## Topological dynamics in model theory. List 14.

Let M be a model in a language L, and  $\varphi(x, y)$  an L-formula.

**Problem 1.** Let X be a compact space, and let  $A \subseteq C(X)$  be a (norm) bounded set of functions. Prove that A is pointwise precompact if and only if the pointwise closure of A is contained in C(X).

**Problem 2.** Prove that the following conditions are equivalent.

- (i)  $\varphi(x, y)$  is stable in M, i.e. there do NOT exist sequences  $(a_i)_{i \in \omega}$  and  $(b_j)_{j \in \omega}$  of elements of M such that:  $(\forall i, j)(M \models \varphi(a_i, b_j) \iff i \leq j)$  or  $(\forall i, j)(M \models \neg \varphi(a_i, b_j) \iff i \leq j)$ . (So the definition from the lecture should be corrected by adding the second possibility.)
- (ii) There are no sequences  $(a_i)_{i\in\omega}$  and  $(b_j)_{j\in\omega}$  in M such that:  $(\forall_i^{\infty}\forall_j^{\infty}\varphi(a_i, b_j)$  and  $\forall_j^{\infty}\forall_i^{\infty}\neg\varphi(a_i, b_j))$  or  $((\forall_i^{\infty}\forall_j^{\infty}\neg\varphi(a_i, b_j)$  and  $\forall_j^{\infty}\forall_i^{\infty}\varphi(a_i, b_j))$ .
- (iii) For every sequences  $(a_i)_{i \in \omega}$  and  $(b_j)_{j \in \omega}$  in M,  $\lim_i \lim_j \varphi(a_i, b_j) = \lim_j \lim_i \varphi(a_i, b_j)$ whenever both limits exist.

**Problem 3.** Let  $\mathfrak{C}' \succ \mathfrak{C} \succ M$  be monster models of  $\operatorname{Th}(M)$  such that  $\mathfrak{C}'$  is a monster with respect to  $\mathfrak{C}$ . Let A be the set of all functions from  $S_y(M)$  to  $\{0,1\}$  of the form  $\chi_{\tilde{\varphi}(y,a)}$  where  $a \in M$ . Let  $f \colon S_y(M) \to \{0,1\}$ . Prove that f belongs to the pointwise closure of A if and only if there is  $a' \in \mathfrak{C}'$  such that  $\operatorname{tp}(a'/\mathfrak{C})$  is finitely satisfiable in M and for every  $q \in S_y(M)$ ,  $f(q) = \varphi(a', b)$  for some/any  $b \in q(\mathfrak{C})$ .

**Problem 4.** Let (G, X) be a flow. Show that the WAP functions in C(X) form a closed subalgebra.