Topological dynamics in model theory. List 4.

Starting from Problem $3, G$ is a group and \mathcal{A} is Boolean G-algebra of subsets of G.
Problem 1. Let X be a definable set in a model M, and let C be a compact (Hausdorff) space. Let $N \succ M$ be an $|M|^{+}$-saturated small elementary substructure of the monster model \mathfrak{C}. Prove the following statements.
(i) If $f: X \rightarrow C$ is externally definable, then it extends uniquely to an externally definable function $f^{*}: S_{X, M}(N)(\mathfrak{C}) \rightarrow C$. Moreover, f^{*} is given by $\left\{f^{*}(a)\right\}=\bigcap_{\varphi \in \operatorname{tp}(a / N)} \operatorname{cl}(f[\varphi(M)])$.
(ii) Conversely, if $f^{*}: S_{X, M}(N)(\mathfrak{C}) \rightarrow C$ is an externally definable function, then $\left.f^{*}\right|_{X}: X \rightarrow C$ is externally definable.
(iii) A function $f^{*}: S_{X, M}(N)(\mathfrak{C}) \rightarrow C$ is externally definable if and only if there is a continuous map $h: S_{X, M}(N) \rightarrow C$ such that $f^{*}=h \circ r$, where $r: S_{X, M}(N)(\mathfrak{C}) \rightarrow$ $S_{X, M}(N)$ is given by $r(a):=\operatorname{tp}(a / N)$.

Problem 2. Let G be a group definable in M. Assume that all types in $S_{G}(M)$ are definable. Using the model-theoretic description of the semigroup operation on $S_{G, \text { ext }}(M)$ (in terms of realizations of types from $S_{G, M}(N)$), deduce that the semigroup operation on $S_{G}(M)$ is given by $p * q=\operatorname{tp}(a b / M)$ for some (equiv. any) $b \models q$ and a satisfying a unique coheir extension of p to a complete type over M, b.

Problem 3.

(i) Check that $\left(G, S(\mathcal{A}), p_{e}\right)$ is a G-ambit.
(ii) Assume that \mathcal{A} is d-closed. Prove that for every $p \in S(\mathcal{A}), d_{p} \in \operatorname{End}(\mathcal{A})$.
(iii) Assume that \mathcal{A} is d-closed. Prove that the map $d: S(\mathcal{A}) \rightarrow \operatorname{End}(\mathcal{A})$ given by $p \mapsto d_{p}$ is a bijection.

Problem 4.

(i) Prove that for a group G definable in M the G-algebra $\operatorname{Def}_{G, e x t}(M)$ is d-closed.
(ii) Give an example of a group G definable in a structure M such that the G algebra $\operatorname{Def}(G)$ is not d-closed.

Problem 5. Suppose there is a semigroup operation $*$ on $S(\mathcal{A})$ such that the map $l: S(\mathcal{A}) \rightarrow E(S(\mathcal{A}))$ given by $l \mapsto l_{p}$ (where $\left.l_{p}(q):=p * q\right)$ is a continuous epimorphism of semigroups with $l_{p_{g}}=\pi_{g}$ for all $g \in G$ (where $\pi_{g}(q):=g q$). Prove that \mathcal{A} is d-closed.

Problem 6. Let H be a subgroup of $\operatorname{End}(\mathcal{A})$. Show that all elements of H have the same kernel (denoted by K_{H}) and the same image (denoted by \mathcal{A}_{H}). Moreover, prove that $\left.f \mapsto f\right|_{\mathcal{A}_{H}}$ defines a group embedding of H into $\operatorname{Aut}\left(\mathcal{A}_{H}\right)$.

Problem 7. Assume \mathcal{A} is d-closed. Let I be a minimal left ideal in $S(\mathcal{A})$. Let $\mathcal{B} \in \mathcal{R}$ (i.e. $\mathcal{B}=\operatorname{Im}\left(d_{p}\right)$ for some $\left.p \in I\right)$. Prove that:
(i) $I=\bigcap\left\{\left[U^{c}\right]: U \in K_{I}\right\}$,
(ii) for every $U \in \mathcal{A}$, for every $u \in J(I),[U] \cap I=\left[d_{u}(U)\right] \cap I$,
(iii) for every $U \in \mathcal{A}$ there is a unique $V \in \mathcal{B}$ such that $[U] \cap I=[V] \cap I$ (this means that the sets $[V] \cap I, V \in \mathcal{B}$, are pairwise distinct and they are all the (relatively) clopen subsets of I),
(iv) for every $q \in S(\mathcal{B})$ there is a unique $p_{q} \in I$ such that $q=p_{q} \cap \mathcal{B}$; moreover, this unique p_{q} is generated as a filter by $q \cup\left\{U^{c}: U \in K_{I}\right\}$,
(v) the function mapping q to p_{q} is a homeomorphism from $S(\mathcal{B})$ to I.

Something to be checked.
Let us call a map f from G to a compact Hausdorff space $C \mathcal{A}$-definable if the preimages under f of any two disjoint closed subsets of C can be separated by a set from \mathcal{A}. If C is 0 -dimensional, this just means that the preimage under f of any clopen set belongs to \mathcal{A}. Observe that the map $\pi: G \rightarrow S(A)$ given by $\pi(g):=p_{g}$ is \mathcal{A}-definable. Let us call a flow $(G, X) \mathcal{A}$-definable if for every $x \in X$ the map $g \mapsto g x$ is \mathcal{A}-definable.

Proposition -1.1 If the flow $(G, S(\mathcal{A}))$ is \mathcal{A}-definable, then the ambit $\left(G, S(\mathcal{A}), p_{e}\right)$ is universal in the category of \mathcal{A}-definable G-ambits.

Proposition -1.2 The existence of a left continuous semigroup operation $*$ on $S(\mathcal{A})$ extending the action of G (i.e. $p_{g} * q=g q$) is equivalent to the flow $(G, S(\mathcal{A})$) being \mathcal{A}-definable.

This together with the corollary on page 29 of the lecture notes yields
Corollary -1.3 The following conditions are equivalent.
(i) There exists a left continuous semigroup operation $*$ on $S(\mathcal{A})$ extending the action of G.
(ii) \mathcal{A} is d-closed.
(iii) The flow $(G, S(\mathcal{A}))$ is \mathcal{A}-definable (equivalently, $\left(G, S(\mathcal{A}), p_{e}\right)$ is universal in the category of \mathcal{A}-definable G-ambits).
(iv) There is a semigroup operation $*$ on $S(\mathcal{A})$ such that the map $l: S(\mathcal{A}) \rightarrow$ $E\left(S(\mathcal{A})\right.$) given by $l \mapsto l_{p}$ (where $\left.l_{p}(q):=p * q\right)$ is a continuous epimorphism of semigroups with $l_{p_{g}}=\pi_{g}$ for all $g \in G$ (where $\left.\pi_{g}(q):=g q\right)$.

