de�nable homomorphism

from G to a compact, Hausdor� group with dense image. A universal ∆-de�nable
compacti�cation of G is de�ned analogously to the universal de�nable compacti�-
cation.

Proposition 3.5. The natural homomorphism from G to G∗/G∗00
∆,M is a unique

(up to ∼=) universal ∆-de�nable compacti�cation of G, which we call the ∆-
de�nable Bohr compacti�cation of G.

Proof. First, we check that the natural homomorphism π : G→ G∗/G∗00
∆,M (given

by π(g) = g/G∗00
∆,M) is a ∆-de�nable compacti�cation of G. Density of π[G]

in G∗/G∗00
∆,M (equipped with the logic topology) follows from Remark 1.10. Let

π̄ : G∗ → G∗/G∗00
∆,M be the quotient map. For ∆-de�nability of π it is enough to

show that π̄ is ∆-de�nable over M (as π̄ extends π and we can use Lemma 1.6).
Consider any closed D ⊆ G∗/G∗00

∆,M . Then, π̄−1[D] is type-de�nable over M , and,
by Lemma 3.4, it is a union of sets of realizations of complete ∆-types over M .
By Remark 2.7, this implies that π̄−1[D] is ∆-type-de�nable over M .
Now, we check universality of π. We adapt the proof of [8, Proposition 3.4].

Consider any ∆-de�nable compacti�cation f : G → C. By Lemma 1.6, there is a
unique ∆-de�nable over M function f ∗ : G∗ → C extending f . We check that f ∗

is a homomorphism. Consider any a, b ∈ G∗, and let p := tp(a/M), q := tp(b/M),
and r := tp(ab/M). Then, by Remark 1.7 and compactness,

{f ∗(ab)} =
⋂
θ∈r cl(f [θ(G)]) ⊆

⋂
ϕ∈p,ψ∈q cl(f [ϕ(G) · ψ(G)])

=
⋂
ϕ∈p,ψ∈q cl(f [ϕ(G)]) · cl(f [ψ(G)])

=
⋂
ϕ∈p cl(f [ϕ(G)]) ·

⋂
ψ∈q cl(f [ψ(G)])

= {f ∗(a)f ∗(b)}.
Since f ∗ is ∆-de�nable over M , ker(f ∗) is a normal subgroup of bounded index

which is an intersection of some sets ∆-type-de�nable over M . Since G∗00
∆,M is

the smallest such group, we �nish as in the proof of [8, Proposition 3.4]. Namely,
there is a natural continuous homomorphism from G∗/G∗00

∆,M to G∗/ ker(f ∗), and
G∗/ ker(f ∗) is naturally topologically isomorphic with C, so we get a continuous
homomorphism h : G∗/G∗00

∆,M → C such that h ◦ π = f . �

Remark 3.6. i) G∗00
∆,M is the smallest type-de�nable over M subgroup of G∗ con-

taining µ.
ii) G∗00

∆,M ≥ µ ·G∗00
M .

Proof. i) Let H be this smallest subgroup. Then H is type-de�nable over M and
it is a union of sets of realizations of complete ∆-types over M , so it is ∆-type-
de�nable overM by Remark 2.7. Thus, by Remark 3.3, G∗00

∆,M ≤ H. The opposite
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inclusion follows from Lemma 3.4.
ii) follows from Lemma 3.4 and the de�nitions of G∗00

∆,M and G∗00
M . �

This suggests the following generalization of the component G∗000
M to the local

context.

De�nition 3.7. G∗000
∆,M is the smallest normal, invariant over M subgroup of G∗

of bounded index containing µ.

We know that G∗000
M is generated by all elements a−1b for a ≡M b. Therefore,

G∗000
M ≤ µ, and so µ has bounded index in G∗ (which was already noted in Remark

3.3). So, by the obvious observation that µ is invariant over M , we get

Remark 3.8. G∗000
∆,M = 〈µG∗〉, where 〈µG∗〉 denotes the normal closure of µ.

It is clear that when we are in the de�nable context, i.e. ∆ consists of all
formulas of the appropriate form, then G∗00

∆,M = G∗00
M and G∗000

∆,M = G∗000
M = µ.

Question 3.9. Is it true that G∗000
∆,M = µ? Equivalently, is µ a normal subgroup

of G∗?

Take the notation from Section 2. Now, we de�ne a counterpart of Newelski's
map de�ned in the externally de�nable context (see [20, Proposition 4.4] or [14,
Proposition 3.1]).

Proposition 3.10. The map θ̂ : G∗/E ′∆ → G∗/G∗00
∆,M given by θ̂(a/E ′∆) =

a/G∗00
∆,M is a well-de�ned, continuous semigroup epimorphism.

Proof. First, we check that θ̂ is well-de�ned. Theorem 2.8 tells us that E ′∆ = F̄∆.
So, by the de�nition of F̄∆ and the fact that the relation of lying in the same left
coset of G∗00

∆,M is type-de�nable over M , we see that it is enough to show that

whenever F0∆(α, β), then β−1α ∈ G∗00
∆,M .

So, take any α, β with F0∆(α, β). Then α = ab and β = a1b1 for some a, b, a1, b1

such that tp∆(a/M) = tp∆(a1/M) and tp∆(b/M) = tp∆(b1/M). Then β−1α =
b−1

1 a−1
1 ab ∈ b−1

1 µb = b−1
1 bµb ⊆ µ · µb. The last set is contained in G∗00

∆,M , because

G∗00
∆,M is normal and contains µ (by Proposition 3.2 and Lemma 3.4).

The fact that θ̂ is onto is clear from the de�nition of θ̂. Continuity follows from
the de�nition of the logic topology. It remains to check that θ̂ is a homomorphism.
Identifying G∗/E ′∆ with SG,∆(M)/E∆, we see that θ̂(p/E∆) = a/G∗00

∆,M for any
a |= p. Consider any p, q ∈ SG,∆(M) and choose b |= q and a satisfying a ∆-coheir
extension of p over M, b. By Proposition 2.5, p/E∆ ∗ q/E∆ = tp∆(ab/M). Thus,

θ̂(p/E∆ ∗ q/E∆) = ab/G∗00
∆,M = θ̂(p/E∆) · θ̂(q/E∆). �

Let M be a minimal left ideal in G∗/E ′∆ and u an idempotent in M. Let

θ : uM→ G∗/G∗00
∆,M be the restriction of θ̂ to uM. By Proposition 3.10 and the

fact that uM = u ∗G∗/E ′∆ ∗ u, we get that θ is a group epimorphism.
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In the externally de�nable case, a very important ingredient of the theory was
the fact that there is also an epimorphism from the universal externally de�nable
G-ambit and from its Ellis group to G∗/G∗000

M . In the current context, we leave it
as an open problem.

Problem 3.11. 1) Is f̂ : G∗/E ′∆ → G∗/G∗000
∆,M given by f̂(a/E ′∆) = a/G∗000

∆,M a
well-de�ned semigroup epimorphism? Notice that whenever it is well-de�ned, then
it is an epimorphism (as in the proof of Proposition 3.10).
2) If the answer to the above question in general is no, the problem is to under-

stand when f̂ is well-de�ned. This may lead to a new dividing line (motivated by
topological dynamics and model theory together) in the class of groups de�nable in
�rst order structures.
3) If f̂ is well-de�ned, then its restriction f to the Ellis group uM is also an
epimorphism. If, however, it turns out that f is not always well-de�ned, an inter-
esting question is whether always there exits a (natural) epimorphism from uM to
G∗/G∗000

∆,M .
4) It is very interesting to consider the above questions in the de�nable context,
i.e. when ∆ consists of all formulas of the appropriate form. For example, the �rst
question asks if f̂ : G∗/E ′ → G∗/G∗000

M given by f̂(a/E ′) = a/G∗000
M is well-de�ned.

Let us look at the de�nable context. Notice that any counter-example to the
statement that f̂ : G∗/E ′ → G∗/G∗000

M given by f̂(a/E ′) = a/G∗000
M is well-de�ned

must satisfy G∗000
M 6= G∗00

M and not all types in SG(M) are de�nable (the later prop-
erty follows from Remark 2.4(ii) and the fact that a ≡M b implies a−1b ∈ G∗000

M ).
So a (simplest) natural candidate is the universal cover of SL2(R) interpreted in
the model ((Z,+), (K,+, ·)), where K is the real closure of the rationals. (For a
model-theoretic analysis of the universal cover of SL2(R) (in particular, for the
proofs that the two connected components di�er) see [3] and [7]). However, an
analysis of this example from the point of view of the de�nable topological dy-
namics seems quite complicated. Below we describe what happens in a much
simpler example, namely in the unit circle S1(K).
The following remark follows easily from de�nitions by an argument as in the

second paragraph of the proof of Proposition 3.10.

Remark 3.12. f̂− : G∗/F∆ → G∗/G∗000
∆,M given by f̂−(a/F∆) = a/G∗000

∆,M is a well-

de�ned function. So, if F∆ = F̄∆ (which is unlikely in general), then f̂ is well-
de�ned.

Example 3.13. Let M := (K,+, ·) be the real closure of the rationals, ∆ consist
of all formulas of the appropriate form, and let G := S1(K) be the unit circle
computed in K ×K. Then

SG(M) = {pa : a ∈ S1(R) \ S1(K)} ∪ {p−a , p+
a , qa : a ∈ S1(K)},
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where qa := tp(a/M) is the algebraic type isolated by x = a, pa is the cut at a,
and p−a and p+

a are the left and right cuts at a, respectively.
It is well-known that µ = G∗000

M = G∗00
M is the subgroup of all in�nitesimal

elements (i.e. the monad of 1 in S1(C)). Moreover, G∗/G∗00
M is homeomorphic

with the real circle S1.
We will show that for any α, β ∈ S1(C)

(6) F0(α, β) ⇐⇒ (β · α−1 ∈ µ ∧ α /∈ S1(K) ∧ β /∈ S1(K)) ∨ α = β.

(⇒) First, consider the case when α ∈ S1(K) or β ∈ S1(K). Without loss α ∈
S1(K). Take a, b, a1, b1 witnessing that F0(α, β). Then a = α · b−1 and tp(a/K, b)
is �nitely satis�able in K, so b ∈ S1(K), and hence a ∈ S1(K). Since tp(a1/K) =
tp(a/K) and tp(b1/K) = tp(b/K), we conclude that a1 = a and b1 = b. Therefore,
α = β.
Now, consider the case when α /∈ S1(K) and β /∈ S1(K). Take a, b, a1, b1

witnessing that F0(α, β). Then the computation from the second paragraph of
the proof of Proposition 3.10 shows that β · α−1 ∈ µ.
(⇐) If α = β, then clearly F0(α, β). So assume that β · α−1 ∈ µ, α /∈ S1(K), and
β /∈ S1(K). Then ξ0 := st(α) = st(β), where st is the standard part map com-
puted on the circle. Since K is countable, we can �nd ξ1 ∈ S1(R)\acl(K,α, β, ξ0),
and put ξ := ξ0 · ξ1. Then ξ ∈ S1(R) \ S1(K), and since α, β /∈ S1(K), the
exchange property for acl implies that α, β /∈ acl(K, ξ1). De�ne a = α · ξ1,
b = ξ−1

1 , a1 = β · ξ1, b1 = ξ−1
1 . We check that a, b, a1, b1 witness that F0(α, β).

The equalities α = a · b, β = a1 · b1, and tp(b/K) = tp(b1/K) are obvious. Since
st(a) = st(a1) = ξ /∈ S1(K), we get tp(a/K) = tp(a1/K) = pξ. It remains to check
that tp(a/K, ξ1) and tp(a1/K, ξ1) are �nitely satis�able in K. As ξ1, ξ2 ∈ S1(R)
and S1(K) is dense in S1(R), it is enough to check that a, a1 /∈ acl(K, ξ1). But
this is clear, as otherwise α ∈ acl(K, ξ1) or β ∈ acl(K, ξ1), a contradiction.

By (6), F0 is already an M -type-de�nable equivalence relation, so, by Theorem
2.8, we conclude that F0 = F = F̄ = E ′. This in turn implies that the classes
of E are the singletons {pa}, a ∈ S1(R) \ S1(K), the singletons {qa}, a ∈ S1(K),
and the pairs {p−a , p+

a }, a ∈ S1(K). Hence, E is non-trivial, which implies that the
ambit (G,SG(M), tp(e/M)) is not de�nable by Remark 2.4.
One can check that SG(M)/E is the real circle S1 with an additional copy of

each point from S1(K), with the usual circle topology expanded by new subba-
sic open sets which are the singletons of the additional points of the circle and
their complements (in particular, each additional point is clopen). Then there is
a unique minimal left ideal M in SG(M)/E and it consists of E-classes of the
non-algebraic types (which follows from the observations that the G-orbit of each
algebraic type is dense and that each non-algebraic type lies in the closure of an
arbitrary G-orbit). Moreover, there is a unique idempotent u ∈ M, namely the
E-class {p−1 , p+

1 }. In particular, M = uM by Fact 1.2(ii). One easily sees that
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θ : uM → G∗/G∗00
M is an isomorphism. In contrast, θ̂ : SG(M)/E → G∗/G∗00

M is
not injective, as it glues {p−a , p+

a } with {qa} for every a ∈ S1(K).
Note also that in this example the universal de�nable G-ambit is di�erent (i.e.

non-isomorphic) from the universal externally de�nable G-ambit, which follows
from the more general observation that if E in non-trivial, then the universal
externally de�nable G-ambit is not de�nable. Indeed, if SG,ext(M) was a de�nable
G-ambit, then its homomorphic image SG(M) would be also de�nable, so E would
be trivial by Remark 2.4. One can check that SG,ext(M) can be identi�ed with the
collection of all points of S1(K) and all left and right cuts at all points of S1(R)
with the topology whose description is left as an exercise.

4. On some results from [14] in the ∆-definable context

Most of the main results of [14] are about connections of the Ellis group and
the externally de�nable generalized Bohr compacti�cation of G with quotients of
G∗ by connected components. It is very important in there that we have a natural
epimorphism from the Ellis group of the universal externally de�nable G-ambit
to G∗/G∗000

M . As we saw in the previous section, in the de�nable context, we
do not know whether such an epimorphism exists. However, we have the natural
epimorphism θ from the Ellis group of the universal de�nable G-ambit to G∗/G∗00

M .
In this section, we formulate variants of some results from [14] in our ∆-de�nable

context (with G∗/G∗00
∆,M in place of G∗/G∗000

M ) whose proofs are obvious adapta-
tions of the proofs from [14], so they will be omitted. It would be really interesting,
however, to get these kind of results with G∗/G∗000

∆,M in place of G∗/G∗00
∆,M , which

would allow us to extend or strengthen some results from [14], and, in the case of
a countable language, maybe apply to get information on the Borel cardinality of
G∗00

∆,M/G
∗000

∆,M and simplify the proofs from [15] for the quotient G∗00
M/G

∗000
M .

In the �nal part of this section, we analyze connections with the externally
de�nable topological dynamics, and, using [2, Theorem 5.7], we obtain a variant
of this result in the de�nable context.
The key role in [14] is played by the so-called τ -topology introduced by Ellis.

Basic theory related to this notion is described in [9, Chapter IX] for the Ellis
group of the universal G-ambit βG, but it works similarly for the Ellis group of
universal G-ambits in many other categories. In [14, Section 2], we described how
to work with the universal externally de�nable G-ambit. In our new, ∆-de�nable
context, everything works analogously, so we will skip all the discussions, sending
the reader to [9] and [14] for details. Let us only recall the main de�nitions.
We take the notation as in previous sections. In particular,M is a minimal left

ideal in G∗/E ′∆, and u ∈M is an idempotent.

De�nition 4.1. For A ⊆ G∗/E ′∆ and p ∈ G∗/E ′∆, p ◦ A is de�ned as the set of
all points x ∈ G∗/E ′∆ for which there exist nets (xi) in A and (gi) in G such that
limi gi = p (here by gi we mean gi/E

′
∆) and limi gixi = x.
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De�nition 4.2. For A ⊆ uM, de�ne clτ (A) = (u ◦ A) ∩ uM.

The proofs of 1.2-1.12 (except 1.12(2)) from [9, Chapter IX] go through (with
some slight modi�cations) in our context. In particular, clτ is a closure operator
on subsets of uM, and it induces the so-called τ -topology on uM. This topology
is compact and T1, and multiplication is continuous in each coordinate separately.
It is easy to see that p◦A is always closed, and so the τ -topology on uM is weaker
than the topology inherited from G∗/E ′∆.

De�nition 4.3. H(uM) is the intersection of the sets clτ (V ) with V ranging over
all τ -neighborhoods of u in the group uM.

Then H(uM) is a τ -closed, normal subgroup of uM, and uM/H(uM) is a
compact, Hausdor� group (see [9, Chapter IX, Theorem 1.9]).
The notion of generalized Bohr compacti�cation was introduced in [9, Chapter

VIII]. It is recalled in [14, De�nition 1.23] in the externally de�nable context. In
the ∆-de�nable situation, we take the same de�nition, replacing the expression
�externally de�nable� by �∆-de�nable�. The reader is referred to 1.13, 1.14, 1.21,
1.22, 1.23 from [14] for details.
It was proven in [9, Chapter IX, Theorem 4.2] that the generalized Bohr com-

pacti�cation of a discrete group G equals uM/H(uM) (everything computed in
βG). In [14, Theorem 2.5], this was extended to the externally de�nable context.
Since the class of ∆-de�nable G-�ows is closed under taking both products and
quotients by closed, G-invariant equivalence relations, the proof from [14] yields

Theorem 4.4. uM/H(uM) is the ∆-de�nable generalized Bohr compacti�cation
of G.

The following fact is folklore in general topology, but we give a justi�cation.

Fact 4.5. If f : X → Y is a continuous epimorphism, where X is a second-
countable (i.e. with a countable basis of open sets) space and Y is a compact,
Hausdor� space, then Y is also second-countable.

Proof. If Z is a topological space, then a family N of subsets of Z is said to be a
network for Z if for every z ∈ Z and its open neighborhood U , there is N ∈ N
with z ∈ N ⊆ U . The smallest possible cardinality of a network for Z is called the
network weight of Z and is denoted by nw(Z). For every space Z we clearly have
nw(Z) ≤ w(Z) (where w(Z) is the weight of Z, i.e. the smallest cardinality of a
basis of open sets). [5, Theorem 3.1.19] tells us that if Z is compact, Hausdor�,
then nw(Z) = w(Z).
Now, take a countable basis {Bi : i ∈ ω} of X. It is clear, by the continuity of

f , that {f [Bi] : i ∈ ω} is a network for Y . Hence, w(Y ) = nw(Y ) ≤ ℵ0. �

Corollary 4.6. If both the language and the model M are countable, then
uM/H(uM) is a Polish, compact group.
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Proof. We know that it is a compact, Hausdor� group, so it remains to show that
it is metrizable. For this, it is enough to show that it is second-countable (see [5,
Theorem 4.2.8]).
We know that SG,∆(M) is second-countable, and so is SG,∆(M)/E∆ (by Fact 4.5

and the observations that SG,∆(M)/E∆ is compact, Hausdor� and is the image of
SG,∆(M) under a continuous map).
Since the τ -topology on uM is weaker than the topology inherited on uM

from SG,∆(M)/E∆, we have that for uM equipped with this inherited topology
(and uM/H(uM) equipped with its usual quotient topology coming from the τ -
topology on uM) the quotient function uM→ uM/H(uM) is continuous. But
this inherited topology on uM has a countable basis (by the second paragraph
of the proof). Thus, since uM/H(uM) is compact, Hausdor�, we get that it is
second-countable by Fact 4.5. �

This corollary shows an advantage of uM/H(uM) computed in the de�nable
category in comparison with the same object computed in the externally de�nable
category (where it does not have to be metrizabe). In [14], G∗00

M/G
∗000
M is presented

as a quotient of a closed subgroup of the group uM/H(uM) computed in the
externally de�nable context, and in [15], it was used to get new information on the
Borel cardinality of G∗00

M/G
∗000
M . If we were able to present G∗00

M/G
∗000
M as a quotient

of closed subgroup of the group uM/H(uM) computed in the de�nable context, by
the above remark, we would be immediately within a nice descriptive set-theoretic
setting, which could simplify some arguments from [15] (for the objects that we
are considering now) and maybe lead to new results. But in this paper, we only
describe connections between uM/H(uM) and G∗/G∗00

M .

Proposition 3.10 gives us the epimorphism θ̂ : G∗/E ′∆ → G∗/G∗00
∆,M whose re-

striction θ to uM is also an epimorphism. Using the explicit de�nition of θ̂, one
can adapt the proof of [14, Theorem 0.1] to get the next theorem. In fact, the
proof of (2) is even simpler now, because we do not use the Fn's.

Theorem 4.7. Suppose that uM is equipped with the τ -topology and uM/H(uM)
� with the induced quotient topology. Then:

(1) θ is continuous,
(2) H(uM) ≤ ker(θ),
(3) the formula p ∗ H(uM) 7→ θ(p) yields a well-de�ned continuous epimor-

phism θ̄ from uM/H(uM) to G∗/G∗00
∆,M .

In particular, we get the following sequence of continuous epimorphisms

(7) uM� uM/H(uM)
θ̄
−� G∗/G∗00

∆,M .

We say that G is ∆-de�nably strongly amenable if it has no non-trivial ∆-
de�nable proximal G-�ows (i.e. �ows in which any two points x and y are proximal
which means that there exists a net (gi) in G such that lim gix = lim giy). This
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extends the notion of strongly amenable group from [9]. For example, [9, Chap-
ter II, Theorem 3.4] tells us that all nilpotent groups are strongly amenable so
also ∆-de�nably strongly amenable. Now, we signi�cantly generalize Corollary
0.4 from [14] (by dropping the de�nability of types assumption and by extending
the context to the local, ∆-de�nable one). The same proof as the one from [14]
works, once we use Proposition 3.5 and (in the �nal part of the proof) the explicit
formula for ∗ obtained in Proposition 2.5.

Theorem 4.8. Suppose G is ∆-de�nably strongly amenable. Then the natural
epimorphism θ̄ : uM/H(uM)→ G∗/G∗00

∆,M is an isomorphism.

The theorem implies that for ∆-de�nably strongly amenable groups, the ∆-
de�nable generalized Bohr compacti�cation is isomorphic with the ∆-de�nable
Bohr compacti�cation.
Let us �nish this section with a comparison of externally de�nable and de�nable

objects.
Let Mext be a minimal left ideal of the universal externally de�nable G-�ow

SG,ext(M), and let uext ∈Mext be an idempotent. Since each ∆-de�nable G-�ow is

externally de�nable, there is a unique epimorphism ĥ : (G,SG,ext(M), tpext(e/M))→
(G,SG,∆(M)/E∆, tp∆(e/M)/E∆). Then ĥ is an epimorphism of semigroups. Put

M := ĥ[Mext] and u := ĥ[uext] (so far M and u were chosen arbitrarily at the
beginning, but now we de�ne them in this particular way). We easily get that

M is a minimal left ideal, u ∈ M is an idempotent, and h := ĥ|uextMext is an
epimorphism from uextMext to uM.

Remark 4.9. h is continuous, where both Ellis groups are equipped with the τ -
topologies.

Proof. Let D ⊆ uM be τ -closed. Let D′ = h−1[D]. The goal is to show that D′

is τ -closed. Take p ∈ clτ (D
′). There are nets (gi) in G and (xi) in D′ such that

limi gi = uext and limi gixi = p. Then limi ĥ(gi) = ĥ(uext) = u and limi ĥ(gi)ĥ(xi) =

limi ĥ(gixi) = ĥ(p). Moreover, ĥ(gi) = gi/E
′
∆ and ĥ(xi) ∈ D. Therefore, h(p) =

ĥ(p) ∈ clτ (D) = D, hence p ∈ D′. �

By this remark, we see that h[H(uextMext)] ≤ H(uM). Therefore, h induces a
continuous epimorphism from uextMext/H(uextMext) to uM/H(uM).
Let N �M be an |M |+-saturated elementary extension, and let SG,M(N) be the

space of all types in SG(N) �nitely satis�able in M . Then SG,ext(M) can be natu-
rally identi�ed with SG,M(N), which we will be using freely. Newelski was consid-

ering the epimorphism θ̂ext : SG,M(N)→ G∗/G∗00
M given by θ̂ext(tp(a/N)) = a/G∗00

M

and conjectured that θext := θ̂ext|uextMext : uextMext → G∗/G∗00
M is an isomorphism

(at least in nice situations), e.g. see the comment after [20, Proposition 4.4].
In general, such a conjecture is false, but it turned out to be true for de�nably



DEFINABLE TOPOLOGICAL DYNAMICS 23

amenable groups in NIP theories [2, Theorem 5.6]. Using this result, we easily get
that the same is true in our de�nable category.

Corollary 4.10. Assume we are in the de�nable case (i.e. ∆ consists of all
formulas of the appropriate form). If G is de�nable amenable and T := Th(M)
has NIP, then θ : uM→ G∗/G∗00

M is an isomorphism.

Proof. Consider �rst the case as above, namely with M := ĥ[Mext] and u :=

ĥ[uext]. Note that ĥ(tp(a/N)) = a/E ′ for any tp(a/N) ∈ SG,M(N). Therefore,

using the de�nitions of θ̂ and θ̂ext, we get θ̂ext = θ̂ ◦ ĥ. Hence, θext = θ ◦ h. On the
other hand, [2, Theorem 5.6] tells us that θext is an isomorphism, and, by the above
observations, we know that h is an epimorphism. Therefore, θ is an isomorphism.
Now, consider an arbitrary minimal left ideal M and an idempotent u ∈ M.

LetM0 := ĥ[Mext] and u0 := ĥ[uext]. By [9, Chapter I, Proposition 2.5], there is
an idempotent v ∈ M such that vu0 = u0 and u0v = v. Then f : uM → u0M0

given by f(x) = u0vxu0 = vxu0 is a group isomorphism (even τ -continuous).
Indeed, f(x)f(y) = vxu0vyu0 = vxvyu0 = vxyu0 = f(xy) (the fact that xv = x
follows from the fact that u ∈ M = Mv (as v ∈ M), x ∈ M = Mu and v is
an idempotent), so f is a homomorphism; to see that it is an isomorphism, one
should check, by similar computations, that g : u0M0 → uM given by g(y) =

uyv is the inverse of f . Let θ0 : u0M0 → G∗/G∗00
M be θ̂|u0M0 . By Proposition

3.10 and the de�nitions of θ, θ0 and f , we get θ = θ0 ◦ f . Indeed, θ0(f(x)) =

θ̂0(vxu0) = θ̂(v)θ̂(x)θ̂(u0) = θ̂(x) = θ(x). By the �rst paragraph of the proof, θ0 is
an isomorphism. Hence, we conclude that θ is an isomorphism, too. �

Similarly to the externally de�nable case, also in the ∆-de�nable category there
is a general question about the impact of changing the ground model M on the
topological-dynamic invariants uM and uM/H(uM). In particular, if we com-
pute these invariants for a bigger model, does there exist epimorphisms to the
corresponding objects for the smaller model? If we assume NIP, is uM/H(uM)
independent of the choice of M?
Another interesting direction concerns some weaker versions of the notion of

de�nable [extremal] amenability that naturally arise in our ∆-de�nable category,
but we leave this for the future.

5. Topological-dynamic invariants as Polish structures

In [12], the following notion was introduced.

De�nition 5.1. A Polish structure is a pair (G,X), where G is a Polish group
acting on a set X so that the stabilizer of any singleton is a closed subgroup of
G. We say that (G,X) is small if for every n ∈ ω there are only countably many
orbits on Xn under the action of G.
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In [12], it is assumed that the action of G on X is faithful, but this assumption is
purely cosmetic. The notion of nm-independence was introduced in [12, De�nition
2.2], and it was proven that it has some nice properties (as forking independence in
stable or simple theories), but the existence of nm-independent extensions requires
the assumption of smallness of the Polish structure in question. Then a counterpart
of basic stability theory was developed for small Polish structures. In particular,
a counterpart of a superstable structure was introduced and called an nm-stable
Polish structure. The following, particular case of Polish structures was studied
deeply in [12] and [16].

De�nition 5.2. i) A compact G-space is pair (G,X), where G is a Polish group
acting continuously on a compact, Hausdor� space X.
ii) A compact G-group is pair (G,H), where G is a Polish group acting continuously
and by automorphisms on a compact, Hausdor� group H.

Various structural theorems on compact groups in the context of small Polish
structures were proved in [12] and [16], e.g.

Fact 5.3. If (G,H) is a small, nm-stable compact G-group, then H is nilpotent-
by-�nite.

The main motivation to introduce Polish structures was to apply model-theoretic
ideas to study purely topological objects. There is a variety of examples of classical
small Polish structures, e.g. various compact metric spaces considered with the
full group of homeomorphisms are always Polish structures which are often small.
On the other hand, it would be interesting to use small Polish structures to get
new results in pure model theory. A joint idea with Jan Dobrowolski is to view
some spaces of types as Polish structures. For example, if M is a countable �rst
order structure, then Aut(M) is naturally a Polish group and (Aut(M), S(M))
becomes a Polish structure (note that the action of Aut(M) on the type space
S(M) is continuous). However, even if M is ω-categorical (in particular, if its
theory is small), this Polish structure is not necessarily small (e.g. for the random
graph it is not small). However, one can formulate the following conjecture. Note
before that a small, complete theory in a countable language has a unique (up to
∼=) countable saturated model.

Conjecture 5.4. Assume that M is a countable, saturated model of a small, NIP
theory in a countable language. Let ∆ be a �nite set of formulas without parame-
ters. Then:
i) (Aut(M), S(M)) is a small Polish structure,
ii) (Aut(M), S∆(M)) is a small Polish structure.

As both pairs are Polish structures, only smallness requires a proof. Clearly, (i)
implies (ii). Artem Chernikov suggested that maybe some ideas from [26] could
be used to prove (ii).
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As we will see in a moment, this conjecture is very important for potential
applications of small Polish structures to say something new about topological-
dynamic invariants, but it is also interesting in its own right.

In this section, we explain how to view various invariants as Polish structures.
Take the context and notation from previous sections. We start from a corollary
of Theorem 2.8.

Corollary 5.5. E∆ is Aut(M)-invariant.

Proof. This is equivalent to the statement that E ′∆ is Aut(C/{M})-invariant. By
Theorem 2.8, E ′∆ = F̄∆. Since F̄∆ is the �nest type-de�nable over M equivalence
relation containing F∆, it is enough to show that F∆ is Aut(C/{M})-invariant.
Since F∆ is the transitive closure of F0∆, this boils down to showing that F0∆ is
Aut(C/{M})-invariant. But this follows immediately from the de�nition of F0∆,
namely, items (1)-(3) from the de�nition of F0∆ are clearly preserved under all
automorphisms which �x M setwise. �

Thus, Aut(M) acts on SG,∆(M)/E∆ in the natural way, namely f(p/E∆) :=
f(p)/E∆; denote this action by Φ: Aut(M)× SG,∆(M)/E∆ → SG,∆(M)/E∆.

Proposition 5.6. Φ is continuous.

Proof. A basic open set in SG,∆(M)/E∆ is of the form Uϕ := {p/E∆ : [p]E∆
⊆ [ϕ]}

for a ∆-formula ϕ = ϕ(x, m̄) with parameters m̄ from M . Let o(m̄) be the orbit
of m̄ under Aut(M). We compute

Φ−1[Uϕ] =
⋃

m̄′∈o(m̄)

{f ∈ Aut(M) : f(m̄′) = m̄} × Uϕ(x,m̄′),

which is clearly open in Aut(M)× SG,∆(M)/E∆. �

Proposition 5.7. The action Φ preserves ∗.

Proof. Consider any f ∈ Aut(M) and p, q ∈ SG,∆(M). By Proposition 2.5,

p/E∆ ∗ q/E∆ = tp∆(ab/M),

where b |= q and a satis�es a ∆-coheir extension of p over M, b. Let f̄ be an
extension of f to an automorphism of C. Then f(p) = tp∆(f̄(a)/M), f(q) =
tp∆(f̄(b)/M), and tp∆(f̄(a)/M, f̄(b)) is �nitely satis�able in M . Therefore,

f(p/E∆) ∗ f(q/E∆) = f(p)/E∆ ∗ f(q)/E∆ = tp∆(f̄(a)f̄(b)/M)/E∆

= tp∆(f̄(ab)/M)/E∆ = f(tp∆(ab/M)/E∆)
= f(p/E∆ ∗ q/E∆).

�

LetM be a minimal left ideal in SG,∆(M)/E∆ and u ∈M an idempotent. We
will need the following observation [9, Chapter IX, Lemma 1.5].
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Fact 5.8. If (pi) is a net in uM converging (in the usual topology on M) to p,
then τ - limi pi = up.

Let Aut(M/u) be the stabilizer of u under the action Φ. By Proposition 5.6
and the fact that SG,∆(M)/E∆ is Hausdor�, Aut(M/u) is a closed subgroup of
Aut(M).

Proposition 5.9. The action Φ induces a τ -continuous action of Aut(M/u) on
uM.

Proof. By Proposition 5.7 and the fact thatM = SG,∆(M)/E∆∗u, we see that any
automorphism f ∈ Aut(M/u) �xes bothM and uM setwise. Thus, the action Φ
induces an action of Aut(M/u) onM, and further on uM. Now, we want to show
the continuity of this action of Aut(M/u) on uM.
Consider arbitrary nets (fi) in Aut(M/u) and (pi) in uM such that limi fi = f ∈

Aut(M/u) and τ - limi pi = p ∈ uM. We need to show that τ - limi fi(pi) = f(p).
For this it is enough to prove that any subnet (f ′k(p

′
k)) of (fi(pi)) has a subnet

which is τ -convergent to f(p). Hence, we see that it is enough to show that, for
any data as in the �rst sentence of this paragraph, the net (fi(pi)) has a subnet
which is τ -convergent to f(p).
By the compactness ofM, there is a subnet (p′k) of (pi) converging, in the usual

topology on M, to some p′, i.e. limk p
′
k = p′. The corresponding subnet (f ′k) of

(fi) still converges to f , i.e. limk f
′
k = f .

By Proposition 5.6, limk f
′
k(p
′
k) = f(p′). Hence, by Fact 5.8 and Proposition 5.7,

we get τ - limk f
′
k(p
′
k) = uf(p′) = f(u)f(p′) = f(up′).

On the other hand, by Fact 5.8 applied to the net (pk), we get p = τ - limi pi =
τ - limk p

′
k = up′.

By the last two paragraphs, τ - limk f
′
k(p
′
k) = f(p), and the proof is �nished. �

Corollary 5.10. Aut(M/u) acts continuously on uM/H(uM), i.e. on the ∆-
de�nable generalized Bohr compacti�cation of G (see Theorem 4.4).

Note that Aut(M) also acts on G∗/G∗00
∆,M . Namely, for f ∈ Aut(M), take

any f̄ ∈ Aut(C) extending f and de�ne f · (a/G∗00
∆,M) := f̄(a)/G∗00

∆,M . (The fact

that this action is well-de�ned follows easily from the observation that G∗00
∆,M is

invariant under Aut(C/{M}) and contains all a−1b for a ≡M b.) By a similar
argument to the proof of Proposition 5.6, one can show

Proposition 5.11. The action of Aut(M) on G∗/G∗00
∆,M is continuous.

By the above observations, we get

Corollary 5.12. Assume that the model M is countable. The following are Pol-
ish structures: (Aut(M), SG,∆(M)), (Aut(M), SG,∆(M)/E∆), (Aut(M/u), uM),
(Aut(M/u), uM/H(uM)), and (Aut(M), G∗/G∗00

∆,M). More precisely, all these
are compact G-spaces (except the third one, which is not necessarily Hausdor�).
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Moreover, the second one is a compact Aut(M)-semigroup with left-continuous
semigroup operation, the fourth one is a compact Aut(M/u)-group, and the last
one is a compact Aut(M)-group.

From now on, we always assume that M is countable. In order to apply some
knowledge on small Polish structures, �rst one would have to describe interest-
ing classes of theories for which some of the above Polish structures are small.
Conjecture 5.4 may provide such classes.
Using Proposition 3.10, we easily get

Remark 5.13. If (Aut(M), SG,∆(M)) is small, then all other Polish structures from
Corollary 5.12 are small, too.

By Theorem 4.7, we easily get

Remark 5.14. If (Aut(M/u), uM/H(uM)) is small, then (Aut(M), G∗/G∗00
∆,M) is

small as well.

There are two kinds of possible applications of small Polish structures. First of
all, [12, Corollary 5.9] tells us that small compact G-groups are pro�nite.

Corollary 5.15. i) If (Aut(M/u), uM/H(uM)) is small, then uM/H(uM) is a
pro�nite group.
ii) If (Aut(M), G∗/G∗00

∆,M) is small, then G∗/G∗00
∆,M is a pro�nite group.

Secondly, we would like to describe the algebraic structure of uM/H(uM) and
G∗/G∗00

∆,M , but for this we would have to know that the corresponding Polish
structures are not only small, but also nm-stable (e.g. to apply Fact 5.3).

Corollary 5.16. i) If (Aut(M/u), uM/H(uM)) is small and nm-stable, then
uM/H(uM) is nilpotent-by-�nite.
ii) If (Aut(M), G∗/G∗00

∆,M) is small and nm-stable, then G∗/G∗00
∆,M is nilpotent-

by-�nite.

We �nish with a discussion on NIP and stable situations, but before that we
need to make one general observation.
Recall that by G∗00 we denote the smallest type-de�nable (over arbitrary pa-

rameters from C) subgroup of G∗ of bounded index, if it exists. Note if G∗00 exists,
then it is type-de�nable over ∅, so G∗00 = G∗00

∅ . Therefore, G
∗00 exists if and only

if G∗00
A does not depend on the choice of the parameter set A.

Remark 5.17. If G∗00 exists, then for any set ∆ of formulas of the appropriate form,
G∗00

∆,M does not depend on the choice of the model M and it is type-de�nable over

∅; in fact, G∗00
∆,M is the smallest ∆-type-de�nable (over arbitrary parameters from

C) subgroup of G∗ of bounded index

Proof. By the existence of G∗00, there exists the smallest ∆-type-de�nable (over
arbitrary parameters from C) subgroup of G∗ of bounded index, which we denote
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by G∗00
∆ . This component is clearly invariant under Aut(C), so it is type-de�nable

over ∅ by a collection of formulas {ϕi(x) : i ∈ I} closed under (�nite) conjunctions.
We will show that G∗00

∆ = G∗00
∆,M for any model M ≺ C.

The inclusion (⊆) is clear. For the other inclusion it is enough to show that
G∗00

∆ is the intersection of a family of sets which are ∆-de�nable overM . Consider
any i ∈ I. We will be done if we show that there exist a ∆-formula ϕ(x) over
M and j ∈ I such that ϕj(G

∗) ⊆ ϕ(G∗) ⊆ ϕi(G
∗). By the de�nition of G∗00

∆ and
compactness, there is a ∆-formula ϕ∗(x) over C such that G∗00

∆ ⊆ ϕ∗(G∗) ⊆ ϕi(G
∗).

By compactness, there is j ∈ I such that ϕj(G
∗) ⊆ ϕ∗(G∗) ⊆ ϕi(G

∗). Since
M ≺ C, we can replace the parameters of ϕ∗(x) by some parameters from M ,
obtaining a ∆-formula ϕ(x) over M for which ϕj(G

∗) ⊆ ϕ(G∗) ⊆ ϕi(G
∗). �

When the theory T := Th(M) has NIP, we know that G∗00 exists (see [25] or
[27, Theorem 8.4]). By Remark 5.17, this implies that G∗00

∆,M is type-de�nable over

∅. Thus, if we assume that the language of T is countable, then G∗/G∗00
∆,M is a

compact, metrizable group and Aut(C) induces a compact group, say AUT, acting
continuously on G∗/G∗00

∆,M as a group of automorphisms (see [17, Lemma 3.11]

and [13, Fact 1.3]). So (AUT, G∗/G∗00
∆,M) is a compact structure interpretable in

T over ∅, according to [11, De�nition 1.3]. It is very easy to see that if T is small,
then this compact structure is also small, and then [11, Remark 2.1] tells us that
G∗/G∗00

∆,M is a pro�nite space (i.e. a totally disconnected, compact, Hausdor�
space (see [24, Theorem 1.1.12] for equivalent de�nitions of a pro�nite space))
which implies that it is a pro�nite group (see [24, Theorem 2.1.3]). In fact, the
assumption that the language is countable can be dropped in the last conclusion,
as each small theory is a de�nitional extension of its reduct to a certain countable
sublanguage. Alternatively, in the very simple proof of [11, Remark 2.1], the fact
that the underlying space (in our case, G∗/G∗00

∆,M) of the small compact structure
in question is metrizable is irrelevant to conclude that it is pro�nite, hence the
countability of the language can be dropped. So we have justi�ed the following

Remark 5.18. If T := Th(M) is small and has NIP, then G∗/G∗00
∆,M is a pro�nite

group.

Assume that T := Th(M) is stable. We will be using fundamental knowledge
on stability and stable groups (e.g. see [22, Chapter 1]). By [22, Chapter 1,
Lemma 2.2(i)] and the shape of the formulas in ∆, one easily gets that the G-
ambit SG,∆(M) is ∆-de�nable, so it is the universal ∆-de�nable G-ambit and the
relation E∆ is trivial (by Corollary 2.3 and Remark 2.4). Since (by stability) there
is a generic type in SG,∆(M), Corollary 1.9 of [20] implies that there is a unique
minimal left ideal (equivalently, minimal sub�ow)M of SG,∆(M) and it consists
of all the generic types. Another consequence of stability and the shape of the
formulas in ∆ is that any coset of G∗00

∆,M determines a unique generic type in
SG,∆(M) (which is the ∆-type over M of some element of this coset). Together
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with Proposition 2.5, this implies that there is a unique idempotent u ∈M which is
exactly the unique generic type containing all ∆-formulas over M de�ning G∗00

∆,M .

Thus, M = uM, θ : uM → G∗/G∗00
∆,M is a topological isomorphism, the usual

topology onM coincides with the τ -topology on uM, and G∗/G∗00
∆,M is pro�nite.

By work of Newelski (e.g. see [18, Proposition 1.6] and [19, Example 3]), it
follows that if the language is countable and T is superstable with few count-
able models (so T is small), then (AUT, G∗/G∗00

∆,M) is a small, m-stable pro�nite

structure (in the sense of [19]), which in turn implies, by [28], that G∗/G∗00
∆,M is

abelian-by-�nite.
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