Stable groups, Problem 4.1

Done by Krzysztof Krupiński, Junguk Lee and Slavko Moconja

In this note we show quantifier elimination of the following theory. Let G be an infinite abelian group of exponent 2 (infinite vector space over $\mathbb{Z} / 2 \mathbb{Z}$), $A_{1} \subseteq G$ an infinite linearly independent subset, A_{n} the set of all sums of distinct n elements from A_{1}, and $A_{0}=\{0\}$. We consider structure $\left(G,+, A_{n}\right)_{n<\omega}$ with theory T and we work in an \aleph_{0}-saturated model M of T. (Actually, everything in this note holds for any model M, we only need \aleph_{0}-saturation to conclude quantifier elimination at the end.) M is an infinite vector space over $\mathbb{Z} / 2 \mathbb{Z}$ too, A_{1}^{M} is infinite linearly independent subset, A_{n}^{M} is the set of all sums of n distinct elements from A_{1}^{M}. Further on, A_{n} denotes A_{n}^{M}.
0.1. Fact. $\operatorname{span}\left(A_{1}\right)=\bigcup_{n<\omega} A_{n}$.
0.2. Definition. If $a \in \operatorname{span}\left(A_{1}\right), S(a)=\left\{a_{1}, \ldots, a_{n}\right\}$ where $a=a_{1}+\cdots+a_{n}$ for $a_{1}, \ldots, a_{n} \in A_{1}$. (So, $|S(a)|=n$ iff $a \in A_{n}$.)

In the following claims we will manipulate with sets $S(a)$ and their complements, so let us emphasize that $S(a)^{c}$ denotes the complement of $S(a)$ in $A_{1}: S(a)^{c}=A_{1} \backslash S(a)$.
0.3. Claim. For $a, b \in \operatorname{span}\left(A_{1}\right), S(a+b)=\left(S(a) \cap S(b)^{c}\right) \cup\left(S(a)^{c} \cap S(b)\right)$.

Proof. Let $S(a) \cap S(b)=\left\{c_{1}, \ldots, c_{k}\right\}, S(a)=\left\{c_{1}, \ldots, c_{k}, a_{1}, \ldots, a_{m}\right\}$ and $S(b)=\left\{c_{1}, \ldots, c_{k}, b_{1}, \ldots, b_{n}\right\}$, where c_{i} 's, a_{i} 's and b_{i} 's are in A_{1}. Then $S(a+b)=\left\{a_{1}, \ldots, a_{m}, b_{1}, \ldots, b_{n}\right\}$, so the conclusion follows.
0.4. Definition. A tuple $\bar{e} \in 2^{n}$ is odd if odd many coordinates are 1 , and even otherwise.
0.5. Claim. For all $a_{1}, \ldots, a_{n} \in \operatorname{span}\left(A_{1}\right)$:

$$
S\left(\sum_{i=1}^{n} a_{i}\right)=\bigcup_{\substack{\bar{e} \in 2^{n} \\ \text { odd }}}^{n} S\left(a_{i=1}\right)^{e_{i}} \quad \text { and } \quad S\left(\sum_{i=1}^{n} a_{i}\right)^{c}=\bigcup_{\substack{\bar{e} \in 2^{n} \\ \text { even }}}^{n} S\left(a_{i}\right)^{e_{i}} .
$$

Proof. Induction on n. For $n=1$ the claim is obvious. Assume that the claim holds for n and take $a_{1}, \ldots, a_{n}, a_{n+1}$. By Claim 0.3 we have:

$$
\left.\begin{array}{rl}
S\left(\sum_{i=1}^{n+1} a_{i}\right) & =\left(S\left(\sum_{i=1}^{n} a_{i}\right) \cap S\left(a_{n+1}\right)^{c}\right) \cup\left(S\left(\sum_{i=1}^{n} a_{i}\right)^{c} \cap S\left(a_{n+1}\right)\right) \\
& =\left(\bigcup_{\substack{\bar{e} \in 2^{n} \\
\text { odd }}}^{n} S\left(a_{i}\right)^{e_{i}} \cap S\left(a_{n+1}\right)^{c}\right) \cup\left(\bigcup_{\substack{e \in 2^{n} \\
\text { even }}}^{n} \bigcap_{i=1}^{n} S\left(a_{i}\right)^{e_{i}} \cap S\left(a_{n+1}\right)\right) \\
& =\bigcup_{\substack{\bar{e} \in 2^{n+1} \\
\text { odd }}}^{n+1} S\left(a_{i}\right)^{e_{i}},
\end{array}\right\}
$$

0.6. Claim. If $\bar{a}=\left(a_{1}, \ldots, a_{n}\right)$ and $\bar{b}=\left(b_{1}, \ldots, b_{n}\right)$ in $\operatorname{span}\left(A_{1}\right)$ are such that $\bar{a} \equiv{ }_{q f} \bar{b}$ then for every $\bar{e} \in 2^{n}$:

$$
\left|\bigcap_{i=1}^{n} S\left(a_{i}\right)^{e_{i}}\right|=\left|\bigcap_{i=1}^{n} S\left(b_{i}\right)^{e_{i}}\right| .
$$

Proof. Induction on n. For $n=1, a_{1} \equiv_{q f} b_{1}$ implies $\left|S\left(a_{1}\right)\right|=\left|S\left(b_{1}\right)\right|$ as $a_{1} \in A_{\left|S\left(a_{1}\right)\right|}$ and $b_{1} \in A_{\left|S\left(b_{1}\right)\right|}$. Therefore, $\left|S\left(a_{1}\right)^{c}\right|=\left|S\left(b_{1}\right)^{c}\right|$ holds as well. Assume that $n>1$. Let k be such that:

$$
\left|\bigcap_{i=1}^{n} S\left(a_{i}\right)\right|=\left|\bigcap_{i=1}^{n} S\left(b_{i}\right)\right|+k .
$$

(This is the intersection corresponding to $\bar{e}=(1, \ldots, 1)$.) Denote by $\delta(\bar{e})$ the number of 1 's in \bar{e}. By induction on $n-\delta(\bar{e})$ we prove that:

$$
\left|\bigcap_{i=1}^{n} S\left(a_{i}\right)^{e_{i}}\right|=\left|\bigcap_{i=1}^{n} S\left(b_{i}\right)^{e_{i}}\right|+(-1)^{n-\delta(\bar{e})} k .
$$

The assertion is true for $\delta(\bar{e})=n$ by the definition of k. Consider \bar{e} with $\delta(\bar{e})<n$. Take one j such that $e_{j}=0$, and denote by \bar{e}^{\prime} the tuple \bar{e} with j-th coordinate swapped by 1 , so $\delta\left(\bar{e}^{\prime}\right)=\delta(\bar{e})+1$. We have:

$$
\left|\bigcap_{i=1}^{n} S\left(a_{i}\right)^{e_{i}}\right|+\left|\bigcap_{i=1}^{n} S\left(a_{i}\right)^{e_{i}^{\prime}}\right|=\left|\bigcap_{\substack{i=1 \\ i \neq j}}^{n} S\left(a_{i}\right)^{e_{i}}\right| \stackrel{(*)}{=}\left|\bigcap_{\substack{i=1 \\ i \neq j}}^{n} S\left(b_{i}\right)^{e_{i}}\right|=\left|\bigcap_{i=1}^{n} S\left(b_{i}\right)^{e_{i}}\right|+\left|\bigcap_{i=1}^{n} S\left(b_{i}\right)^{e^{\prime}}\right|,
$$

where $(*)$ holds by the first induction hypothesis. By the second induction hypothesis we have:

$$
\left|\bigcap_{i=1}^{n} S\left(a_{i}\right)^{e_{i}^{\prime}}\right|=\left|\bigcap_{i=1}^{n} S\left(b_{i}\right)^{e_{i}^{\prime}}\right|+(-1)^{n-\delta\left(\bar{e}^{\prime}\right)} k
$$

hence we get:

$$
\left|\bigcap_{i=1}^{n} S\left(a_{i}\right)^{e_{i}}\right|=\left|\bigcap_{i=1}^{n} S\left(b_{i}\right)^{e_{i}}\right|+(-1)^{n-1-\delta\left(\bar{e}^{\prime}\right)} k=\left|\bigcap_{i=1}^{n} S\left(b_{i}\right)^{e_{i}}\right|+(-1)^{n-\delta(\bar{e})} k .
$$

This finishes the second induction.
By $\bar{a} \equiv_{q f} \bar{b}$ we have $\sum_{i=1}^{n} a_{i} \equiv_{q f} \sum_{i=1}^{n} b_{i}$, in particular $\left|S\left(\sum_{i=1}^{n} a_{i}\right)\right|=\left|S\left(\sum_{i=1}^{n} b_{i}\right)\right|$ (by the induction basis). On the other hand by Claim 0.5:

$$
\begin{gathered}
\left|S\left(\sum_{i=1}^{n} a_{i}\right)\right|=\sum_{\substack{\bar{e} \in 2^{n} \\
o d d}}\left|\bigcap_{i=1}^{n} S\left(a_{i}\right)^{e_{i}}\right|=\sum_{\substack{\bar{e} \in 2^{n} \\
\text { odd }}}\left|\bigcap_{i=1}^{n} S\left(b_{i}\right)^{e_{i}}\right|+(-1)^{n-\delta(\bar{e})} k= \\
=\left|S\left(\sum_{i=1}^{n} b_{i}\right)\right|+\sum_{\substack{\bar{e} \in 2^{n} \\
\text { odd }}}(-1)^{n-\delta(\bar{e})} k,
\end{gathered}
$$

so we conclude $k=0$ as for odd $\bar{e},(-1)^{n-\delta(\bar{e})}$ has the constant value. This finishes the proof.
0.7. Claim. T has quantifier elimination.

Proof. It is enough for $\bar{a} \equiv_{q f} \bar{b}$ to find an automorphism $f \in \operatorname{Aut}(M)$ such that $f(\bar{a})=\bar{b}$; fix such \bar{a} and \bar{b}. Let \bar{a}_{1} be a basis of $\operatorname{span}\left(A_{1}\right) \cap \operatorname{span}(\bar{a})$ and choose \bar{a}_{2} such that $\bar{a}_{1} \bar{a}_{2}$ is a basis for $\operatorname{span}(\bar{a})$. Then $A_{1} \bar{a}_{2}$ is linearly independent as otherwise some linear combination of \bar{a}_{2} belongs to span $\left(A_{1}\right)$ but also to $\operatorname{span}(\bar{a})$, so to $\operatorname{span}\left(\bar{a}_{1}\right)$ which is not possible.

Since $\operatorname{span}(\bar{a})=\operatorname{span}\left(\bar{a}_{1} \bar{a}_{2}\right)$ we see that $\bar{a}_{1} \bar{a}_{2}=\varphi(\bar{a})$ and $\bar{a}=\psi\left(\bar{a}_{1} \bar{a}_{2}\right)$, where φ and ψ are coordinatewise linear combinations. Denote $\bar{b}_{1} \bar{b}_{2}=\varphi(\bar{b})$; since, $\bar{x}=\psi(\varphi(\bar{x}))$ " belongs to $\operatorname{tp}_{\mathrm{qf}}(\bar{a})$, we have
$\bar{b}=\psi\left(\bar{b}_{1} \bar{b}_{2}\right)$. Similarly, for $\theta\left(\bar{x}, \bar{x}_{1}, \bar{x}_{2}\right) \in \operatorname{tp}_{\mathrm{qf}}\left(\bar{a} \bar{a}_{1} \bar{a}_{2}\right)$ we have , $\theta(\bar{x}, \varphi(\bar{x})) "$ belongs to $\operatorname{tp}_{\mathrm{qf}}(\bar{a})$, so we obtain $\theta\left(\bar{x}, \bar{x}_{1}, \bar{x}_{2}\right) \in \operatorname{tp}_{\mathrm{qf}}\left(\bar{b}, \bar{b}_{1}, \bar{b}_{2}\right)$, and $\bar{a} \bar{a}_{1} \bar{a}_{2} \equiv{ }_{q f} \bar{b} \bar{b}_{1} \bar{b}_{2}$ follows. In particular $\bar{b}_{1} \bar{b}_{2}$ are linearly independent and $\bar{b}_{1} \in \operatorname{span}\left(A_{1}\right)$. Furthermore, $\operatorname{span}(\bar{b})=\operatorname{span}\left(\bar{b}_{1} \bar{b}_{2}\right)$ as $\operatorname{span}(\bar{a})=\operatorname{span}\left(\bar{a}_{1} \bar{a}_{2}\right)$ is expressible as a quantifier-free sentence over $\bar{a} \bar{a}_{1} \bar{a}_{2}$. Moreover, $\operatorname{span}\left(A_{1}\right) \cap \operatorname{span}(\bar{b})=\operatorname{span}\left(\bar{b}_{1}\right):(\supseteq)$ is clear; for (\subseteq) if some linear combination $t(\bar{b})$ belongs to $\operatorname{span}\left(A_{1}\right)$, say to A_{n}, then , $t(\bar{x}) \in A_{n}$ " is in $\operatorname{tp}_{\mathrm{qf}}(\bar{b})$ so $t(\bar{a}) \in \operatorname{span}\left(A_{1}\right)$ hence $t(\bar{a})=s\left(\bar{a}_{1}\right)$ for some linear combination $s\left(\bar{a}_{1}\right)$. Formula,$t(\bar{x})=s\left(\bar{x}_{1}\right) "$ is in $\operatorname{tp}_{\mathrm{qf}}\left(\bar{a} \bar{a}_{1}\right)$ so $t(\bar{b})=s\left(\bar{b}_{1}\right) \in \operatorname{span}\left(\bar{b}_{1}\right)$. Therefore, $A_{1} \bar{b}_{2}$ is linearly independent by the same reason as above.

Let $\bar{a}_{1}=\left(a_{11}, \ldots, a_{1 n}\right)$ and $\bar{b}_{1}=\left(b_{11}, \ldots, b_{1 n}\right)$. By Claim 0.6 we can find $f \in \operatorname{Sym}\left(A_{1}\right)$ such that f $\operatorname{maps} \bigcap_{i=1}^{n} S\left(a_{1 i}\right)^{e_{i}}$ to $\bigcap_{i=1}^{n} S\left(b_{1 i}\right)^{e_{i}}$ for every $\bar{e} \in 2^{n}$. Then f can be extended to an automorphism of vector space $\operatorname{span}\left(A_{1}\right)$. Since $a_{1 j}$ is the sum of elements in sets $\bigcap_{i=1}^{n} S\left(a_{1 i}\right)^{e_{i}}$ for $\bar{e} \in 2^{n}$ with $e_{j}=1$, $f\left(a_{1 j}\right)$ is equal to the sum of elements in sets $\bigcap_{i=1}^{n} S\left(b_{1 i}\right)^{e_{i}}$ for $\bar{e} \in 2^{n}$ with $e_{j}=1$, i.e. $f\left(a_{1 j}\right)=b_{1 j}$; hence $f\left(\bar{a}_{1}\right)=\bar{b}_{1}$. Moreover, f preserves each A_{n}. Since \bar{a}_{2} and \bar{b}_{2} are independent over span $\left(A_{1}\right)$, f can be further extended to an automorphism of vector space M such that $f\left(\bar{a}_{2}\right)=\bar{b}_{2}$. Clearly, $f \in \operatorname{Aut}(M)$. Since, $\bar{a}=\psi\left(\bar{a}_{1} \bar{a}_{2}\right)$ and $\bar{b}=\psi\left(\bar{b}_{1} \bar{b}_{2}\right)$ we get $f(\bar{a})=\bar{b}$.
0.8. Corollary. For any model M (or just vector subspace M) and $p \in S_{1}(M)$:

$$
\left\{x \in a+A_{n}, x \notin a+A_{n} \mid n<\omega, a \in M\right\} \cap p(x) \vdash p(x) .
$$

Proof. Since $x=a$ is equivalent to $x \in a+A_{0}$ and M is a model, every atomic formula over M is given by $x \in a+A_{n}$ for $n<\omega$ and $a \in M$. Conclusion follows by quantifier elimination.

We aim to describe complete 1-types over a model M. Fix M and a monster $\mathfrak{C} \succ M$.
0.9. Claim. There is a unique type $p \in S_{1}(M)$ containing $x \notin a+A_{n}$ for every $n<\omega$ and $a \in M$.

Proof. First note that for $n<\omega$ and $a \in M$ either $\left(a+A_{n}^{M}\right) \cap \operatorname{span}\left(A_{1}^{M}\right)=\emptyset$ or there is $m<\omega$ such that $a+A_{n}^{M} \subseteq \bigcup_{i<m} A_{i}^{M}$. If $a \notin \operatorname{span}\left(A_{1}^{M}\right)$ then clearly $\left(a+A_{n}^{M}\right) \cap \operatorname{span}\left(A_{1}^{M}\right)=\emptyset$. If $a \in \operatorname{span}\left(A_{1}^{M}\right)$, then $a \in A_{k}^{M}$ for some $k<\omega$, so $a+A_{n}^{M} \subseteq A_{k}^{M}+A_{n}^{M} \subseteq \bigcup_{i \leqslant k+n} A_{i}^{M}$.

Let us notice that $\left\{x \notin a+A_{n} \mid n<\omega, a \in M\right\}$ is consistent. For $n_{1}, \ldots, n_{k}<\omega$ and $a_{1}, \ldots, a_{k} \in M$ take $m<\omega$ such that either $a_{i}+A_{n_{i}}^{M} \subseteq \bigcup_{j<m} A_{j}^{M}$ or $\left(a_{i}+A_{n_{i}}^{M}\right) \cap \operatorname{span}\left(A_{1}\right)=\emptyset$ for every $i \leqslant k$. Then any element from A_{m}^{M} satisfies $x \notin a_{i}+A_{n_{i}}$ for $i \leqslant k$. Therefore, $\left\{x \notin a+A_{n} \mid n<\omega, a \in M\right\}$ is finitely consistent, hence consistent.

The type p is uniquely determined by Corollary 0.8.
0.10. Claim. Let $q \in S_{1}(M), q \neq p$. Denote by n_{q} the minimal $n<\omega$ such that $x \in a+A_{n}$ is in q for some $a \in M$.
(1) If $g \neq q$ in \mathfrak{C} and $x \in a+A_{n_{q}}$ is in q, then $g=a+c_{1}+\ldots+c_{n_{q}}$ for some distinct $c_{1}, \ldots, c_{n_{q}} \in$ $A_{1}^{\mathfrak{C}} \backslash A_{1}^{M}$.
(2) The element $a \in M$ such that $x \in a+A_{n_{q}}$ is in q is uniquely determined; we denote it by a_{q}.
(3) The pair $\left(n_{q}, a_{q}\right)$ determines q.
(4) For any distinct $c_{1}, \ldots, c_{n_{q}} \in A_{1}^{\mathfrak{C}} \backslash A_{1}^{M}, a_{q}+c_{1}+\cdots+c_{n_{q}} \models q$.

Proof. (1) We can write $g=a+c_{1}+\cdots+c_{n_{q}}$ for some $c_{1}, \ldots, c_{n_{q}} \in A_{1}^{\mathfrak{C}}$. If $c_{1} \in M$, then $g=$ $a^{\prime}+c_{2}+\cdots+c_{n_{q}} \in a^{\prime}+A_{n_{q}-1}^{\mathfrak{C}}$ where $a^{\prime}=a+c_{1} \in M$, so $x \in a^{\prime}+A_{n_{q}-1}$ is in q which contradicts the minimality of n_{q}. Thus $c_{1} \notin M$. Similarly, all $c_{1}, \ldots, c_{n_{q}} \notin M$.
(2) Let $x \in a+A_{n_{q}}, x \in b+A_{n_{q}}$ be in q and $g \models q$ in \mathfrak{C}. By (1) we can write $g=a+c_{1}+\cdots+c_{n_{q}}=$ $b+d_{1}+\cdots+d_{n_{q}}$ for some distinct $c_{1}, \ldots, c_{n_{q}} \in A_{1}^{\mathfrak{C}} \backslash A_{1}^{M}$ and distinct $d_{1}, \ldots, d_{n_{q}} \in A_{1}^{\mathfrak{C}} \backslash A_{1}^{M}$. Then $a+b=c_{1}+\cdots+c_{n_{q}}+d_{1}+\cdots+d_{n_{q}}$ belongs to M, which is possible only if $\left\{c_{1}, \ldots, c_{n_{q}}\right\}=\left\{d_{1}, \ldots, d_{n_{q}}\right\}$, i.e. $a+b=0$. Thus $a=b$.
(3) Let $r \in S_{1}(M)$ be such that $r \neq p$ and $\left(n_{r}, a_{r}\right)=\left(n_{q}, a_{q}\right)=:(n, a)$. Let $g \models q, h \models r$. By (1) we can write $g=a+c_{1}+\cdots+c_{n}$ and $h=a+d_{1}+\cdots+d_{n}$ for distinct $c_{1}, \ldots, c_{n} \in A_{1}^{\mathfrak{C}} \backslash A_{1}^{M}$ and distinct $d_{1}, \ldots, d_{n} \in A_{1}^{\mathfrak{C}} \backslash A_{1}^{M}$. Note that c_{i} 's and d_{i} 's, as well as their linear combinations are not in M. Thus $\operatorname{tp}_{\mathrm{qf}}(\bar{c} / M)=\operatorname{tp}_{\mathrm{qf}}(\bar{d} / M)$. By quantifier elimination $\operatorname{tp}(\bar{c} / M)=\operatorname{tp}(\bar{d} / M)$. So id M can be extended to $f \in \operatorname{Aut}(\mathfrak{C})$ such that $f\left(c_{i}\right)=d_{i}$. Then $f(g)=h$ and hence $r=q$.
(4) By (1) and (the proof of) (3).
0.11. Corollary. T is ω-stable.

Proof. By Claim 0.9 and Claim 0.10 for a countable model $M, S_{1}(M)$ is countable. This is enough.
0.12. Corollary. Let $q \in S_{1}(M)$ be such that $q \neq p$ and $\left(n_{q}, a_{q}\right)=(n, 0)$. Then $x \in a+A_{m}$ belongs to q iff $n \leqslant m$ and $a \in A_{m-n}^{M}$.
Proof. By Claim $0.10(1)$, there are distinct $c_{1}, \ldots, c_{n} \in A_{1}^{\mathfrak{C}} \backslash A_{1}^{M}$ such that $c_{1}+\cdots+c_{n}=q$. Assume that $x \in a+A_{m}$ is in q. By the definition of $n, n \leqslant m$. Now $c_{1}+\cdots+c_{n} \in a+A_{m}^{\mathfrak{C}}$ so we can write $a=c_{1}+\cdots+c_{n}+d_{1}+\cdots+d_{m}$ where $d_{1}, \ldots, d_{m} \in A_{1}^{\mathfrak{C}}$ are distinct. Since this sum is in M, the only possibility is that $\left\{c_{1}, \ldots, c_{n}\right\} \subseteq\left\{d_{1}, \ldots, d_{m}\right\}$ and $\left\{d_{1}, \ldots, d_{m}\right\} \backslash\left\{c_{1}, \ldots, c_{n}\right\} \subseteq A_{1}^{M}$. Therefore $a \in A_{m-n}^{M}$. On the other hand, if $a \in A_{m-n}^{M}$ then $a+c_{1}+\cdots+c_{n} \in A_{m}^{\mathfrak{C}}$, so $c_{1}+\cdots+c_{n}$ satisfies $x \in a+A_{m}$.

Further on we will write $q_{(n, a)}$ for a type $q \in S_{1}(M)$ such that $q \neq p$ and $\left(n_{q}, a_{q}\right)=(n, a)$.
0.13. Claim. We work in \mathfrak{C}.
(1) $\operatorname{RM}\left(A_{n+1}\right)>\operatorname{RM}\left(A_{n}\right)$ and $\operatorname{RM}\left(A_{n+1}\right) \geqslant n+1$ for $n<\omega$;
(2) in fact, $\operatorname{RM}\left(A_{n}\right)=n$ for $n<\omega$ and $\operatorname{RM}\left(q_{(n, a)}\right)=n$ for $n<\omega, a \in \mathfrak{C}$;
(3) $\operatorname{RM}\left(A_{n}^{c}\right)=\omega$ for $n<\omega$ and $\operatorname{RM}(p)=\omega$;
(4) $\operatorname{RM}(x=x)=\omega$.

Proof. (1) We proceed by induction on n. For $n=0$, the assertion is trivial as A_{0} is finite and A_{1} is infinite. Let $n \geqslant 1$. Note that by ω-stability all RM's are ordinal. For $a \in A_{1}$ denote by $A_{n}(a)$ the subset of A_{n} consisting of all sums of n-distinct elements from A_{1} which include a, and by $B_{n}(a)$ the complement $A_{n} \backslash A_{n}(a)$. Note that $a+A_{n}=\left(a+A_{n}(a)\right) \cup\left(a+B_{n}(a)\right), a+A_{n}(a) \subseteq$ A_{n-1} and $a+B_{n}(a) \subseteq A_{n+1}$; by induction hypothesis $\operatorname{RM}\left(a+A_{n}(a)\right) \leqslant \operatorname{RM}\left(A_{n-1}\right)<\operatorname{RM}\left(A_{n}\right)$, so $\operatorname{RM}\left(a+B_{n}(a)\right)=\operatorname{RM}\left(A_{n}\right)$. Also for distinct $a, b \in A_{1},\left(a+B_{n}(a)\right) \cap\left(b+B_{n}(b)\right) \subseteq a+b+A_{n-1}$, so by induction hypothesis again $\operatorname{RM}\left(\left(a+B_{n}(a)\right) \cap\left(b+B_{n}(b)\right)\right)<\operatorname{RM}\left(A_{n}\right)$. Take distinct $a_{i} \in A_{1}, i<\omega$ and consider:

$$
S_{i}=\left(a_{i}+B_{n}\left(a_{i}\right)\right) \backslash \bigcup_{j<i}\left(a_{j}+B_{n}\left(a_{j}\right)\right)
$$

S_{i} 's are clearly mutually disjoint subsets of A_{n+1}. Moreover, $\mathrm{RM}\left(S_{i}\right)=\mathrm{RM}\left(A_{n}\right)$ since it is obtained by excluding a finite union of sets of $\mathrm{RM}<\mathrm{RM}\left(A_{n}\right)$ from a set of $\mathrm{RM}=\operatorname{RM}\left(A_{n}\right)$. Therefore, $\operatorname{RM}\left(A_{n+1}\right) \geqslant \operatorname{RM}\left(A_{n}\right)+1>\operatorname{RM}\left(A_{n}\right)$.

The second assertion now obviously holds by the induction hypothesis.
(2) We show by induction that $\operatorname{RM}\left(A_{n}\right)=n$ and $\operatorname{RM}\left(q_{(n, a)}\right)=n$. For $n=0$ this is clear. Let $n>0$. Note that each type in $\left[A_{n}\right] \subseteq S_{1}(\mathfrak{C})$ is of the form $q_{(m, a)}$ for some $m \leqslant n$ and $a \in \mathfrak{C}$. By induction hypothesis, for $m<n$ we have $\operatorname{RM}\left(q_{(m, a)}\right)=m<n$. On the other hand, for $m=n$ the element a must be equal to 0 by Claim $0.10(2)$ (as $x \in A_{n}$ and $x \in a+A_{n}$ are both in $\left.q_{(m, a)}\right)$, so in [A_{n}] there is at most only one type whose RM is not less than n. Hence, $\operatorname{RM}\left(A_{n}\right) \leqslant n$.

Thus, by (1), $\operatorname{RM}\left(A_{n}\right)=n$. Since $\left[A_{n}\right]$ contains a type with $\mathrm{RM}=\operatorname{RM}\left(A_{n}\right)$, by the previous paragraph we conclude $\operatorname{RM}\left(q_{(n, 0)}\right)=n$. By Claim 0.10 we may conclude $q_{(n, a)}=a+q_{(n, 0)}$, so $\operatorname{RM}\left(q_{(n, a)}\right)=\operatorname{RM}\left(q_{(n, 0)}\right)=n$.
(3) Since A_{n}^{c} contains A_{m} for $m>n$, we have $\operatorname{RM}\left(A_{n}^{c}\right) \geqslant \operatorname{RM}\left(A_{m}\right)=m$ for $m>n$, hence $\operatorname{RM}\left(A_{n}^{c}\right) \geqslant \omega$. As almost all types in $\left[A_{n}^{c}\right] \subseteq S_{1}(\mathfrak{C})$, except for maybe p, are of finite RM by (2), we have $\operatorname{RM}\left(A_{n}^{c}\right) \leqslant \omega$. Thus $\operatorname{RM}\left(A_{n}^{c}\right)=\omega$. Consequently, $\operatorname{RM}(p)=\omega$ as p is the only candidate for $\operatorname{RM}=\operatorname{RM}\left(A_{n}^{c}\right)$ in $\left[A_{n}^{c}\right]$.
(4) Clear.
0.14. Corollary. If $\left(n_{i}\right)_{i<\omega}$ is an increasing sequence of positive integers, then $\lim q_{\left(n_{i}, 0\right)}=p$ in $S_{1}(M)$. Proof. Let $r \in S_{1}(M)$ be an accumulation point of the sequence $\left(q_{\left(n_{i}, 0\right)}\right)_{i<\omega}$. If $\phi(x) \in L(M)$ is a formula of a finite RM , then $[\phi(x)]$ contains only finitely many members of the sequence as their ranks n_{i} 's increase. Thus $\phi(x) \notin r$. Therefore $r=p$.
0.15. Claim. Let $M \prec \mathfrak{C}$. Then $p(\mathfrak{C})$ generates \mathfrak{C}, where we consider $p \in S_{1}(M)$.

Proof. Let $g \models p$. First we claim that $M \subseteq \operatorname{span}(p(\mathfrak{C}))$. Let $m \in M$ and consider $\operatorname{tp}(m+g / M)$. If it is p, then $m=g+(m+g) \in \operatorname{span}(p(\mathfrak{C}))$. Otherwise $\operatorname{tp}(m+g / M)=q_{(n, a)}$ for some $n<\omega$ and $a \in M$, so by Claim $0.10(1)$ we can write $m+g=a+c_{1}+\cdots+c_{n}$ for distinct $c_{1}, \ldots, c_{n} \in A_{1}^{\mathfrak{C}} \backslash A_{1}^{M}$, hence $g=m+a+c_{1}+\cdots+c_{n}$ satisfies $x \in m+a+A_{n}$; a contradiction. Further we claim $A_{1}^{\mathfrak{C}} \subseteq \operatorname{span}(p(\mathfrak{C}))$. Let $c \in A_{1}^{\mathfrak{C}}$ and consider $\operatorname{tp}(c+g / M)$. If it is p, then $c=g+(c+g) \in \operatorname{span}(p(\mathfrak{C}))$. Otherwise $\operatorname{tp}(c+g / M)=q_{(n, a)}$ for some $n<\omega$ and $a \in M$, so as before we write $c+g=a+c_{1}+\cdots+c_{n}$, hence $g=a+c+c_{1}+\cdots+c_{n}$ satisfies either $x \in a+A_{n-1}$ (if c equals one of c_{i} 's) or $x \in a+A_{n+1}$ (if c differs from all c_{i} 's); in both cases we have a contradiction.

Finally, we prove that $p(\mathfrak{C})$ generates \mathfrak{C}. Let $h \in \mathfrak{C}$ and consider $\operatorname{tp}(h+g / M)$. If it is p, then $h=$ $g+(h+g) \in \operatorname{span}(p(\mathfrak{C}))$. Otherwise, $\operatorname{tp}(h+g / M)=q_{(n, a)}$, so as above we write $h+g=a+c_{1}+\cdots+c_{n}$. Then $h=a+c_{1}+\cdots+c_{n}+g \in \operatorname{span}(p(\mathfrak{C}))$ by the previous paragraph.
0.16. Claim. If $H \leqslant G$ is a proper definable subgroup, then H is finite.

Proof. Suppose that H is infinite and consider $[H]$ in $S_{1}(G)$; we claim that $p \in[H]$. Since H is infinite, there is a non-algebraic type $r \in[H]$. If $r=p$ we are done. Otherwise $r=q_{(n, a)}$ for some $n \geqslant 1$ and $a \in G$. Then $q_{(n, a)}(\mathfrak{C}) \subseteq H^{\mathfrak{C}}$. For distinct $c, d, c_{2}, \ldots, c_{n} \in A_{1}^{\mathbb{C}} \backslash A_{1}^{G}$, by Claim $0.10 a+c+c_{2}+\cdots+c_{n}$ and $a+d+c_{2}+\cdots+c_{n}$ satisfy $q_{(n, a)}$, so they are in $H^{\mathfrak{C}}$, hence their sum $c+d \in H^{\mathfrak{C}}$ too. Now, for distinct $c_{1}, c_{2}, \ldots, d_{1}, d_{2}, \ldots \in A_{1}^{\mathbb{C}} \backslash A_{1}^{G}$ we have $c_{1}+\cdots+c_{k}+d_{1}+\cdots+d_{k} \in H^{\mathfrak{C}}$ for all $k<\omega$. Since $\operatorname{tp}\left(c_{1}+\cdots+c_{k}+d_{1}+\cdots+d_{k} / G\right)=q_{(2 k, 0)}$ by Claim 0.10 , we conclude $q_{(2 k, 0)} \in[H]$ for all $k<\omega$. Since $[H]$ is closed by Corollary $0.14, p \in[H]$.

Since $p \in[H], p(\mathfrak{C}) \subseteq H^{\mathfrak{C}}$, so $H^{\mathfrak{C}}=\mathfrak{C}$ by Claim 0.15. Therefore $H=G$; a contradiction.
0.17. Comment. The assumption $\operatorname{RM}(G)<\omega$ in Zilber's theorem is necessary. The set $A_{0} \cup A_{1}$, which contains 0 , is indecomposable since it is infinite, but every definable subgroup of G is either G or finite by Claim 0.16 . On the other hand, $\operatorname{span}\left(A_{0} \cup A_{1}\right)$ can't be generated in finitely many steps.

