Topological dynamics in model theory. List 4.

Starting from Problem 3, G is a group and \mathcal{A} is Boolean G-algebra of subsets of G.

Problem 1. Let X be a definable set in a model M, and let C be a compact (Hausdorff) space. Let $N \succ M$ be an $|M|^+$ -saturated small elementary substructure of the monster model \mathfrak{C} . Prove the following statements.

- (i) If $f: X \to C$ is externally definable, then it extends uniquely to an externally definable function $f^*: S_{X,M}(N)(\mathfrak{C}) \to C$. Moreover, f^* is given by $\{f^*(a)\} = \bigcap_{\varphi \in \operatorname{tp}(a/N)} \operatorname{cl}(f[\varphi(M)]).$
- (ii) Conversely, if $f^* \colon S_{X,M}(N)(\mathfrak{C}) \to C$ is an externally definable function, then $f^*|_X \colon X \to C$ is externally definable.
- (iii) A function $f^*: S_{X,M}(N)(\mathfrak{C}) \to C$ is externally definable if and only if there is a continuous map $h: S_{X,M}(N) \to C$ such that $f^* = h \circ r$, where $r: S_{X,M}(N)(\mathfrak{C}) \to S_{X,M}(N)$ is given by $r(a) := \operatorname{tp}(a/N)$.

Problem 2. Let G be a group definable in M. Assume that all types in $S_G(M)$ are definable. Using the model-theoretic description of the semigroup operation on $S_{G,ext}(M)$ (in terms of realizations of types from $S_{G,M}(N)$), deduce that the semigroup operation on $S_G(M)$ is given by $p * q = \operatorname{tp}(ab/M)$ for some (equiv. any) $b \models q$ and a satisfying a unique coheir extension of p to a complete type over M, b.

Problem 3.

- (i) Check that $(G, S(\mathcal{A}), p_e)$ is a *G*-ambit.
- (ii) Assume that \mathcal{A} is *d*-closed. Prove that for every $p \in S(\mathcal{A}), d_p \in \text{End}(\mathcal{A})$.
- (iii) Assume that \mathcal{A} is *d*-closed. Prove that the map $d: S(\mathcal{A}) \to \operatorname{End}(\mathcal{A})$ given by $p \mapsto d_p$ is a bijection.

Problem 4.

- (i) Prove that for a group G definable in M the G-algebra $\text{Def}_{G.ext}(M)$ is d-closed.
- (ii) Give an example of a group G definable in a structure M such that the G-algebra Def(G) is not d-closed.

Problem 5. Suppose there is a semigroup operation * on $S(\mathcal{A})$ such that the map $l: S(\mathcal{A}) \to E(S(\mathcal{A}))$ given by $l \mapsto l_p$ (where $l_p(q) := p * q$) is a continuous epimorphism of semigroups with $l_{p_g} = \pi_g$ for all $g \in G$ (where $\pi_g(q) := gq$). Prove that \mathcal{A} is *d*-closed.

Problem 6. Let H be a subgroup of $\operatorname{End}(\mathcal{A})$. Show that all elements of H have the same kernel (denoted by K_H) and the same image (denoted by \mathcal{A}_H). Moreover, prove that $f \mapsto f|_{\mathcal{A}_H}$ defines a group embedding of H into $\operatorname{Aut}(\mathcal{A}_H)$.

Problem 7. Assume \mathcal{A} is *d*-closed. Let *I* be a minimal left ideal in $S(\mathcal{A})$. Let $\mathcal{B} \in \mathcal{R}$ (i.e. $\mathcal{B} = \text{Im}(d_p)$ for some $p \in I$). Prove that:

- (i) $I = \bigcap \{ [U^c] : U \in K_I \},\$
- (ii) for every $U \in \mathcal{A}$, for every $u \in J(I)$, $[U] \cap I = [d_u(U)] \cap I$,
- (iii) for every $U \in \mathcal{A}$ there is a unique $V \in \mathcal{B}$ such that $[U] \cap I = [V] \cap I$ (this means that the sets $[V] \cap I$, $V \in \mathcal{B}$, are pairwise distinct and they are all the (relatively) clopen subsets of I),
- (iv) for every $q \in S(\mathcal{B})$ there is a unique $p_q \in I$ such that $q = p_q \cap \mathcal{B}$; moreover, this unique p_q is generated as a filter by $q \cup \{U^c : U \in K_I\}$,
- (v) the function mapping q to p_q is a homeomorphism from $S(\mathcal{B})$ to I.

Something to be checked.

Let us call a map f from G to a compact Hausdorff space C \mathcal{A} -definable if the preimages under f of any two disjoint closed subsets of C can be separated by a set from \mathcal{A} . If C is 0-dimensional, this just means that the preimage under f of any clopen set belongs to \mathcal{A} . Observe that the map $\pi: G \to S(A)$ given by $\pi(g) := p_g$ is \mathcal{A} -definable. Let us call a flow (G, X) \mathcal{A} -definable if for every $x \in X$ the map $g \mapsto gx$ is \mathcal{A} -definable.

Proposition -1.1 If the flow $(G, S(\mathcal{A}))$ is \mathcal{A} -definable, then the ambit $(G, S(\mathcal{A}), p_e)$ is universal in the category of \mathcal{A} -definable G-ambits.

Proposition -1.2 The existence of a left continuous semigroup operation * on $S(\mathcal{A})$ extending the action of G (i.e. $p_g * q = gq$) is equivalent to the flow $(G, S(\mathcal{A}))$ being \mathcal{A} -definable.

This together with the corollary on page 29 of the lecture notes yields

Corollary -1.3 The following conditions are equivalent.

- (i) There exists a left continuous semigroup operation * on $S(\mathcal{A})$ extending the action of G.
- (ii) \mathcal{A} is d-closed.
- (iii) The flow $(G, S(\mathcal{A}))$ is \mathcal{A} -definable (equivalently, $(G, S(\mathcal{A}), p_e)$ is universal in the category of \mathcal{A} -definable G-ambits).
- (iv) There is a semigroup operation * on $S(\mathcal{A})$ such that the map $l: S(\mathcal{A}) \to E(S(\mathcal{A}))$ given by $l \mapsto l_p$ (where $l_p(q) := p * q$) is a continuous epimorphism of semigroups with $l_{p_q} = \pi_g$ for all $g \in G$ (where $\pi_g(q) := gq$).