## Topological dynamics in model theory. List 12.

Let M be a model and  $\mathfrak{C} \succ M$  a monster model of a complete theory T.

**Problem 1.** For the structure  $M_n$  from Example 4 on page 74, show that  $Aut(M_n)$  acts transitively on the family of all open, short intervals.

**Problem 2.** Prove that the relation on  $\prod_{n>1} \mathbb{Z}/n\mathbb{Z} = \prod_n ((-n/2, n/2] \cap \mathbb{Z})$  of lying in the same coset modulo the subgroup of all bounded sequences is  $\sim_B l^{\infty}$ .

**Problem 3.** Let S and Q be products of sorts, and  $X \subseteq S$ ,  $Y \subseteq Q$  be  $\emptyset$ -typedefinable. Let  $\bar{x}, \bar{y}$  be tuples of variables corresponding to S and Q, respectively.

- (i) Prove that for every finite tuples  $\bar{x}_0, \bar{x}_1 \subseteq \bar{x}$  of the same length (meaning also from the same sorts), for every  $p, q \in S_{\bar{x}}(\mathfrak{C})$  and for every  $\eta \in E(S_{\bar{x}}(\mathfrak{C}))$ , if  $p \upharpoonright_{\bar{x}_0} = q \upharpoonright_{\bar{x}_1}$ , then  $\eta(p) \upharpoonright_{\bar{x}_0} = \eta(q) \upharpoonright_{\bar{x}_1}$  (after the obvious identification of variables).
- (ii) Prove that under the assumptions of the lemma on page 77, the function  $f: E(S_X(\mathfrak{C})) \to E(S_Y(\mathfrak{C}))$  from the proof of this lemma really takes values in  $E(S_Y(\mathfrak{C}))$  and is a semigroup and  $\operatorname{Aut}(\mathfrak{C})$ -flow isomorphism.

**Problem 4.** Assume T is stable. Let  $S(\emptyset) \ni p_0 \subseteq p \in S(M)$ . Prove that p does not fork over  $\emptyset$  if and only if p is minimal in the fundamental order on the set  $S_{p_0}(M)$ .

**Problem 5.** Let  $p, q \in S(M)$ .

- (i) Prove that  $q \leq^c p \Longrightarrow q \leq p$ .
- (ii) Assume T is stable and M is  $\aleph_0$ -saturated. Prove that  $q \leq^c p \iff q \leq p$ .

**Problem 6.** Assume M is  $\aleph_0$ -saturated and  $A \supseteq M$ .

- (i) Prove that every type  $p \in S(M)$  has an extension  $p' \in S(A)$  which is a strong coheir over M.
- (ii) Prove that every type  $p \in S(M)$  has an extension  $p' \in S(A)$  which is a strong heir over M.