Kolokwium 2.
10 czerwca 2016

1. Dla niezaleznych zmiennych losowych X, Y o rozktadzie wykladniczym z parametrem 1 wyznacz gesto$é
rozktadu X — Y.

Dowdd. Korzystajac z faktu, ze f_y(x) = fy (—x) otrzymujemy
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2. Dla ciagu (X;);en i.i.d. zmiennych losowych, takich ze E[|X;]|] < oo uzasadnij, ze z prawdopodobienstwem
1 istnieje granica
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Dowdd. W celu pokazania zbieznosci chcemy skorzystaé¢ z MPWL. Niestety, zmienne w ciagu (X;X4+1)i>1
nie sa niezalezne. W celu obejscia tego problemu rozbijamy szereg na dwa podszeregi (dla n = 2k):

X1 Xo+ XoXg + Xg Xy + - Xok Xog g
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Sk :
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Zauwazmy teraz, ze do kazdej $redniej St mozemy zastosowaé¢ MPWL: w Si zmienne X1 X2, X3X4, X5Xg, ...
Sq i.id. oraz E|X1X2‘ = E|X1|E|X2‘ = (E‘X1|)2 < 00. Zatem S]i — E[XlXQ]/Q = E[Xl]]E[XQ]/Q =
(E[X4])?/2 p.n. Analogicznie otrzymujemy S7 — (E[X;])?/2 p.n. Stad Sk, jako suma zbieznych p.n. ciagéw
zbiega do sumy granic tj. Sy — (E[X1])? p.n.

Podobnie pokazujemy dla nieparzystych n. O



3. Niech X, Y beda niezaleznymi zmiennymi losowymi o standardowym rozkladzie normalnym. Pokaz, ze
zmienna X /Y ma ten sam rozklad co tan(U), przy czym U ma rozklad jednostajny na odcinku (—m/2,7/2).
Jaka jest jego gestos$¢?

Dowdd. Wyznaczmy gestosci obu rozktadéw.

Sposéb 1:
Poniewaz zmienne X oraz Y sg niezalezne wigc miara deﬁniujadca rozktad 1@czny wektora losowego (X,Y)
jest miara produktowa tj. du(x vy (%, y) = dux (v)dpy (y) = \/ﬂ e’" /de\ﬁe v /2dy = Le= @ +v")/24zqy.

Dla dowolnej funkcji mierzalnej, ograniczonej ¢ mamy
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Podstawiajac z/y = u otrzymujemy
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dla y < 0. Stad uzywajac twierdzenia Fubbini’ego
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Stad fx/y(z) = %ﬁ jest gestodcia zmiennej X/Y (wystarczy wziaé ¢ jako funkcje charakterystyczna
odcinkéw).

Spos6b 2: Poniewaz obie zmienne X, Y sa symetryczne wiec réwniez zmienna Z = X/Y jest symetryczna.
Zatem wystarczy, ze policzymy rozklad |Z| i wtedy fx(z) = 1 fix|(x). W tym celu wyznaczmy rozklad
log || = log | X|log [ Y. Zauwazmy, 7e fix|(x) = (£ (2)+ Fx (~2))Lpso) = 25 (2)Ljs50] 0702 fiog x1(x) =
g Fog x| (t) = GPlog|X| <] = GP[X| < el = FFx|(e") = ¢ fix|(e"). Stad
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Wyznaczmy teraz gesto$é¢ tan U. Mamy
d d d 1 1
franv () = %]P’[tanU <zl = %P[U < arctanz] = %;(arctanx +7/2) = m



4. Wyznacz granice
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Dowdd. Zauwazmy, ze wyrazenie z ktérego wyznaczmy granice mozemy przedstawi¢ w postaci

o[f( ) |

przy czym zmienne U; sa i.i.d. o rozkladzie jednostajnym na odcinku [0, 1]. Zauwazmy réwniez, ze z MPWL
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Chcemy teraz uzasadnié, ze z granica mozemy przejs¢ pod znak wartosci oczekiwanej. Korzystajac teraz z
faktu, ze 1 +t < et oraz 22 < z dla 0 < z < 1.
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Korzystajac z twierdzenie Lebesgue’a o zbieznosci ograniczonej otrzymujemy
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poniewaz E[U;] = fol xdx = 1/2 oraz E[U?] = fol x?dr =1/3. O
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5. Niech (X,,), (r,) beda niezaleznymi ciagami niezaleznych zmiennych losowych, przy czym X; ma rozklad
wykladniczy z parametrem \; (tj. gestosé jest postaci \;e™*#® dla = > 0) natomiast P[r,, = —1] = P[r,, =
1] = 1/n oraz P[r, = 0] = 1 — 2/n. Przy zalozeniu }_,, —> < 0o zbadaj zbieinos¢ szeregu

ZTZ‘XZ‘.
i=1
Dowdd. Zauwazmy, ze zmienne Y; = r; X; sa niezalezne. Ponadto E[r; X;] = E[r;]E[X;] = OE[X;] = 0 oraz
2
var(Y;) = E[Y?] — (E[Y;])* = E[(r:X)’] = E[}]E[X?] = ~E[X}] =
i

K2 K2

poniewaz
o0 o0 y2 2
E[X?] = / a2 \e N dr = / e Vdy = —.
0 0

Zatem oba szeregi > E[Y,], > wvar(Y,) sa zbiezne. Stad na mocy kryterium Kolmogorowa o dwéch
szeregach y_ r,Y, = Y, zbiega prawie na pewno. O



6. Pokaz, ze jezeli X,, 2 X,Y, 2. Y oraz zmienna Y jest niezalezna od X i ciagu (X,,) to X,,+Y, 2, X+Y.

Dowdd. Wpierw pokazemy, ze
X, +Y 2 X4V

W tym celu wezmy ograniczong funkcje ciagla f i wtedy
i B+ V) =tim [ [ £+ g)ducr, ) Dt [ @+ g, @div )
= / lim / fl@ +y)dux, (@)duy (y) = / / f@ +y)dpx (w)dpy (y) = / / f@+y)dpx .y (@, y)

=E[f(X+Y)],

gdzie réwnosci (%) wynikaja z niezaleznosci Y od X, i X odpowiednio, (**) z twierdzenia Lebesgue’a o
zbieznosci ograniczonej a (* x ) wynika ze stabej zbieznosci X,, do X.

Poniewaz Y, Ly wiec Y, — Y L) stad réwniez Y, — Y £ 0. Korzystajac z zadania 10 z listy 11.

Xp+Y,=(Xp+Y)+ (Y, —Y) 2 (X +Y) +0.



