
Analiza matematyczna A3, Zmiana ukÃl. wspóÃlrze
‘
dnych.

WypeÃlniańka. (ziemia, to linia y = 0) Samolot nad-
latuje nad lotnisko L = (0, 0); jest w punkcie S = (x, y),
gdzie x = 2, y = 3

2 . Pilot odczytuje z przyrza‘dów:
r – odlegÃlość od lotniska L, h – wysokość nad ziemia‘,co zapisuje: S′ = (r, h) = ( 5

2 , 2) .
Oczywíscie mamy tu zależność funkcyjna‘:

~F (S) = S′,
która parze liczb (x, y) przypisuje pare

‘
liczb (r, h) wedÃlug

wzorów: r =
√

...2 + ...2, h = ... .
W tym przeksztaÃlceniu obrazem póÃlokre‘gu o środku (0, 0)
i promieniu 1 jest ... o końcach (..., ...), (..., ...); obrazem
odcinka [0, 2]× {2} jest odcinek o dÃlugości ...... .
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Dziedzina‘
~F jest IR× IR+; zbiorem wartości jest obszar ka‘ta o ramionach ... i ... .

~F nie jest różnowartościowa, bo np.: ~F (..., ...) = ~F (..., ...). Jednak ~F ograniczona do
pierwszej ćwiartki (IR+ × IR+) jest ’1-1’ i przeksztaÃlca ten zbiór na obszar ...... .
Zatem przy tym ograniczeniu (x, y) można wyznaczyć poprzez (r, h) wzorami:

x = x(r, h) =
√

...2 − ...2, y = y(r, h) = ... .

Oznaczmy przez ~G(r, h) = (x, y) te‘ funkcje‘ (odwrotna‘ do ograniczenia funkcji ~F ).
Jej jakiobianem nazywamy wyznacznik:

J =
D(x, y)
D(r, h)

=

∣∣∣∣∣∣

∂x
∂r

∂x
∂h

∂y
∂r

∂y
∂h

∣∣∣∣∣∣
=

∂x

∂r
· ∂y

∂h
− ∂x

∂h
· ∂y

∂r

i w tym przypadku mamy: J = ............ . . (Uwaga. Jakobian zależy od ... i ... .)

Można też obliczyć jakobian przeksztaÃlcenia ~F ; jest on równy ............ .

0*. Powtórz wypeÃlniańke‘, dla samolotu w póÃlprzestrzeni IR2× IR+, którego wspóÃl-
rze‘dne kartezjańskie (x, y, z) można zamienić na wspóÃlrze‘dne (r1, r2, h), gdzie r1, r2

to odlegÃlości od radarów: L1 = (1, 0, 0), L2 = (−1, 0, 0) i h - wysokość nad ziemia‘.

Pole pÃlata (powierzchni)

Wyznaczymy pole powierzchni pÃlata – to jest cze‘ści wykresu funkcji z = f(x, y) nad
obszarem P ⊂ IR2 domknie‘tym i ograniczonym, zawartym w dziedzinie funkcji f
(przy zaÃlożeniu cia‘gÃlości pochodnych cza‘stkowych f ′x, f ′y).

PomysÃl: Bierzemy ’drobny’ podziaÃl ω = {P1, P2, . . . , Pn} obszaru P ’gÃlównie’ na
prostoka‘ty o polach ∆pi (’gÃlównie’ tzn. elementy podziaÃlu, które nie sa‘ prostoka‘tami
maja‘ Ãla‘

cznie ’znikome’ pole). Wybieramy punkty (xi, yi) ∈ Pi i w przestrzeni pro-
wadzimy pÃlaszczyzny styczne do wykresu f w punktach (xi, yi, f(xi, yi)). Cze‘ści tych
pÃlaszczyzn utworzone nad prostoka‘tami Pi wygla‘daja‘ jak karteczki (równolegÃloboki)
oblepiaja‘ce te‘ powierzchnie‘. Suma ich pól

∑
i ∆si przybliża szukane pole pÃlata.

Pole ∆s pojedynczego równolegÃloboku rozpie‘tego przez wektory ~p, ~q:
PÃlaszczyzna styczna jest wyznaczona przez gradient funkcji f , zatem
te wektory maja‘wspóÃlrze‘dne: ~p = [∆x, 0, f ′x·∆x], ~q = [0, ∆y, f ′y ·∆y].
Sta‘d obliczamy pole (korzystaja‘c z prostoty iloczynu skalarnego):

∆s = |~p||~q| sin ϕ = |~p||~q|
√

1− cos2 ϕ =
√
|~p|2|~q|2 − (|~p||~q| cos ϕ)2 =

=
√

((∆x)2 + (f ′x∆x)2)((∆y)2 + (f ′y∆y)2)− (f ′x∆x · f ′y∆y)2 =

= ∆x ·∆y ·
√

1 + f ′x
2 + f ′y

2 (po krótkich rachunkach)

»»»»:¢
¢
¢¢̧
»»»»

¢
¢
¢¢

¡¡

ϕ

∆s

∆x

∆y

~p

~q

∆s=|~p|·|~q|·sin ϕ

x

z

y

¡¡µ

6

-

Uwaga. Powyżej pominie
‘
te sa

‘
indeksy ’i’, pochodne cza

‘
stk. liczone sa

‘
w punktach (xi, yi).

Zatem pole pÃlata f nad P jest w przybliżeniu równe
∑
i

∆si =
∑
i

√
1 + f ′x

2 + f ′y
2∆x∆y =

∑
i

√
1 + f ′x

2 + f ′y
2∆pi ≈

∫∫
P

√
1 + f ′x

2 + f ′y
2

’≈’ oznacza tu: gdy weźmiemy cia‘g coraz drobniejszych podziaÃlów (o maksymalnych
średnicach zbieżnych do 0), to granica sum

∑
i ∆si jest zbieżna do caÃlki (z def. caÃlki).

PrzykÃlad. Pow. pÃlata f(x, y) = 2
3 (x

3
2 + y

3
2 ) nad trójka‘tem P o wierzchoÃlkach:

(0, 0), (0, 1), (7, 1), czyli nad obszarem: 0 ≤ y ≤ 1, 0 ≤ x ≤ 7y :
∫∫
P

√
1 + f ′x

2 + f ′y
2 =

∫∫
P

√
1 + x + y =

1∫
0

(
7y∫
0

√
1 + x + ydx

)
dy = ... = 25

3 − 16
15

√
2 .

PrzykÃlad. Pow. pÃlata f(x, y) = xy nad P = {(x, y) : x2 + y2 ≤ 9, 0 ≤ x ≤ y} to
∫∫
P

√
1 + y2 + x2

wspóÃl.
bieg.=

π/2∫
π/4

(
3∫
0

√
1 + r2 · rdr

)
dϕ = π

4 ·
[

1
3 (1 + r2)

3
2

]3

0
= π

12 (10
√

10−1)

Uwaga. Można pomyśleć o przybliżaniu powierzchni pÃlata w inny sposób: wybiera-
my na pÃlacie skończenie wiele punktów ’ge‘sto rozmieszczonych (dużo)’; z nich tworzy-
my trójka‘ty (triangulacje‘); suma pól tych trójka‘tów powinna przybliżać pole pÃlata —
TEN POMYSÃL JEST ZÃLY, zÃly nawet w przypadku powierzchni bocznej walca;
szczególy (i rysunki) należy znaleźć np. w III tomie Fichtenholza, rozdziaÃl XVII, §2.



UkÃlad sferyczny

Podpisuja‘c dÃlugości kresek za pomoca‘ r, ϕ, θ otrzymujemy wzór
x = r sinϕ cos θ, y = r sin ϕ sin θ, z = r cosϕ

przeksztaÃlcenia z ’nieskończonego póÃl-prostopadÃlościanu’
0 ≤ ϕ ≤ π, 0 ≤ θ ≤ 2π, r ≥ 0

(w ukÃladzie Orϕθ) na caÃla‘ przestrzeń IR3 (w ukÃladzie Oxyz).
W tym przeksztaÃlceniu obrazem prostoka‘ta: r = 0, 0 ≤ ϕ ≤ π,
0 ≤ θ ≤ 2π jest punkt (0, ..., ...), a obrazem prostoka‘ta r = 3,
0 ≤ ϕ ≤ π, 0 ≤ θ ≤ 2π jest sfera o równaniu x2 + y2 + z2 = ....
Obrazem póÃlprostej ϕ = π

4 = φ jest póÃlprosta x = y = ...... ,
Inne przykÃlady (strzaÃlka → oznacza ’jest przeksztaÃlcane na’):
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x = r sin ϕ cos θ
y = r sinϕ sin θ
z = r cos ϕ

ϕ = 0 → póÃloś O..., ϕ = π
... → pow. stożka z =

√
x2 + y2, ϕ = π

2 → pÃl. z = ... ,
r ∈ ... → obszar 4 < x2 +y2 + z2 ≤ 9, r = 3 cosϕ → kula x2 +y2 +(z− ...)2 ≤ ...,
r = −3 cos ϕ → kula x2 + y2 + (z − ...)2 ≤ ..., r = 4

cos ϕ → pÃlaszczyzna z = ... .

Wne
‘
trze ’póÃl-prostopadÃlościanu’ jest przeksztaÃlcane różnowartościowo na IR3 \ ....

ÃLatwo obliczymy jakobian tego przeksztaÃlcenia (stosuja
‘
c wielokrotnie tw. Pitagorasa):

D(x, y, z)
D(r, ϕ, θ)

=

∣∣∣∣∣∣

x′r x′ϕ x′θ
y′r y′ϕ y′θ
z′r z′ϕ z′θ

∣∣∣∣∣∣
=

∣∣∣∣∣∣

sin ϕ cos θ r cos ϕ cos θ −r sin ϕ sin θ
sin ϕ cos θ r cosϕ sin θ r sin ϕ cos θ

cos ϕ −r sin ϕ 0

∣∣∣∣∣∣
= r2 sin ϕ

PrzykÃlad. Różnicy kul V = {(x, y, z) : 1 ≤ x2 + y2 + z2 ≤ 4} w ukÃl. sferycznym
odpowiada obszar V ′ = {(r, ϕ, θ) : 1 ≤ r ≤ 2} (prostopadÃlościan w ukÃl. sfer.), wie‘c:∫∫∫

V

z2 =
∫∫∫
V ′

r2 cos2 ϕ · r2 sin ϕ =
2π∫
0

(
π∫
0

(
2∫
1

r4 cos2 ϕ sin ϕ dr

)
dϕ

)
dθ =

=
2π∫
0

(
π∫
0

[
1
5r5 cos2 ϕ sin ϕ

]2
1
dϕ

)
dθ =

2π∫
0

31
5

[− 1
3 cos3 ϕ

]π

0
dθ = 31

5

2π∫
0

2
3dθ = 124

15 π

PrzykÃlad. Obszarowi V = {(x, y, z) : 1 ≤ x2 +y2 +z2 ≤ 9∧z2 ≥ x2 +y2} w ukÃl.
sfer. odpowiada prostopadÃlościan V ′ = {(r, ϕ, θ) : 1 ≤ r ≤ 3 ∧ 0 ≤ ϕ ≤ π

4 }, wie‘c:∫∫∫
V

x2 =
∫∫∫
V ′

r2 sin2 ϕ cos2 θ · r2 sin ϕ =
2π∫
0

(
π/4∫
0

(
3∫
1

r4 sin3 ϕ cos2 θ dr

)
dϕ

)
dθ =

=
2π∫
0

(
π/4∫
0

[
1
5r5 sin3 ϕ cos2 θ

]3
1

dϕ

)
dθ =

2π∫
0

(
π/4∫
0

242
5 sin3 ϕ cos2 θ dϕ

)
dθ =

(ze ’́scia
‘
gi’ ścia

‘
gamy caÃlke

‘
nieoznaczona

‘
:
∫

sin3 t dt = 1
3

cos3 t− cos t )

=
2π∫
0

[
242
5 ( 1

3 cos3 ϕ− cosϕ) cos2 θ
]π

4

0
dθ =

2π∫
0

242
5 (

√
23

3·23 −
√

2
2 − 1

3 +1) cos2 θ dθ =

(ze ’́scia
‘
gi’ ścia

‘
gamy caÃlke

‘
nieoznaczona

‘
:
∫

cos2 t dt = 1
2

cos t sin t + 1
2
t )

=
2π∫
0

121(8−5
√

2)
30 cos2 θ dθ = 121(8−5

√
2)

30

[
1
2 cos θ sin θ + 1

2θ
]2π

0
= 121(8−5

√
2)

30 π .

PrzykÃlad. Ponieważ obszar V = {(x, y, z) : 1 ≤ x2 + y2 + z2 ≤ 9} jest sym-
etryczny wzgle‘dem pÃlaszczyzny x = 0, wie‘c (bez rachunków)

∫∫∫
V

x3 − x · yz = 0.

PrzykÃlad. By obliczyć obje‘tość obszaru V ograniczonego powierzchnia‘ o
równaniu (x2 + y2 + z2)2 = 8z zauważmy najpierw, że z ≥ 0 i że zbiór ten jest
bryÃla‘ obrotowa‘ wzgle‘dem osi Oz. Ta powierzchnia ma w ukÃl. sferycznym postać:
(r2)2 = 8 · r cosϕ, czyli r = 2 3

√
cos ϕ, wie‘c odpowiadaja‘cy obszar V ′ jest opisany

przez warunki: 0 ≤ r ≤ 2 3
√

cosϕ, 0 ≤ ϕ ≤ π
2 , 0 ≤ θ ≤ 2π . Zatem

obj.V =
∫∫∫

V

1 =
∫∫∫
V ′

1 · r2 sin ϕ =
2π∫
0

(
π/2∫
0

(
2 3√cos ϕ∫

0

r2 sin ϕ dr

)
dϕ

)
dθ =

=
2π∫
0

(
π/2∫
0

[
1
3r3 sin ϕ

]2 3√cos ϕ

0
dϕ

)
dθ =

2π∫
0

(
π/2∫
0

1
323 cosϕ sin ϕ dϕ

)
dθ =

=
2π∫
0

(
π/2∫
0

4
3 sin 2ϕ dϕ

)
dθ =

2π∫
0

[− 2
3 cos 2ϕ

]π/2

0
dθ =

2π∫
0

4
3 dθ = 8

3π .

PrzykÃlad. By obliczyć obje‘tość obszaru V be‘da‘cego cze‘ścia‘ wspólna‘ kul
x2 + y2 + z2 ≤ 4 i x2 + y2 + (z − 2)2 ≤ 4,

zapiszmy ten obszar w ukÃladzie sferycznym (zrób rysunki):
zbiór ten podzielmy powierzchnia‘ stożka ϕ = π

3 na dwie cze‘ści:0 ≤ ϕ ≤ π
3 , 0 ≤ r ≤ 2 oraz π

3 ≤ ϕ ≤ π
2 , 0 ≤ r ≤ 2 · 2 cos ϕ .

Zatem

obj.V =
∫∫∫

V

1 =
∫∫∫

0≤ϕ≤π
3

0≤r≤2

1 · r2 sin ϕ +
∫∫∫

π
3≤ϕ≤π

2
0≤r≤4 cos ϕ

1 · r2 sin ϕ =

=
2π∫
0

(
π/3∫
0

(
2∫
0

r2 sinϕ dr

)
dϕ

)
dθ +

2π∫
0

(
π/2∫
π/3

(
4 cos ϕ∫

0

r2 sin ϕ dr

)
dϕ

)
dθ =

=
2π∫
0

(
π/3∫
0

8
3 sinϕ dϕ

)
dθ +

2π∫
0

(
π/2∫
π/3

64
3 cos3 ϕ sin ϕ dϕ

)
dθ =

=
2π∫
0

[− 8
3 cosϕ

]π/3

0
dθ +

2π∫
0

[− 64
3·4 cos4 ϕ

]π/2

π/3
dθ =

2π∫
0

4
3 dθ +

2π∫
0

1
3 dθ = 10

3 π .

Można też inaczej zauważaja‘c najpierw, że pÃlaszczyzna z = 1 dzieli V na dwie
przystaja‘ce cze‘ści– czasze. Górna‘ z tych czaszy opiszemy w ukÃl. sferycznym:

0 ≤ ϕ ≤ π

3
,

1
cos ϕ

≤ r ≤ 2 .

Zatem

obj.V =
∫∫∫

V

1 = 2 · ∫∫∫
0≤ϕ≤π

3
1

cos ϕ≤r≤2

1 · r2 sin ϕ = 2 ·
2π∫
0

(
π/3∫
0

(
2∫

1/ cos ϕ

r2 sin ϕ dr

)
dϕ

)
dθ =

= { po podobnych rachunkach } = 10
3 π .


