Problem 1. Let D be a strongly minimal set definable over A. Let \bar{d} be a finite tuple of elements of D. Prove that $R M(\bar{d} / A)=\operatorname{dim}_{\operatorname{acl}_{A}}(\bar{d})$, where $\operatorname{dim}_{\mathrm{acl}_{A}}$ is the dimension in the pregeometry on D given by the closure operator acl_{A}; in particular, $R M(\bar{d} / A)$ is finite.

Problem 2. (i) Prove that a simple group G of Morley rank 3 interprets an infinite field K such that $G \cong P S L_{2}(K)$.
(ii) Prove that if a connected group of Morley rank 3 is not solvable, then $Z(G)$ is finite and G interprets an infinite field K such that $G / Z(G) \cong P S L_{2}(K)$.
Hint. Use Frecon's theorem that there are no bad groups of Morley rank 3.
Problem 3. Let G and H be connected groups definable in some structure M. Assume G acts definably (e.g. trivially) on H. Prove that $H \rtimes G$ is also connected as a group definable in M.

Problem 4. Assume that in a stable structure a definable group G acts definably and faithfully on a strongly minimal set A. Let F be an infinite definable subgroup of G. Prove that there are only finitely many orbits of the action of F on A, and exactly one of them is infinite.

Problem 5. Assume that in a stable structure a definable group G acts definably on a definable set A. Define an equivalence relation \sim on A by $x \sim y \Longleftrightarrow \operatorname{Stab}_{G}(x)^{0}=$ $\operatorname{Stab}_{G}(y)^{0}$. Prove that \sim is G-invariant.

Problem 6. Assume G is a group acting transitively on a set A. Let $a \in A$. Assume that $\operatorname{Stab}_{G}(a)$ acts strictly 2-transitively on $A \backslash\{a\}$. Prove that the action of G on A is strictly 3 -transitive.
Problem 7. Let A be the projective line over a filed K. Let $s: A \rightarrow A$ be given by $s(x):=\frac{1}{x}$ and $H:=\{f: A \rightarrow A: f(x)=a x+b$ for some $a \in K \backslash\{0\}$ and $b \in K\}$. (i) Using Problem 5, show that $\langle H \cup\{s\}\rangle$ acts strictly 3-transitively on A.
(ii) Prove that $\langle H \cup\{s\}\rangle$ coincides with the group of all homographies $x \mapsto \frac{a x+b}{c x+d}$ (where the determinant is non-zero) of A, and that this group of homographies is isomorphic with $\mathrm{PSL}_{2}(K)$.

Problem 8. Let G and H be A-definable groups in an ω-stable structure. Consider $g \in G$ and $h \in H$. Prove that (g, h) is a generic of $G \times H$ over A iff h is a generic of H over A and g is a generic of G over A, h.

