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1. Dla niezależnych zmiennych losowych X, Y o rozkładzie wykładniczym z parametrem 1 wyznacz gęstość
rozkładu X − Y .

Dowód. Korzystając z faktu, że f−Y (x) = fY (−x) otrzymujemy

fX−Y (x) = fX ∗ f−Y (x) =
∫ ∞
−∞

fX(x− t)f−Y (t)dt =
∫ ∞
−∞

fX(x− t)fY (−t)dt

=
∫ ∞
−∞

e−x+t1[x−t­0]e
t1[−t­0]dt = e−x

∫ ∞
−∞

e2t1[t¬x,t¬0]dt = e−x
∫ ∞
−∞

e2t1[t¬min(x,0)]dt

= e−x
∫ min(x,0)
−∞

e2tdt = e−x
1
2
e2min(x,0) =

1
2
emin(x,−x) =

1
2
e−|x|



2. Dla ciągu (Xi)i∈N i.i.d. zmiennych losowych, takich że E[|X1|] <∞ uzasadnij, że z prawdopodobieństwem
1 istnieje granica

lim
n→∞

X1X2 +X2X3 +X3X4 + · · ·XnXn+1

n
.

Dowód. W celu pokazania zbieżności chcemy skorzystać z MPWL. Niestety, zmienne w ciągu (XiXi+1)i­1
nie są niezależne. W celu obejścia tego problemu rozbijamy szereg na dwa podszeregi (dla n = 2k):

Sk : =
X1X2 +X2X3 +X3X4 + · · ·X2kX2k+1

2k

=
X1X2 +X3X4 + · · ·XnX2k−1

2k
+
X2X3 +X4X6 + · · ·X2kX2k+1

2k
=: S1k + S2k

Zauważmy teraz, że do każdej średniej Sik możemy zastosować MPWL: w S1k zmienneX1X2, X3X4, X5X6, . . .
są i.i.d. oraz E|X1X2| = E|X1|E|X2| = (E|X1|)2 < ∞. Zatem S1k → E[X1X2]/2 = E[X1]E[X2]/2 =
(E[X1])2/2 p.n. Analogicznie otrzymujemy S2k → (E[X1])2/2 p.n. Stąd Sk jako suma zbieżnych p.n. ciągów
zbiega do sumy granic tj. Sk → (E[X1])2 p.n.

Podobnie pokazujemy dla nieparzystych n.



3. Niech X, Y będą niezależnymi zmiennymi losowymi o standardowym rozkładzie normalnym. Pokaż, że
zmienna X/Y ma ten sam rozkład co tan(U), przy czym U ma rozkład jednostajny na odcinku (−π/2, π/2).
Jaka jest jego gęstość?

Dowód. Wyznaczmy gęstości obu rozkładów.

Sposób 1:
Ponieważ zmienne X oraz Y są niezależne więc miara definiująca rozkład łączny wektora losowego (X,Y )
jest miarą produktową tj. dµ(X,Y )(x, y) = dµX(x)dµY (y) = 1√

2π
e−x

2/2dx 1√
2π
e−y

2/2dy = 1
2π e
−(x2+y2)/2dxdy.

Dla dowolnej funkcji mierzalnej, ograniczonej φ mamy

Eφ(X/Y ) =
∫ ∫

R2
φ(x/y)dµ(X,Y )(x, y) =

∫ ∞
−∞

∫ ∞
−∞

φ(x/y)
1

2π
e−(x

2+y2)/2dxdy

Podstawiając x/y = u otrzymujemy∫ ∞
−∞

φ(x/y)e−x
2/2dx =

∫ ∞
−∞

φ(u)e−u
2y2/2ydu

dla y > 0 lub ∫ ∞
−∞

φ(x/y)e−x
2/2dx =

∫ −∞
∞

φ(u)e−u
2y2/2ydu =

∫ ∞
−∞

φ(u)e−u
2y2/2ydu

dla y < 0. Stąd używając twierdzenia Fubbini’ego

Eφ(X/Y ) =
1

2π

∫ ∞
−∞

∫ ∞
−∞

φ(u)e−(u
2y2+y2)/2|y|dudy =

1
π

∫ ∞
0

∫ ∞
−∞

φ(u)e−(u
2y2+y2)/2ydudy

=
1
π

∫ ∞
−∞

φ(u)
∫ ∞
0

e−(u
2+1)y2/2ydydu =

1
π

∫ ∞
−∞

φ(u)
∫ ∞
0

e−(u
2+1)vdvdu =

∫ ∞
−∞

φ(u)
1
π

1
u2 + 1

du.

Stąd fX/Y (x) = 1
π
1

x2+1 jest gęstością zmiennej X/Y (wystarczy wziąć φ jako funkcję charakterystyczną
odcinków).
Sposób 2: Ponieważ obie zmienne X, Y są symetryczne więc również zmienna Z = X/Y jest symetryczna.
Zatem wystarczy, że policzymy rozkład |Z| i wtedy fX(x) = 1

2f|X|(x). W tym celu wyznaczmy rozkład
log |Z| = log |X|−log |Y |. Zauważmy, że f|X|(x) = (fX(x)+fX(−x))1[x­0] = 2fX(x)1[x­0] oraz flog |X|(x) =
d
dtFlog |X|(t) = d

dtP[log |X| ¬ t] = d
dtP[|X| ¬ et] = d

dtF|X|(e
t) = etf|X|(et). Stąd

flog |Z|(t) =
∫ ∞
−∞

flog |X|(t− s)flog |X|(−s)ds =
∫ ∞
−∞

flog |X|(t− s)flog |X|(−s)ds

=
∫ ∞
−∞

et−sf|X|(e
t−s)e−sf|X|(e

−s)ds = 4
∫ ∞
−∞

et−sfX(et−s)e−sfX(e−s)ds = 4
∫ ∞
0

etfX(ety)yfX(y)dy

=
2et

π

∫ ∞
0

e−(e
ty)2/2−y2/2ydy =

2et

π

∫ ∞
0

e−(e
2t+1)y2/2ydy =

2et

π(e2t + 1)
.

Zatem
f|Z|(x) = flog |Z|(log x)/x =

2x
π(x2 + 1)x

i ostatecznie
fZ(x) =

1
2
f|Z|(|x|) =

1
π(x2 + 1)

.

Wyznaczmy teraz gęstość tanU . Mamy

ftanU (x) =
d

dx
P[tanU ¬ x] =

d

dx
P[U ¬ arctanx] =

d

dx

1
π

(arctanx+ π/2) =
1

π(x2 + 1)
.



4. Wyznacz granicę

lim
n

∫ 1
0
. . .

∫ 1
0

n∏
i=1

(
1 +

1∑n
k=1 xk

)x2i
dx1 . . . dxn

Dowód. Zauważmy, że wyrażenie z którego wyznaczmy granicę możemy przedstawić w postaci

E

[
n∏
i=1

(
1 +

1∑n
k=1 Uk

)U2i ]
,

przy czym zmienne Ui są i.i.d. o rozkładzie jednostajnym na odcinku [0, 1]. Zauważmy również, że z MPWL

lim
n→∞

n∏
i=1

(
1 +

1∑n
k=1 Uk

)U2i
= lim
n→∞

(
1 +

1
n 1n
∑n
k=1 Uk

)n 1n∑n

i=1
U2i

= e
E[U21 ]
E[U1] p.n.

Chcemy teraz uzasadnić, że z granicą możemy przejść pod znak wartości oczekiwanej. Korzystając teraz z
faktu, że 1 + t ¬ et oraz x2 ¬ x dla 0 ¬ x ¬ 1.(

1 +
1∑n

k=1 Uk

)∑n

i=1
U2i

¬ exp
(∑n

i=1 U
2
i∑n

k=1 Uk

)
¬ e.

Korzystając z twierdzenie Lebesgue’a o zbieżności ograniczonej otrzymujemy

lim
n

E

[
n∏
i=1

(
1 +

1∑n
k=1 Uk

)U2i ]
= E

[
lim
n

n∏
i=1

(
1 +

1∑n
k=1 Uk

)U2i ]
= e2/3,

ponieważ E[U1] =
∫ 1
0 xdx = 1/2 oraz E[U21 ] =

∫ 1
0 x
2dx = 1/3.



5. Niech (Xn), (rn) będą niezależnymi ciągami niezależnych zmiennych losowych, przy czym Xi ma rozkład
wykładniczy z parametrem λi (tj. gęstość jest postaci λie−λix dla x ­ 0) natomiast P[rn = −1] = P[rn =
1] = 1/n oraz P[rn = 0] = 1− 2/n. Przy założeniu

∑
n
1

nλ2n
<∞ zbadaj zbieżność szeregu

∞∑
i=1

riXi.

Dowód. Zauważmy, że zmienne Yi = riXi są niezależne. Ponadto E[riXi] = E[ri]E[Xi] = 0E[Xi] = 0 oraz

var(Yi) = E[Y 2i ]− (E[Yi])2 = E[(riXi)2] = E[r2i ]E[X2i ] =
2
i
E[X2i ] =

4
iλ2i

,

ponieważ

E[X2i ] =
∫ ∞
0

x2λie
−λixdx =

∫ ∞
0

y2

λ2i
e−ydy =

2
λ2i
.

Zatem oba szeregi
∑
n E[Yn],

∑
n var(Yn) są zbieżne. Stąd na mocy kryterium Kołmogorowa o dwóch

szeregach
∑
n rnYn =

∑
n Yn zbiega prawie na pewno.



6. Pokaż, że jeżeliXn
D=⇒ X, Yn

P=⇒ Y oraz zmienna Y jest niezależna odX i ciągu (Xn) toXn+Yn
D=⇒ X+Y .

Dowód. Wpierw pokażemy, że
Xn + Y

D=⇒ X + Y.

W tym celu weźmy ograniczoną funkcję ciągłą f i wtedy

lim
n

E[f(Xn + Y )] = lim
n

∫ ∫
f(x+ y)dµ(Xn,Y )(x, y)

(∗)
= lim

n

∫ ∫
f(x+ y)dµXn(x)dµY (y)

(∗∗)
=
∫

lim
n

∫
f(x+ y)dµXn(x)dµY (y)

(∗∗∗)
=

∫ ∫
f(x+ y)dµX(x)dµY (y)

(∗)
=
∫ ∫

f(x+ y)dµ(X,Y )(x, y)

= E[f(X + Y )],

gdzie równości (∗) wynikają z niezależności Y od Xn i X odpowiednio, (∗∗) z twierdzenia Lebesgue’a o
zbieżności ograniczonej a (∗ ∗ ∗) wynika ze słabej zbieżności Xn do X.

Ponieważ Yn
P=⇒ Y więc Yn − Y

P=⇒ 0 stąd również Yn − Y
D=⇒ 0. Korzystając z zadania 10 z listy 11.

Xn + Yn = (Xn + Y ) + (Yn − Y ) D=⇒ (X + Y ) + 0.


