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Abstract

We investigate the structure of locally finite profinite rings. We classify
(Jacobson-) semisimple locally finite profinite rings as products of complete
matrix rings of bounded cardinality over finite fields, and we prove that the
Jacobson radical of any locally finite profinite ring is nil of finite nilexponent.
Our results apply to the context of small compact G-rings, where we also
obtain a description of possible actions of G on the underlying ring.

0 Introduction

By a locally finite ring we mean a ring whose every finitely generated subring is finite
and by a profinite ring we mean the limit of any inverse system of finite rings.

Now, we recall the notions of small compact G-groups and G-rings, which form
important subclasses of the class of small Polish structures defined in [2].

Definition 0.1. Let G be a Polish group. A compact G-group [G-ring ] is a pair
(R,G), where R is a compact topological group [ring] and G acts on R continuously
as a group of automorphisms. We say that (R,G) is small if for every n < ω there
are only countably many orbits under the action of G on R×n (the set of n-tuples).

Our general motivation is to understand the structure of groups and rings in
the context of small Polish structures. A particularly interesting and accessible
situation is the case of small compact G-groups and G-rings. The initial motivation
for the current work was to describe the structure of small compact G-rings. Under
the additional assumption of nm-stability (see [2, Section 3] for definition) which
corresponds to the model-theoretic notion of superstability, we know a lot by [5,
3]. For example, [3, Theorem 3.2] tells us that small, nm-stable compact G-rings
are nilpotent-by-finite, and it is conjectured that they are null-by-finite which was
confirmed if the so-called NM-rank of the ring is less than ω. However, without
nm-stability, not much is known. We know for example that that the Cartesian
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power Rω of any finite ring R, considered together with the Polish group G of all
permutations of coordinates, is a small compact G-ring which, of course, does not
need to contain nilpotent elements.

By Fact 1.6, we know that each small compact G-ring is a locally finite profinite
ring. So, our goal is to describe the structure of locally finite profinite rings admitting
a structure of a small compact G-ring. It turns out, however, that our proofs work
in the general context of locally finite profinite rings, or even more generally, in the
context of profinite rings whose all 1-generated subrings are finite. So, the main
structural results of this paper are stated in this general context, without using the
notion of small compact G-rings, except Corollary 2.4, where we additionally describe
the action of G on the ring R.

Definition 0.2. We say that a ring R is weakly locally finite if every 1-generated
subring of R is finite.

In order to describe the structure of a ring R, it is important to understand the
structure of the semisimple ring R/J(R) and of the radical ring J(R), where J(R)
is the Jacobson radical of R. The main results of this paper are: a complete clas-
sification of semisimple, weakly locally finite profinite rings established in Theorem
0.3, and important information on the structure of the Jacobson radical of weakly
locally finite profinite rings obtained in Theorem 0.4.

Theorem 0.3. Let R be a topological ring. Then, R is a semisimple, weakly lo-
cally finite profinite ring if and only if R is isomorphic (as a topological ring) to
a direct product of complete matrix rings over finite fields with only finitely many
non-isomorphic rings occurring as factors in this product.

From this classification, one immediately concludes that semisimple, weakly lo-
cally finite profinite rings coincide with semisimple, locally finite profinite rings.

The above theorem not only yields a complete classification of the class of semisim-
ple locally finite profinite rings, but also of the class of semisimple rings admitting
a structure of a small compact G-ring (see Corollary 2.3); in Corollary 2.4, we also
describe possible actions of G on the ring in question.

A problem which is “complementary” to the description of semisimple rings from
a given class is the problem of describing the Jacobson radical of rings belonging to
that class. Our second main result is the following (see also Corollary 1.3).

Theorem 0.4. If R is a weakly locally finite profinite ring, then J(R) is nil of finite
nilexponent. More generally, each nil profinite ring has finite nilexponent.

In particular, the Jacobson radical of each small compact G-ring is nil of finite
nilexponent. This generalizes a similar result proved in [4] for so-called small profinite
rings. Recall that a small profinite ring [group] is the limit R of a countable inverse
system of finite rings [groups] together with a closed subgroup Aut∗(R) of the group
of all automorphisms respecting the distinguished inverse system such that Aut∗(R)
has only countably many orbits on n-tuples for all n < ω. In particular, every small
profinite ring [group] is a small compact G-ring [G-group] (with G := Aut∗(R)).
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Recall that it was proved in [4] that the Jacobson radical of a small profinite ring
is open, and the following conjectures were formulated.

Conjecture 0.5. The Jacobson radical of a small profinite ring R is nilpotent. In
particular, R has an open nilpotent ideal.

Conjecture 0.6. A small profinite ring has an open null ideal.

These conjectures are interesting in their own rights, but additional motivation
standing behind them comes from [4] and [3]. To explain this, recall the main
conjecture concerning small profinite groups.

Conjecture 0.7. A small profinite group has an open abelian subgroup.

By [3, Corollary 2.4] (see also [3, Corollary 3.13]), we know that Conjecture
0.7 implies Conjecture 0.6 which, of course, implies Conjecture 0.5. On the other
hand, [4, Theorem 3.5] tells us that Conjecture 0.5 for commutative rings implies an
important intermediate conjecture towards the proof of Conjecture 0.7, namely that
each small soluble profinite group has an open nilpotent subgroup; using [3, Theorem
2.10], we get that Conjecture 0.6 implies that each small soluble profinite group has
an open abelian subgroup.

Several reductions of Conjecture 0.5 for commutative rings were obtained in [4].
In Section 3, we prove some further reductions of that conjecture. The main one (see
Proposition 3.2) roughly says that if Conjecture 0.5 is false, then there is a counter-
example which generically does not satisfy any polynomial identities which are not
satisfied by obvious reasons.

At the end notice that the counterpart of the second part of Conjecture 0.5 for
small compact G-rings is false by Theorem 0.3. As to the first part, we do not know.

Question 0.8. Is it true that the Jacobson radical of each small compact G-ring is
nilpotent?

It is clear, however, that the Jacobson radical of a small compact G-ring does
not need to be null-by-finite. For this, take the Cartesian power Rω of any non-
trivial finite nil ring R and consider it with the Polish group G of all permutations
of coordinates. This is a nilpotent, small compact G-ring which is not null-by-finite.

1 Preliminaries

In this paper, we always assume rings to be associative, but we do not assume them
to be commutative or unital. By an ideal we mean a two-sided one. By a topological
ring we mean a ring equipped with a Hausdorff topology under which multiplication,
addition and additive inversion are continuous functions.

Recall some basic notions from ring theory. An element r of a ring R is nilpotent
of nilexponent n if rn = 0 and n is the smallest number with this property. The ring
is nil [of nilexponent n] if every element is nilpotent [of nilexponent ≤ n and there
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is an element of nilexponent n]. The ring is nilpotent of class n if r1 · · · rn = 0 for
all r1, . . . , rn ∈ R and n is the smallest number with this property. An element r
is null if rR = Rr = {0}. The ring is null if all its elements are. If r ∈ R, then
Ann(r) := {a ∈ R : ar = ra = 0} is the two-sided annihilator of r in R. Note that
Ann(r) is always a subgroup of R+, and if R is commutative, then Ann(r) is an ideal.

Now, we recall fundamental issues concerning Jacobson radicals; for more details
see [1]. The Jacobson radical of a ring R, denoted by J(R), is the collection of all
elements of R satisfying the formula φ(x) = ∀y∃z(yx+z+zyx = 0) (that is, it is the
set of all elements which generate quasi-regular left ideals, i.e. left ideals consisting
of left quasi-regular elements which are defined as those elements x ∈ R for which
there is z ∈ R such that x + z + zx = 0). Equivalently, J(R) is the unique largest
quasi-regular left [or right] ideal. Another equivalent definition says that J(R) is the
intersection of all the maximal regular left [or right] ideals, where a left ideal I is
said to be regular if there is a ∈ R such that x − xa ∈ I for all x ∈ R (notice that
for rings with 1 all ideals are regular). For any ring R, J(R) is a two-sided ideal. We
say that R is semisimple if J(R) = {0}. R/J(R) is always a semisimple ring. Every
nil left [or right] ideal is contained in J(R); in particular, if R is nil, then J(R) = R.

For any left ideal I of R, define mI to be the largest (two-sided) ideal of R
contained in I. Then, for any maximal left regular ideal I, R/mI is a (left) primitive
ring (i.e. a ring having a left faithful irreducible module, namely the module R/I).
The next fact follows from [1, Theorem 2.1.4].

Fact 1.1. If I is a maximal left regular ideal of a ring R and the quotient R/mI is
finite, then R/mI is the complete matrix ring Mk(F ) over a finite field F .

Remark 1.2. Let R be any ring. For every x ∈ J(R) and a ∈ R such that xa+a = 0,
we have a = 0.

Proof. Since x ∈ J(R), we get that there is some z such that zx + z + x = 0.
Then 0 = zxa+ za+ xa = −za+ za− a = −a. �

Corollary 1.3. If R is a weakly locally finite ring, then J(R) is nil.

Proof. Take any x ∈ J(R). By assumption, there are n > m ≥ 1 such that
xn = xm. Then (−xn−m)xm +xm = 0 and −xn−m ∈ J(R). Thus, xm = 0 by Remark
1.2. �

The following remark follows easily from the definition of J(R).

Remark 1.4. If R is a compact topological ring, then J(R) is a closed ideal.

The following fact [8, Proposition 5.1.2] yields a characterization of when a topo-
logical unital ring is profinite.

Fact 1.5. Let R be a topological unital ring (so, in particular, a Hausdorff topological
space). Then the following conditions are equivalent:

1. R is profinite, i.e. the inverse limit of finite rings.

4



2. R is compact.

3. R is compact and totally disconnected.

4. R is compact and there is a basis of open neighbourhoods of 0 consisting of open
ideals.

Now, we will give some basic information about small compact G-rings. Let
(R,G) be a compact G-ring. For any finite C ⊆ R, by GC we denote the pointwise
stabilizer of C in G, and for a finite tuple a of elements of R, by o(a/C) we denote
the orbit of a under the action of GC (and we call it the orbit of a over C). Then we
have that (R,G) is small iff for every finite C ⊆ R there are only countably many
orbits on R over C.

Fact 1.6. Every small compact G-ring R is locally finite and profinite.

Proof. Local finiteness of R follows as in [2, Proposition 5.7]. Namely, consider
any finite subset S of R, and let 〈S〉 be the closure of the subring generated by S.
As each element of 〈S〉 is fixed by GS, smallness implies that 〈S〉 is countable. But
it is also a compact group, so it must be finite.

By Fact 1.5, we see that R is profinite when R has a unit, and we will use this
information to show that R is always profinite. By the Baire category theorem and
local finiteness of R, we get that for some non-zero n < ω the set {r ∈ R : nr = 0}
has non-empty interior. Hence, we can cover R with finitely many tranlates of this
set, which yields that R has a finite characteristic c. Put R1 = R×Zc, and define +
and · on R1 by (a, k)+(b, l) = (a+b, k+c l) and (a, k) ·(b, l) = (ab+ l×a+k×b, k ·c l),
where +c and ·c are addition and multiplication modulo c, and l × a := a + · · · + a
(l-many times). Then, R1 is an unital compact ring, and we can treat R as a clopen
ideal of R in the natural way. By Fact 1.5, R1 is profinite, so also R is profinite. �

The following remarks provide some examples of small compact G-rings, and they
will be used later.

Remark 1.7. Let R be a finite ring. Consider the action of the permutation group
G = Sω on Rω given by (σ · f)(i) = f(σ−1(i)). Then, (Rω, G) is a small compact
G-ring.

Remark 1.8. Let (R1, G1), (R2, G2) be two small compact G-rings. Then also (R1×
R2, G1×G2) is a small compact G-ring, where the action is given by (g1, g2)·(r1, r2) =
(g1 · r1, g2 · r2).

Suppose we have a profinite ring R which is the inverse limit of a distinguished
countable inverse system, or equivalently, R is a compact topological ring with a
distinguished countable basis of open neighbourhoods of 0 consisting of clopen ideals.

Definition 1.9. A profinite ring regarded as profinite structure is a pair of the
form (R,Aut∗(R)), where Aut∗(R) is a closed subgroup of the group Aut0(R) of all
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automorphisms of R respecting the inverse system defining R (equivalently, Aut∗(R)
is a closed subgroup of the group of all automorphisms of R fixing setwise the clopen
ideals from the distiguished basis of open neighbourhoods of 0). The group Aut∗(R)
is called the structural group of R and Aut0(R) is the standard structural group of
R.

Definition 1.10. A profinite ring (R,Aut∗(R)) is small if there are only countably
many orbits under Aut∗(R) on finite tuples over ∅ (equivalently, if it is small regarded
as a compact G-ring).

For the general definition of a profinite structure see [7]. Until the end of this
section, by a profinite ring we mean a profinite ring regarded a profinite structure.
Let (R,Aut∗(R)) be a profinite ring. As usual, we will write R having in mind either
the topological ring R or the pair (R,Aut∗(R)).

By an A-invariant subset of R×n we mean a subset invariant under the pointwise
stabilizer of A (denoted by Aut∗(R/A)), and by an A-closed subset we mean a closed
and A-invariant subset of R×n; if we do not want to specify A, we write ∗-invariant
or ∗-closed. For a ∈ R×n and A ⊆ R we define o(a/A) = {f(a) : f ∈ Aut∗(R/A)},
the orbit of a over A.

The following remark follows directly from the definition.

Remark 1.11. A profinite ring R has a descending chain (In : n < ω) of open
∅-invariant ideals forming a basis of open neigbourhoods of 0 (hence with trivial
intersection)

It is clear that whenever I is an A-closed ideal of R, then R/I can be treated as
a profinite ring (regarded as profinite structure) with the structural group induced
by Aut∗(R/A).

Since every orbit is a closed subset of R (as a continuous image of a compact
space Aut∗(R/A)), it follows, by the Baire category theorem, that if R is small, then
over any finite subset A there exists an open orbit.

By acl(A) we denote the set of elements of R which have finite orbits over A.
We say that g ∈ R is generic over A if o(g/A) is open; g being generic means that
it is generic over ∅ or over a set of parameters which is obvious from the context.
We say that a is m-independent from b over A (denoted a

m|̂ Ab) if the orbit o(a/Ab)
is open in o(a/A). Otherwise a is m-dependent on b over A (written a

m6̂ | Ab). The
relation

m|̂ enjoys some properties analogous to the ones that forking independence
has in simple theories. Namely, it is invariant under the action of the structural
group, symmetric and transitive. Moreover, under the assumption of smallness, it
also satisfies the existence of independence extensions. The fundamental properties
of m-independence (in fact of a more general notion of nm-independence) are listed
in [2, Theorems 2.5 and 2.10].

The following fact is due to Newelski in [6].

Fact 1.12. Let (G,Aut∗(G)) be a small profinite group, and A a finite subset. An
A-invariant subgroup of G is A-closed. The group generated by any family of A-
invariant sets is A-closed, and generated in finitely many steps from finitely many
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sets. There is no infinite increasing chain of A-invariant subgroups of G. In partic-
ular, all characteristic subgroups of G are ∅-closed.

It was observed in [4] that in order to obtain Conjecture 0.5 for commutative
rings, it is enough to prove it only for rings with the characteristic and nilexponent
equal to the same prime number (this relies on the Nagata-Higman theorem which
yields that nil rings of nilexponent smaller than the characteristic are nilpotent).
Also, the following reduction was obtained there (see [4, Proposition 4.4]).

Fact 1.13. To show Conjecture 0.5 for commutative rings, one can assume that for
each non-zero a ∈ R the quotient ring R/Ann(a) is not nilpotent.

2 Main Results

This section is devoted mainly to the proofs of our main results about weakly locally
finite profinite rings. We start from a certain characterization of Jacobson radicals
in profinite rings.

Proposition 2.1. Let R be a profinite ring, and let I be the family of all maximal
regular left open (so clopen) ideals of R. Recall that for any left ideal I, mI denotes
the unique largest (two-sided) ideal of R contained in I.

1. Each I ∈ I is a maximal regular left ideal of R.

2. For each I ∈ I, mI is the unique largest (two-sided) clopen ideal of R contained
in I; in particular, R/mI is finite.

3. J(R) =
⋂
I∈ImI =

⋂
I.

Proof. (1) Take I ∈ I. Then I is of finite index in R. So, any left ideal extending
I is also clopen.
(2) Take any I ∈ I. Since it is clopen, there is a clopen (two-sided) ideal m of
R contained in I. Then mI + m is a clopen ideal of R contained in I, so, by the
maximality of mI , we get that mI = mI +m is clopen.
(3) Put J1(R) =

⋂
I and J2(R) =

⋂
I∈ImI . By [1, Theorem 1.2.1], we know that

J(R) =
⋂
J∈J mJ , where J is the collection of all maximal regular left ideals. So,

by (1), we get get J(R) ⊆ J2(R) ⊆ J1(R). It remains to show that J1(R) ⊆ J(R).
By the proof of [1, Theorem 1.2.2], we see that it is enough to show that for any
x ∈ J1(R) the set A := {yx + y : y ∈ R} is all of R. Suppose for a contradiction
that A is proper. Since R is compact, A is a regular left closed ideal of R. Thus,
there exists a clopen ideal I such that A + I is a proper regular left clopen ideal
of R. Hence, A is contained in a maximal regular left clopen ideal J . Then, for
every y ∈ R, we have x ∈ J1(R) ⊆ J and yx + y ∈ J , so y ∈ J . Thus, J = R, a
contradiction. �
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In the proof of Theorem 0.3, we will use this proposition only for weakly locally
finite unital rings. In this case, one can give a direct proof (not referring to the proof
of [1, Theorem 1.2.2]), which we do below for the reader’s convenience.

Proof of Proposition 2.1(3) for unital rings. As before, it is enough to show that
J1(R) ⊆ J(R). Since R is unital and J1(R) is a left ideal, we will be done if we
show that 1 + x is left invertible in R for all x ∈ J1(R). So, take any x ∈ J1(R) and
suppose for a contradiction that 1 /∈ R(1 + x). By compactness, R(1 + x) is closed
in R, so there is an open ideal I of R such that 1 /∈ R(1 + x) + I. We can extend
R(1+x)+I to a maximal left open ideal J of R. Then x ∈ J1(R) ⊆ J and 1+x ∈ J ,
so 1 ∈ J . Thus, J = R, a contradiction. �

Recall that for a filed F , Mk(F ) denotes the ring of all matrices of size k×k with
entries from F .

Lemma 2.2. Let R be a weakly locally finite profinite ring. Then there exists n < ω
such that for every finite field F and a number k < ω if there exists an epimorphism
f : R→Mk(F ), then k < n and |F | < n.

Proof. For any 1 < m < ω, consider the polynomial

wm =
∏

0<i<j≤m

(xi − xj).

Since R is weakly locally finite, we have that R =
⋃
m<ω ZR(wm), where ZR(p)

denotes the set of all zeros in R of a polynomial p. Since each ZR(wm) is closed
in R, we get, by the Baire category theorem, that for some m < ω, ZR(wm) has
a non-empty interior. Take a ∈ R and an open ideal I of R of index s such that
a + I ⊆ ZR(wm). Since f [I] is an ideal of Mk(F ), we get that it is either trivial or
equal to Mk(F ).

Now, [Mk(F ) : f [I]] ≤ s, and if f [I] = {0}, then [Mk(F ) : f [I]] ≥ 2k
2
. So, either

2k
2 ≤ s, or f [I] = Mk(F ) and then f [a + I] = f(a) + f [I] = Mk(F ). In the latter

case, since (∀x ∈ a + I)(wm(x) = 0), we get that (∀x ∈ Mk(F ))(wm(x) = 0). Using
the matrix with 1’s right above the diagonal and 0’s elsewhere, one easily gets that
k ≤

∑m−1
i=1 i(m− i) = m(m−1)(m+1)

6
. So, we obtain the following bound on k:

k ≤ max

(√
log2(s),

m(m− 1)(m+ 1)

6

)
.

Now, if f [I] = Mk(F ), then (∀x ∈ F )(wm(x) = 0) (as F embeds into Mk(F )),
so |F | ≤ deg(wm). On the other hand, if f [I] = {0}, then |Mk(F )| ≤ s, so |F | ≤ s.
Thus, in any case,

|F | ≤ max(s, deg(wm)).

�
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Now, we proceed to the proof of Theorem 0.3.

Proof of Theorem 0.3. The implication (←) is easy. Let R be topologically
isomorphic to the product of complete matrix rings over finite fields with only finitely
many factors up to isomorphism. Clearly R is profinite and locally finite. To see
semisimplicity, is is enough to use a classical fact that the complete matrix ring over
any field is semisimple (see e.g. [1, Theorem 1.2.6]) and to show that products of
semisimple rings are semisimple, which is a very easy exercise.

Now, we turn to the proof of (→). Let R be our semisimple, weakly locally finite
profinite ring.

Claim 1. We can assume that R is unital.

Proof of Claim 1. Suppose that the theorem is true for unital rings. Define R1

as in the proof of Fact 1.6. Since R is semisimple, we get that R ∩ J(R1) = J(R) =
{0}. Thus, R is isomorphic (via the quotient map) to a closed ideal of R1/J(R1).
Since R1/J(R1) is semisimple, we get, by our assumption, that it is of the form∏m

i=1Mni
(Fi)

κi for some cardinal numbers κi. It is easy to see that every closed ideal
of this ring consists precisely of elements with zeros on a fixed set of coordinates, so
it is also isomorphic to a ring of this form. In particular, R can be presented in this
form. �

Now, assume that R is unital. Let I be the family of all maximal left open ideals
of R. Let I1 be the subfamily of those I ∈ I for which mI is minimal in the family
of all mI ’s, I ∈ I. Finally, for each m ∈ {mI : I ∈ I1} choose exactly one ideal I
from the set {I ∈ I1 : mI = m}, and denote the collection of all ideals obtained in
this way by I2.

By Proposition 2.1(2), for each I ∈ I, R/mI is finite, so Proposition 2.1(1) and
Fact 1.1 imply that R/mI is isomorphic to a complete matrix ring over a finite field.
Thus, using Lemma 2.2, we get that the family {mI : I ∈ I} is well-founded with
respect to inclusion. Therefore,

⋂
I∈ImI =

⋂
I∈I2 mI . By Proposition 2.1(3) and the

assumption that R is semisimple, we end up with⋂
I∈I2

mI = J(R) = {0}. (∗)

Define a homomorphism f : R →
∏

I∈I2 R/mI as the diagonal of the quotient
homomorphisms. By (∗), we get that f is injective. Also, f is continuous, so Im(f)
is closed.

Now, consider any I, J ∈ I2 with I 6= J . Since mJ is not contained in mI , we get
that (mI + mJ)/mI is a non-trivial ideal of R/mI . Hence, as we know that R/mI

is a complete matrix ring over a finite field, we get that (mI + mJ)/mI is equal to
R/mI , so mI + mJ = R. Therefore, since R is unital, it follows from the Chinese
Remainder Theorem that Im(f) is dense in

∏
I∈I2 R/mI . So, Im(f) =

∏
I∈I2 R/mI ,

and f is an isomorphism. Moreover, by Lemma 2.2, the complete matrix rings R/mI

have bounded size. This completes the proof of Theorem 0.3. �
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Corollary 2.3. Let A denote the class all topological rings isomorphic to a product
of complete matrix rings of bounded size over finite fields, and let A0 be its subclass
consisting of products of only countably many matrix rings.

1. A is the class of all semisimple weakly locally finite profinite rings.

2. A is the class of all semisimple locally finite profinite rings.

3. A0 is the class of all semisimple topological rings admitting a structure of a
small compact G-ring.

Proof. (1) is a restatement of Theorem 0.3.
(2) follows from (1) and the observation that each ring from A is locally finite.
(3) By Remarks 1.7 and 1.8, any member of A0 admits a structure of a small compact
G-ring. By Fact 1.6 and (2), we get that each semisimple topological ring R admit-
ting a structure of a small compact G-ring belongs to A. However, [2, Proposition
3.9] tells us that R is second countable. Thus, we conclude that R ∈ A0. �

Using this classification, we can also describe possible actions of G on R for
semisimple small compact G-rings (R,G).

Corollary 2.4. Let A be defined as above. Take any R ∈ A. Present R in the
form

∏m
i=1Mni

(Fi)
κi for some cardinal numbers κi so that the rings Mni

(Fi) are
non-isomorphic for distinct i’s. Then the group of all topological automorphisms of
R is equal to

{
m∏
i=1

fσi ◦ g : σi ∈ Sym(κi), g ∈
∏
i

Aut(Mni
(Fi))

κi},

where fσ(x)(α) = x(σ−1(α)). Hence, it is isomorphic to the semidirect product of∏
i Sym(κi) and

∏
iAut(Mni

(Fi))
κi. Thus, if (R,G) is a small compact G-ring, then

we can treat G as a subgroup of the above group, acting on R in the natural way.

Proof. Consider an arbitrary topological automorphism f of R. Fix any i and
consider any α ∈ κi.

We have that f [{r ∈ R : (∀(j, β) 6= (i, α))(r(j, β) = 0)}] is a closed ideal of R
isomorphic to Mni

(Fi), and since it is not a product of two non-trivial rings, we get
that it is equal to {r ∈ R : (∀(j, β) 6= (i, γ))(r(j, β) = 0)} for some γ ∈ κi. Define

σi(α) = γ.

By composing f with canonical isomorphisms Mni
(Fi) → {r ∈ R : (∀(j, β) 6=

(i, α))(r(j, β) = 0}) and {r ∈ R : (∀(j, β) 6= (i, γ))(r(j, β) = 0)} → Mni
(Fi), we

obtain an automorhism gi,α of Mni
(Fi). Put

h =
m∏
i=1

(fσi ◦
∏
α∈κi

gi,α).
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By the choice of h, we get that h agrees with f on elements of R having one-
element supports. Since f and g are algebraic isomorphisms, we get that they agree
on all elements with finite supports. Finally, we conclude, by continuity of f and h,
that f = h. This completes the proof. �

Question 2.5. Let (R,G) be a semisimple small compact G-ring. By Corollary 2.3,
we know that R ∈ A0, and we have that the group G, treated as a permutation group
of R, is a subgroup of the concrete Polish group Aut(R) described in Corollary 2.4.
Is it the case that G is also a topological subgroup of Aut(R), i.e. is the topology on
G inherited from Aut(R)? Equivalently, is G a closed subgroup of Aut(R)?

Now, we turn to the proof Theorem 0.4.

Proof of Theorem 0.4. If R is a weakly locally finite profinite ring, then J(R) is
nil by Corollary 1.3 and closed by Remark 1.4, so J(R) is a nil profinite ring. Thus,
the second part of the theorem is indeed more general than the first part. So, from
now on, assume that R is a nil profinite ring. Then J(R) = R.

Since R is nil, we get, by the Baire category theorem, that there is a non-zero
n < ω such that the set {r ∈ R : rn = 0} has a non-empty interior. Take an open
ideal I of R and a coset e = a+ I such that e ⊆ {r ∈ R : rn = 0}.

We put Z−1 = {0}, and define inductively

Zi+1 = {r ∈ R : IrI/(Zi ∩ IrI) is nilpotent}.

It is easy to see that Zi is an ideal of R for each i (if r1 ∈ Zi+1 yields the quotient
Ir1I/(Zi ∩ Ir1I) of nilpotency class c1 and r2 yields the quotient of nilpotency class
c2, then r1 + r2 yieds the quotient of nilpotency class at most c1 + c2).

Claim 1. For all k ∈ {0, . . . , n− 1}, y ∈ I and x ∈ e we have xn−kyxn−k ∈ Zk−1.

Proof of Claim 1. We proceed by induction on k. The case k = 0 is trivial.
Suppose the claim is true for a certain k < n− 1. Then wn−k ∈ Zk for every w ∈ e.
So, in R/Zk, we have

0 + Zk = (x+ yxn−k−1)n−k + Zk =
= xn−k−1yxn−k−1 + xn−k−2(yxn−k−1)2 + · · ·+ (yxn−k−1)n−k + Zk =
= xn−k−1yxn−k−1 + zxn−k−1yxn−k−1 + Zk,

where z = xn−k−2y+xn−k−3yxn−k−1y+ · · ·+ (yxn−k−1)n−k−2y. But z+Zk ∈ R/Zk =
J(R/Zk), because R/Zk is nil. Hence, by Remark 1.2, xn−k−1yxn−k−1 +Zk = 0 +Zk,
which shows that the claim is true for k + 1. �

Applying Claim 1 for k = n− 1, we easily get that e ⊆ Zn−1, so Zn−1 is clopen.
For x ∈ R and i = (i1, . . . , i2m) (where each ij is from R), we define

i ∗ x = i1xi2i3xi4 . . . i2m−1xi2m.

11



Claim 2. The following statement is true for all k ∈ ω.

(∀x ∈ Zk−1)(∃m1 < ω)(∀i1 ∈ I×2m1)(∃m2 < ω)(∀i2 ∈ I×2m2) . . .
(∃mk < ω)(∀ik ∈ I×2mk)(ik ∗ (ik−1 ∗ (. . . (i1 ∗ x) . . . )) = 0).

Proof of Claim 2. The claim follows from the definition of the Zj’s by induction
on k. The case k = 0 is trivial. For the induction step, consider any x ∈ Zk−1. Let
m1 be the nilpotency class of IxI/(Zk−2 ∩ IxI). Then, for any i1 ∈ I×2m1 we have
that i1 ∗ x ∈ Zk−2, so the assertion follows from the inductive hypothesis. �

In the next claim, we will show that in the statement from Claim 2 one can
move all the existential quantifiers to the left, obtaining a statement of the form
(∀x ∈ Zk−1)∃∀.

Claim 3. The following statement is true for all k ∈ ω.

(∀x ∈ Zk−1)(∃m1, . . . ,mk < ω)(∀i1 ∈ I×2m1 , . . . , ik ∈ I×2mk)
(ik ∗ (ik−1 ∗ (. . . (i1 ∗ x) . . . )) = 0).

Proof of Claim 3. By induction on k, we will show that whenever x ∈ R is such
that

(∃m1 < ω)(∀i1 ∈ I×2m1)(∃m2 < ω)(∀i2 ∈ I×2m2) . . . (∃mk < ω)(∀ik ∈ I×2mk)
(ik ∗ (ik−1 ∗ (. . . (i1 ∗ x) . . . )) = 0),

then
(∃m1, . . . ,mk < ω)(∀i1 ∈ I×2m1 , . . . , ik ∈ I×2mk)

(ik ∗ (ik−1 ∗ (. . . (i1 ∗ x) . . . )) = 0).

This together with Claim 2 will finish the proof.
The cases k = 0 and k = 1 are trivial, as there are no quantifiers to switch. Now,

take k > 1 and assume that the statement is true for numbers less than k. Consider
any x ∈ R satisfying the assumption of our statement. By the inductive hypothesis,
we get

(∃m1 < ω)(∀i1 ∈ I×2m1)(∃m2, . . . ,mk < ω)(∀i2 ∈ I×2m2 , . . . , ik ∈ I×2mk)
(ik ∗ (ik−1 ∗ (. . . (i1 ∗ x) . . . )) = 0).

(∗)

Now, the goal is to switch (∀i1 ∈ I×2m1) with (∃m2, . . . ,mk < ω). We will do this
in 2m1 steps, switching at every step all existential quantifiers ∃m2, . . . ,∃mk with
one universal quantifier corresponding to one of the variables in the sequence i1.
We will only show how to switch all these existential quantifiers with the universal
quantifier corresponding to the last variable in i1, as the other steps can be done in
a similar fashion.

Denote i1 = (s1, . . . , s2m1), and fix s1, . . . , s2m1−1 ∈ I. Put

t = s1xs2s3xs4 . . . s2m1−1x.

12



For any m = (m2, . . . ,mk) ∈ (ω \ {0})k−1 define

Dm = {i ∈ I : (∀i2 ∈ I×2m2 , . . . , ik ∈ I×2mk)(ik ∗ (ik−1 ∗ (· · · ∗ (ti) . . . )) = 0)}.

By (∗), we have I =
⋃
mDm. It also follows that each Dm is a closed subset of

I. Hence, by the Baire category theorem, there is some m0 such that Dm0 has a
non-empty interior in I. Thus, for some a1, . . . , aw ∈ I we have that

I = (a1 +Dm0) ∪ . . . ∪ (aw +Dm0).

We also know that there are m1, . . . ,mw such that a1 ∈ Dm1 , . . . , aw ∈ Dmw . So, in
order to finish the proof, it is enough to show the following subclaim (in which mi’s
and ai’s are NOT the particular tuples or elements chosen above).

Subclaim 1. For any l ≥ 1 and m = (m1, . . . ,ml) ∈ (ω \ {0})l define

D′m = {a ∈ I : (∀i1 ∈ I×2m1 , . . . , il ∈ I×2ml)(il ∗ (il−1 ∗ (· · · ∗ (i1 ∗ a) . . . )) = 0)}.

Let r ≥ 1. Then, for every m1, . . . ,mr there is m such that for any a1 ∈ D′m1
, . . . , ar ∈

D′mr
one has a1 + . . .+ ar ∈ D′m.

Proof of Subclaim 1. The proof is by induction on l. Consider the base step
l = 1. Take any m1, . . . ,mr < ω. Let m = m1 + . . . + mr. Consider any a1 ∈
D′m1

, . . . , ar ∈ D′mr
. Then, for every i1 ∈ I×2m the element i1 ∗ (a1 + . . . + ar) is a

sum of elements from the sets (Ia1I)m1 , . . . , (IarI)mr which are all equal to {0}, so
i1 ∗ (a1 + . . .+ ar) = 0 and a1 + . . .+ ar ∈ D′m.

The induction step is similar. Take anym1 = (m1
1, . . . ,m

1
l ), . . . ,mr = (mr

1, . . . ,m
r
l ).

Let m′ = m1
1 + . . .+mr

1. Consider any ai ∈ D′mi
for i = 1, . . . , r. Then, the elements

from the set
{i1 ∗ (a1 + . . .+ ar) : i1 ∈ I×2m

′}
are sums of a bounded number of elements from the sets

{i1 ∗ a1 : i1 ∈ I×2m
1
1}, . . . , {i1 ∗ ar : i1 ∈ I×2m

r
1},

and we finish using the inductive hypothesis. �

So, we have proved the statement formulated at the beginning of the proof of
Claim 3 which together with Claim 2 completes the proof of Claim 3. �

Consider the statement from the last claim for k = n. Using the fact that Zn−1
is compact, we can apply the same trick as in the proof of Claim 3 to switch all the
existential quantifiers with the quantifier ∀x ∈ Zn−1, and so we get that there are
m1, . . . ,mn < ω such that

(∀x ∈ Zn−1)(∀i1 ∈ I×2m1 , . . . , ik ∈ I×2mn)(in ∗ (in−1 ∗ (. . . (i1 ∗ x) . . . )) = 0).

Hence, I ∩Zn−1 has finite nilexponent. Since R/(I ∩Zn−1) is finite, it has also finite
nilexponent. Thus, we conclude that R has finite nilexponent, which completes the
proof of Theorem 0.4. �

Summarizing, we have the following corollary of Theorems 0.3 and 0.4.

13



Corollary 2.6. Every weakly locally finite profinite ring is (nil of finite nilexponent)-
by-(product of complete matrix rings over finite fields with only finitely many factors
up to isomorphism).

Having Theorem 0.4, one could ask if we can strengthen it by showing that the
Jacobson radical of a locally finite profinite ring is nilpotent. The following easy
example shows that this is not always true.

Example 2.7. Let p be a prime number and let F0 be the free commutative nil ring
of nilexponent p and of characteristic p on generators (xi : i < ω). For n < ω let In
be the ideal generated by {xi : i ≥ n}. Then each quotient ring F0/In is finite and
nilpotent; their inverse limit, say F , is the free commutative profinite ring which is nil
of nilexponent p and of characteristic p with free topological generators {yn : n < ω},
where yn = (xn + Ik : k ∈ ω). We see that F = J(F ) is locally finite, but it is not
nilpotent.

However, for the class of small compact G-rings that question (see Question 0.8) is
open. In particular, we do not know whether the ring F from Example 2.7 considered
together with G being the group of all topological automorphisms of F is small. We
should remark here that by an easy counting argument (see [4, Example 1 in Section
5]), one can check that F cannot be a counter-example to Conjecture 0.5, i.e. it does
not admit a structure of a small profinite ring.

We finish with some observations concerning small profinite rings.

Proposition 2.8. 1. Suppose (
∏

i∈I Ri, G) is a small profinite ring. Then only
finitely many Ri’s are not null rings.

2. Suppose (
∏

i∈I Hi, G) is a small profinite group. Then only finitely many Gi’s
are non-abelian groups.

Proof. (1) Put J = {i ∈ I : Ri is not null}. For any i ∈ J choose si ∈ Ri such
that the two-sided annihilator of si in Ri is not equal to Ri. Let o be an open orbit
in
∏

i∈I Ri. Then, for some finite I0 ⊆ I and elements ri ∈ Ri, i ∈ I0, we have that
{r ∈

∏
i∈I Ri : (∀i ∈ I0)(r(i) = ri)} ⊆ o. Define x, y ∈

∏
i∈I Ri by: x(i) = ri if i ∈ I0

and x(i) = 0 otherwise; y(i) = ri if i ∈ I0, y(i) = 0 if i ∈ I\(I0 ∪ J) and y(i) = si if
i ∈ J\I0. Since x, y ∈ o and the two-sided annihilator of x is open in R, we get that
the same is true about y. This clearly implies that J is finite.
(2) is similar, using centralizers instead of annihilators. �

Part (2) of the above proposition slightly strengthens Remark 4.3 from [6], where
it is additionally assumed that the structural group consists of automorphisms re-
specting the inverse system H1 ← H1 ×H2 ← . . . . Part (1) is a ring counterpart of
(2).

Notice that Theorem 3.1 from [4] follows easily from Theorems 0.3, 0.4 and Propo-
sition 2.8(1).
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3 Remarks on Conjecture 0.5

In this section, we prove some reductions for Conjecture 0.5. It has already been
recalled in Section 1 that in order to prove Conjecture 0.5 for commutative rings,
one can assume that the ring in question is nil of nilexponent p and of characteristic
p for some prime number p, which justifies this assumption in the results below.

Throughout this section, we will skip the structural group Aut∗(R).

Lemma 3.1. Fix any prime number p. Let R be a non-nilpotent, commutative small
profinite ring of characteristic p which is nil of nilexponent p. Then, for every g ∈ G
generic over ∅ and for every j ∈ {1, 2, . . . , p− 1}, we have gj 6= 0.

Proof. We proceed by induction on j. The conclusion is clear for j = 1, so
suppose j > 1 and that the lemma holds for smaller numbers. Suppose for a con-
tradiction that gj = 0 for some generic g ∈ R. Then there is an open ideal I of
R such that (g + i)j = 0 for all i ∈ I. Therefore, ijgj−1 = gj−1(g + i)j = 0 for
i ∈ I. Take any i ∈ I which is m-independent from g. If R/Ann(ij) is not nilpo-
tent, then it is a commutative small profinite ring of characteristic p and nilexponent
p (by the Nagata-Higman theorem), and since g + Ann(ij) is its generic satisfying
(g + Ann(ij))j−1 = 0 + Ann(ij), we would get a contradiction with the inductive
hypothesis. So, R/Ann(ij) is nilpotent. Thus, taking I ′ := {i ∈ I : i

m|̂ g} and
K := {b ∈ R : R/Ann(b) is nilpotent}, we get that {ij : i ∈ I ′} ⊆ K. By the claim
in the proof of Proposition 4.4 in [4], we have that K is a nilpotent ideal of R. It
follows from Fact 1.12 that K is also closed. Since I ′ is a dense subset of I, we get,
by the continuity of the mapping x 7→ xj, that {ij : i ∈ I} ⊆ K. Thus, I/(I∩K) is a
nil ring of nilexponent not greater than j < p, whence we get, by the Nagata-Higman
theorem, that it is nilpotent. Since also K is nilpotent, we get that I is nilpotent.
Hence, R is nilpotent, a contradiction. �

Now, we will make the main observation of this section. We will assume that
R/Ann(a) is non-nilpotent for every a ∈ R\{0}. This assumption is justified by
Fact 1.13.

Proposition 3.2. Let R be as in the lemma, and assume additionally that R/Ann(a)
is non-nilpotent for every a ∈ R\{0}. Then, for every polynomial f(x1, . . . , xn) ∈
Fp[x1, . . . , xn]\{0} with degx1(f), . . . , degxn(f) < p and for all independent tuples
(g1, . . . , gn) of generics of R we have that f(g1, . . . , gn) 6= 0.

Proof. We proceed by induction on n. Suppose that n ≥ 1 and that the propo-
sition is true for smaller positive natural numbers (the argument will also cover the
base induction step). We can present any f satisfying the assumptions in the form

f = h0(x1, . . . , xn−1) + h1(x1, . . . , xn−1)xn + · · ·+ hp−1(x1, . . . , xn−1)x
p−1
n

(where h0, . . . , hp−1 are constants in the case when n = 1). We will prove the
conclusion by induction on the number k of non-zero polynomials among h0, . . . , hp−1.
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Suppose first that k = 1 and f(x1, . . . , xn) = hi(x1, . . . , xn−1)x
i
n for some i > 0

(we can assume that degxn f > 0 by the inductive hypothesis). Take any tuple
(g1, . . . , gn) of independent generics of R. Put a = hi(g1, . . . , gn−1). By the induc-
tive hypothesis of the first induction, a 6= 0. By assumptions on R, we have that
R/Ann(a) is non-nilpotent, so it has characteristic and nilexponent equal to p. The
coset gn + Ann(a) is a generic element of this ring, so, by Lemma 3.1, gin /∈ Ann(a).
Hence, f(g1, . . . , gn) = agin 6= 0.

Now, we turn to the inductive step, where we assume that k > 1. Then,

f(x1, . . . , xn) = hi1(x1, . . . , xn−1)x
i1
n +hi2(x1, . . . , xn−1)x

i2
n + · · ·+hik(x1, . . . , xn−1)x

ik
n ,

where i1 < i2 < · · · < ik are all indices i for which hi is non-zero (if i1 = 0, then by
hi1(x1, . . . , xn−1)x

i1
n we mean just hi1(x1, . . . , xn−1)). By the inductive hypothesis of

the second induction, we get that the element

gp−ikn f(g1, . . . , gn) = hi1(g1, . . . , gn−1)g
i1+p−ik
n + hi2(g1, . . . , gn−1)g

i2+p−ik
n + · · ·+

+hik−1
(g1, . . . , gn−1)g

ik−1+p−ik
n + hik(g1, . . . , gn−1)g

ik+p−ik
n = hi1(g1, . . . , gn−1)g

i1+p−ik
n +

+hi2(g1, . . . , gn−1)g
i2+p−ik
n + · · ·+ hik−1

(g1, . . . , gn−1)g
ik−1+p−ik
n

is non-zero, so f(g1, . . . , gn) 6= 0. �

Corollary 3.3. If Conjecture 0.5 is not true in the class of commutative rings, then
there is a counter-example, say R, to it such that the topological ring F defined in
Example 2.7 (for some prime p) is topologically isomorphic to a closed subring of R.

Proof. As it has already been explained, by results of [4, Section 4], we can take R
to be a counter-example to Conjecture 0.5 which satisfies the assumptions (and hence,
the conclusion) of Proposition 3.2. Let (In)n<ω be a decresing chain of open ideals of
R with trivial intersection. We choose inductively a sequence of independent generics
g0, g1, . . . of R such that gn+1 ∈ Ikn , where kn is a natural number such that for any
polynomial f(x0, . . . , xn) ∈ Fp[x0, . . . , xn]\{0} with degx0(f), . . . , degxn(f) < p, we
have that f(g0, . . . , gn) /∈ Ikn . Let S be the closure of the subring of R generated by
{gi : i < ω}.

We define φ : F → S as follows. Consider any y ∈ F . Choose polynomials
pi(t0, . . . , ti), i < ω, such that y = limi pi(y0, . . . , yi) for yi’s defined in Example 2.7.
Then, by the choice of the sequence (gi), the sequence pi(g0, . . . , gi) is convergent,
and we define φ(y) to be its limit. It is easy to check that φ : F → S is a well-defined
isomorphism of topological rings. �

Note that Conjecture 0.5 would be proved if in the above proof we were able to
embed topologically F into R as an invariant (under all topological automorphisms,
or only under the ones coming from the structural group of R) ring. Indeed, if there
was such an embedding, then F with the structural group induced by the structural
group of R would be a small profinite ring, which is impossible by the comment in
the paragraph below Example 2.7.
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