
Analiza matematyczna A3. Lista 9. .

1. Wyraź caÃlki we wspóÃlrze‘dnych biegunowych i oblicz je w nowych wspóÃlrze‘dnych.
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2. Obliczyć obje‘tość obszaru (a-f: ograniczonego powierzchniami):

a) x + y + z = 4, x = 3, y = 2, x = 0, y = 0, z = 0 b) z = 4, x2 + 4y2 = z

c) x2 + y2 + z2 = 2z, x2 + y2 = z2 d) 2z = x2 + y2, x + z = 4

e) z = 4x + 2y, x2 + y2 = 1, z = 0 f) x2 + y2 = 4x, x2 + y2 = z2, z = 0

g) {(x, y, z) : z2 + 4 ≤ x2 + y2 + z2 ≤ 9} h) {(x, y, z) : |x|+ |y|+ |z| ≤ 9}
3. Oblicz mase‘ pÃlytki w ksztaÃlcie tr. równob. o boku 2, jeżeli ge‘stość jest proporcj.
do kwadratu odlegÃlości od p-ktu przecie‘cia środkowych i w wierzch. jest równa 1.

3D. Oblicz mase‘ piramidy o wysokości 3 i podstawie 2×2, jeżeli ge‘stość jest proporcj.
a) do kwadratu odlegÃlości od wierzchoÃlka i przy podstawie jest równa 7
b) do sześcianu odlegÃlości od podstawy i w górnym wierzch. jest równa 1.
c) do czwartej pote‘gi odlegÃlości od środka podstawy i w wierzch. jest równa 1

4. Wyraź caÃlki we wspóÃlrze‘dnych cylindrycznych i oblicz je.

a)
∫∫∫

D

x2 +y2 dV gdzie D jest wyznaczone przez pow. x2 +y2 = 1, z = 0, z = 4

b)
∫∫∫

D

z dV gdzie D jest wyznaczone przez x2 + y2 + z2 ≤ 1, x, y, z ≥ 0

c)
∫∫∫

D

y2 dV gdzie D jest wyznaczone przez pow. x2 + y2 + z2 = 4, x2 + y2 = 1

d)
∫∫∫

D

yz dV gdzie D wyznaczaja‘ pow. x2 +y2 + z2 = 1, r = cos θ, y = 0, z = 0

5. Wyznacz pole powierzchni a) bryÃly V = {(x, y, z) : 0 ≤ z ≤ 9− x2 − y2}
b) cze‘ści paraboloidy z = 9− x2 − y2 leża‘cej nad pÃlaszczyzna‘ z = 5
c) cze‘ści sfery 16 = x2 + y2 + z2 leża‘cej w cylindrze x2 − 4x + y2 = 0
d) cze‘ści pow. z = x2 leża‘cej nad trójka‘tem o wierzch. (0,0,0), (1,0,0), (1,1,0).

6. Wyraź caÃlki we wspóÃlrze‘dnych sferycznych i oblicz je w nowych wspóÃlrze‘dnych.
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∫∫∫
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x2+y2+z2 dV , gdzie V jest wyznaczone przez:
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3x2 + 3y2 , x2 + y2 + z2 = 9 , x2 + y2 + z2 = 81 , z ≥ 0
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∫∫∫
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z dV , gdzie V wyznacz.: x2+y2+z2 = 16 , x = y, x =
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* * *

7j. Oblicz jakobiany, znajdź przeksztaÃlcenia odwrotne i obrazy podanych zbiorów:

a) x = 1
2 (u + v), y = 1

2 (u− v); W = {(u, v) : 1 ≤ u ≤ 2, −u ≤ v ≤ 4− u}
b) x = u, y = v

√
u; W = {(u, v) : 0 ≤ u ≤ 1, 0 ≤ v ≤ √

u}
c) x = 2u + 3v, y = u− v; W = {(u, v) : u2 + v2 ≤ 1}
d) x = u, y = v2; W1 = {(u, v) : 1 ≤ u ≤ 2, 2 ≤ v ≤ 3}, W2 = [1, 2]× [3, 4]

8j. Wyraź caÃlki w nowych podanych wspóÃlrze‘dnych i oblicz je.
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√
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* * *

9. Dla jakich dodatnich wartości parametru m caÃlka niewÃlaściwa jest zbieżna?

a)
∫∫
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b)
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∫∫∫
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∫∫∫
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10. Wyznacz wartość caÃlki niewÃlaściwej
+∞∫
0

x2 · e−x2
dx .


