
Analiza matematyczna A3, Notatki:
∫∫
P

f

PrzykÃlad.
∫∫
P

f gdzie f(x, y) = [x− y] i P – trapez (2, 0), (4, 0), (4, 4), (2, 2).

Zbiór P = [2, 4]× [0, 4] ∩ {(x, y) : y ≤ x} można podzielić na skoń-
czenie wiele zbiorów o rozÃla‘cznych wne‘trzach (na wiele sposobów).
Rozważmy podziaÃl ω = {P1, P2, P3, P4, P5, P6} gdzie

P1 = [2, 3]× [0, 1], P2 = [..., 4]× [..., ...],
P3 = [2, 3]× [..., ...], P4 = [..., ...]× [1, 2],
P5 = [2, 3]× [2, 3] ∩ P, P6 = [3, 4]× [2, 4] ∩ P .

Pola tych zbiorów sa‘ równe: ∆p1 = ∆p2 = ∆p3 = ∆p4 = 1,
∆p5 = 0.5,∆p6 = .... Oczywíscie pole P =

∑
i ∆pi.

W każdym zbiorze Pi wybierzmy po (jednym) punkcie (xi, yi);
np. ( 5

2 , 1
2 ), ( 7

2 , 1
2 ), ( 5

2 , 3
2 ), ( 7

2 , 3
2 ), ( 5

2 , 5
2 ), ( 7

2 , 5
2 ). -P1 P2
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Dla funkcji f(x, y) = [x− y], podziaÃlu ω z wybranymi punktami (xi, yi), obliczamy:

σω :=
6∑

i=1

f(xi, yi) ·∆pi =

= [ 52 − 1
2 ] · 1 + [ 72 − 1

2 ] · 1 + [ 52 − 3
2 ] · 1 + [ 72 − 3

2 ] · 1 + [ 52 − 5
2 ] · 1

2 + [ 72 − 5
2 ] · 3

2 = 9 1
2 .

Przy innym wyborze punktów (np. zmieniaja‘c tylko (x2, y2) = (4, 0)) możemy dostać
inna‘ liczbe‘ (w tym przypadku 10 1

2 ) ale zawsze mie‘dzy liczbami sω i Sω gdzie:

sω :=
...∑
i=1

( inf
(x,y)∈Pi

f(x, y) ·∆pi) = 1 · 1 + 2 · 1 + 0 · 1 + 1 · 1 + 0 · 1
2 + 0 · 3

2 = ... ,

Sω :=
6∑

i=1

( sup
(x,y)∈Pi

f(x, y) ·∆pi) = 3 · 1 + 4 · 1 + 2 · 1 + 3 · 1 + 1 · 1
2 + 2 · 3

2 = 15 1
2 .

Dla tej funkcji i zbioru P można rozważać ’wygodniejsze’ podziaÃly: mianowicie dla
ustalonej liczby naturalnej n proste o równaniach postaci y = x+ k

n , x = k
n , k ∈ ZZ,

dziela‘ P na równolegÃloboki i trójka‘ty (na rys. n = 5) wyznaczaja‘c podziaÃl ω′n.
Gdy wszystkie punkty (xi, yi) sa‘ wybrane z wne

‘
trz Pi, to Ãlatwo

zliczamy (wskazówka: zsumuj pola takich Pi, że f(xi, yi) = 2):
σω′n =

∑
i

f(xi, yi) ·∆pi = 3 · 1
2 + 2 · 3

2 + 1 · 2 + 0 · 2 = 6 1
2

Podobnie sω′n =
∑
i

inf
(x,y)∈Pi

f(x, y) ·∆pi = 6 1
2 .

Zaznacz te Pi, na których f nie jest staÃla. Widać wtedy, że
Sω′n =

∑
i

sup
(x,y)∈Pi

f(x, y) ·∆pi =

= 6 1
2 +1 · 2

n +1 · 2
n +1 · ( 1

n + 1
2n2 )+1 · 1

2n2 = 6 1
2 + 5

n + 1
n2 .

Zatem dla ’dużych’ n wielkości σω′n , sω′n , Sω′n sa‘ niemal 6 1
2 =

∫∫
P

f . -x
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PrzykÃlad. Dla f(x, y) = y/x podziaÃly ω′′n trapezu P prostymi: y = k
nx, x = k

n ,

k ∈ ZZ daja‘: sω′′n =
n∑

k=1

k−1
n · 6

n = 3 · n−1
n , Sω′′n =

n∑
k=1

k
n · 6

n = 3 · n+1
n , wie‘c

∫∫
P

y

x
= 3.

Uwaga. Dla innych funkcji ’wygodne’ sa‘ inne podziaÃly P ; np. dla f(x, y) = (2x−y)3

– podziaÃl prostymi: y = 2x + k
n , x = k

n , k ∈ ZZ. Dla f(x, y) = 2x + y3 trudno o
’wygodny’ podziaÃl; później zobaczymy jak rachunek caÃlkowy ’zaÃlatwia’ ten problem.

PrzykÃlad.
∫∫
P

f gdzie f(x, y) = x2 + y2 i P – koÃlo o środku (0, 0) i promieniu R.

Dla ustalonego n dzielimy koÃlo na n2 cze‘ści: dla i = j +(k− 1)n, 1 ≤ j, k ≤ n, niech

Pi = Pj+(k−1)n = {(r cos t, r sin t) : R
√

k−1
n ≤ r ≤ R

√
k
n ∧ 2π k−1

n ≤ t ≤ 2π k
n}

(zrób rysunek). Mamy ∆pi = ∆pj+(k−1)n = 1
n (πR2

√
k
n

2

− πR2
√

k−1
n

2

) = 1
n2 πR2.

Ponieważ na każdej z cze‘ści k-tego pierścienia f ’zachowuje sie‘ jednakowo’, wie‘c

sωn =
n∑

k=1

R2 k−1
n · nπR2

n2 = n−1
n · 1

2πR4 , Sωn =
n∑

k=1

R2 k
n · nπR2

n2 = n+1
n · 1

2πR4 .

Zatem dla ’dużych’ n wielkości sωn
, Sωn

sa‘ niemal równe 1
2πR4 =

∫∫
||(x,y)||≤R

x2 + y2 .

Definicja. Niech f(x, y) be‘dzie funkcja‘ ograniczona‘ na zbiorze domknie‘tym
ograniczonym P . Dla podziaÃlu ω = {P1, . . . Pm} na zbiory o rozÃla‘cznych wne‘trzach
i przy wyborze z nich punktów (x1, y1), . . . , (xm, ym) przyjmujemy oznaczenia:

σω =
m∑

i=1

f(xi, yi) ·∆pi, sω =
m∑

i=1

inf
(x,y)∈Pi

f(x, y) ·∆pi, Sω =
m∑

i=1

sup
(x,y)∈Pi

f(x, y) ·∆pi,

gdzie ∆p1 = pole zbioru Pi. Rozważaja‘c wszystkie podziaÃly określamy:∫∫
P

f := sup
ω

sω – caÃlka dolna,
∫∫
P

f := inf
ω

Sω – caÃlka górna.

Gdy sa‘ równe, to te‘ liczbe‘ nazywamy caÃlka‘ f na zbiorze P i piszemy
∫∫
P

f .

Obserwacja. Dla dowolnego podziaÃlu ω mamy: sω ≤ ∫∫
P

f ≤ ∫∫
P

f ≤ Sω .

PrzykÃlad. Sa‘ funkcje, dla których caÃlka nie istnieje, np. dla funkcji f(x, y) = 0
gdy x ∈ IQ i f(x, y) = 1 gdy x ∈ IR \ IQ, dla zbioru P = [1, 3] × [1, 3] i dowolnego

podziaÃlu ω jest: sω =
m∑

i=1

0 ·∆pi = 0, Sω =
m∑

i=1

1 ·∆pi = 4, wie‘c
∫∫
P

f = 0 6= 4 =
∫∫
P

f .

Tw. Jeśli f(x, y) jest cia‘gÃla na P , to jest caÃlkowalna na P , tzn.
∫∫
P

f =
∫∫
P

f , caÃlka

dolna i górna sa‘ równe. Ponadto, jeśli ωn jest cia‘giem podziaÃlów P takim, że średnice
najwie‘kszych zbiorów sa‘ zbieżne do 0, to lim

n→∞
sωn = lim

n→∞
σωn = lim

n→∞
Sωn =

∫∫
P

f .

Twierdzenie.(o zamianie caÃlki podwójnej na iterowana‘)Niech P = {(x, y) : ϕ(x) ≤ y ≤ ψ(x), x ∈ [a, b]}, gdzie ϕ(x), ψ(x) sa‘ f-cjami cia‘gÃlymi
takimi, że ϕ(x) ≤ ψ(x) dla x ∈ [a, b]. Wtedy dla funkcji f(x, y) caÃlkowalnej na

zbiorze P mamy
∫∫
P

f(x, y) =
b∫

a

(
ψ(x)∫
ϕ(x)

f(x, y)dy

)
dx .


