Math 132 - Week 1

Textbook sections: 1.1-6, 2.1-2.4
Topics covered:

e Overview of course

e Review of complex arithmetic
e Polar and Cartesian forms

e Powers and roots

e Subsets of the complex plane
e Complex limits

e Complex derivatives

e The Cauchy-Riemann equations



Technical details of course

e The assessment is 1% on a quiz, 9% on 9 homework
assignments, 20% each on two mid-terms on Feb 4
and Feb 25, and 50% on the final at March 21.

e The quiz is a 10 minute test on lower division mate-
rial, and will be given in the first tutorial session (i.e.
this Thursday). A sample quiz can be found at the
class web page.

e The first homework assignment is due in the second
tutorial session (i.e. next Thursday). Questions are
from the textbook, and can be found on the web or
outside my door (MS 5622).

e My office hours are Tu 11-12 and Fri 1-3 in my office
(MS 5622).

e More information can be found in the accompanying
class handout, or on the class web page at
http://www.math.ucla.edu/~ tao/132.1.00w



Overview of course

e In real analysis, we study functions y = f(z) which
take one real number as input and one real number
as output. Examples:

f(z) =2°4+22+1, f(z)=e"+msin(z)—log(z).

e We can do many things with these functions, e.g.
differentiation, integration, algebraic manipulation,
locating zeroes, expanding as power series, etc.

o In complex analysis, we study functions w = f(2)
which take one complex number as input and one
complex number as output. Examples:

f(2) = 224+2iz+i, f(2) = e +misin(z) —log(iz).

e In the first half of this course, we will be learning
how manipulate complex functions in the usual ways.
[.e. we will be differentiating, integrating, and alge-
braically manipulating these functions, finding their
zeroes, writing them out as power series, etc.

e Many of these things will be familiar, but there are
some surprises too. Example: if you want to inte-
grate 1/z from i to 2i, the answer may be In(2),
In(2) + 27, or In(2) — 27i, depending on what route
you take from ¢ to 2i.



e In the second half of the course, we’ll develop some
beautiful and powerful tools in complex analysis, such
as contour integration and residue calculus, which al-
low us to solve problems which are extremely difficult
using standard techniques. In fact, we can even use
these tools to solve problems which have no complex
numbers in them at all!

e Example: the integral

/OO dx
0 SC4—|—1

is very hard to compute using real-analytic techniques,

but can be evaluated using residue calculus to be

T/V/8.

e We'll also develop some of the theory of complex
functions, such as classification of zeroes and singu-
larities. But most of the emphasis of the course will
be on computation.



Cartesian form of complex numbers - review

e Complex numbers can be written in either Cartesian
form or polar form.

e A complex number z can be written uniquely in
Cartesian form as z = x + yi, where x and y are
real numbers. (Note: in EE j is sometimes used in-
stead of 7).

o If z =z + yi, then x = Re(z) is called the real part
of z, and y = Im(z) is called the imaginary part.
E.g. Im(3 —4i) = —4.

e T'wo complex numbers are equal if and only if they
have the same real part and the same imaginary part.
If a4+ bt =c+ di, thena =cand b =d.

e Numbers with positive real part and zero imaginary
part are called positive. Numbers with negative real
part and zero imaginary part are called negative.
Numbers with a non-zero imaginary part are neither
positive or negative! In general, complex numbers
should not be compared against each other, it only
causes confusion.



Polar form of complex numbers - review

e A complex number z can be written in polar form
as re?. where 0 is real and r is a non-negative real.
For any z, there is only one choice of r, but 6 is only
determined up to a multiple of 27.

e The relationship between Cartesian and polar forms
is given by Euler’s formula

e — cos® +isind.

Thus we have x = r cosf and y = rsin 6.



BT
z=x+yi=re
r.’ |
J Y
0 |
“ ' Re
X
o If z = re?, then r = |2| is called the magnitude,

modulus, or absolute value of z, and 0 is called an
argument or phase of z. The set of all possible argu-
ments of z is denoted arg(z). E.g. |4+ 3i| = 5, and
arg(4 + 3i) = sin~'(2) + 2k7. By convention, arg(0)
is undefined.

o If 2 = x +yi, then r = \/22+y?% cosf = ¥, and
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sinf = <.
T

If re?? = se’® # 0, then r = s and § = a + 2k for
some integer k.

There are infinitely many choices for the argument
of a complex number. To cut down the number of
choices we often restrict the argument to lie in the
interval (—m, 7w]. The standard argument Arg(z) is
defined as the unique argument of z that lies in this
interval. B.g. Arg(4+43i) = sin™'(2). By convention,
Arg(0) is undefined.

It is nice that Arg(z) has only a single value (as
opposed to arg(z)), but it has one unsightly flaw:
Arg(z) is discontinuous on the negative real axis (it
jumps from 47 to —m). This will cause some diffi-
culties later on.



Complex arithmetic

e Arithmetic operations (+, —, *, /) follow the usual
rules of algebra, but with the additional rule that
2
1 = —1:

(a+bi)+ (c+di) =
(a+bi)— (c+di) =

(a+bi)(c+di) =
(a+bi)/(c+ di)

(a+c)+ (b+d)i

(@a—c)+ (b—d)i

(ac — bd) + (ad + be)i

@+ bi)(c — di))/[(c + di)(c — di)]
[(ac + bd) + (bc — ad)i]/(c* + d?)

__ ac+bd bc—ad ;
2 +d? T a2l

e Note: division by zero is undefined.

e Addition and subtraction can be interpreted geomet-
rically via the parallelogram law.

e All the usual laws of algebra (commutativity, asso-
ciativity, distributivity( can be proven to hold for the
complex numbers. (L.e. the complex numbers form

a field).

e Multiplication and division are quite messy in Carte-
sian co-ordinates, but become much nicer in polar
form:

(rew)(sem) — rse!(0+a) (rew)/(sei )= r/se —)



Powers and roots

e If one wants to raise a complex number 2z to an inte-
ger n, or take the n'” root of z, it’s best to work in
polar co-ordinates.

e For instance, to compute (1+4)?", write 144 in polar
form as v/2¢"/* and compute
(1 + Z')ZO _ (ﬂeiﬂ/4)20
— 9105m
= —1024.

Note that it doesn’t matter which polar form you
start with, because there is only one possible answer
to (1+14)%.

h

e To compute n'" roots is similar, except that different

polar forms can give you different roots:
(1 + ,&')1/2 — (\/56i<%+2kﬂ)>1/2
_ 21/462'(%4-1571')
_ 21/467m'/8 or 21/469m'/8.

th roots.

e Every complex number z has exactly n n
More generally, any polynomial of degree n has ex-
actly n roots (the Fundamental Theorem of Algebra;
we'll prove this later). This is one advantage that

complex numbers have over the reals.
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Basic complex operations - review

e The magnitude |z| behaves well with respect to mul-
tiplication or division:

[zw| = |z| Jw], [z/w] = |z[/|w], |2"| = |2[".
e With respect to addition or subtraction, we have the
triangle inequality:
1z +w| < |z| + |w.
More generally we have
2] = |w]| < |z £ w| < [2] + |w].

E.g. if [z] = 9 and |w| = 2, then we know that
T<|lz4+w <11, 7 < |z —w| < 11 and that
|zw| = 18.

o If 2 = x + yt, the complex conjugate of z is defined
by Z = x — yi. In polar form we have

reif = re ",
As a rule of thumb, to conjugate a complicated ex-
pression one conjugates each term separately, so that

all s are replaced by —is. E.g.

(z + wed)(w — ize=?) = (Z 4 we ") (W + ize”).
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An important identity is
7z = |2|°.
o If x-+iy is a complex number, the exponential e*™¥ =
exp(x + iy) is defined by Euler’s formula
e"t = e"e" = e"(cosy + isiny).

One of the basic properties of the exponential is that

(Exercisel!)

e We'll explain why Euler’s formula works a bit later
in the course.

12



Subsets of the complex plane

e In real analysis, functions often have a domain which
is a subset of the real line such as an interval or half-
line. For instance, f(z) = 4/z is defined in the in-
terval [0, 0o), while sin™!(z) is defined on [—1, 1]. If,
say, we are integrating f(x) = e* from 1 to 2 then

the domain of interest is only [1, 2] even though e” is
defined on all of R.

e These domains may be open, closed, or half-open;
bounded or unbounded; connected or disconnected
(e.g. a function defined on [1,2] U [3, 4] has a discon-
nected domain).

e In complex analysis, we often consider functions w =
f(2) which are defined on subsets of the complex
plane, such as the open unit disk {z : |z| < 1}, the
closed unit disk {z : |z| < 1}, the upper half-plane
{z : Im(z) > 0}, the punctured plane C — {0},
and so forth. Of course, these sets can become very
complicated.

e We can classify these sets as open, closed, connected,
etc. as with subsets of the real line. Sets which are
particularly nice are called domains.

13



Open and closed sets

e Let S be a subset of the complex plane. We say that
a point 2y is in the nterior of S if one can find a
radius € > 0 such that the ball {z : |z — 2| < ¢} is
contained in S.

e Similarly, we say that z; is in the exterior of S if
one can find a radius € > 0 such that the ball {z :
|z — 2| < €} is disjoint from S.

e A point which is neither in the interior or exterior is
said to be on the boundary of S.

e If S contains all its boundary, it is said to be closed;
if it contains none of its boundary, it is said to be
open. If it only contains some of its boundary, then
it is neither open nor closed.

e By convention, the empty set () and the complex
plane C are said to have no boundary, and are thus
both open and closed.

e Rule of thumb: sets defined using < are open; sets
defined using = or < are closed.

14



Examples:

o Let S ={z:|z] < 1}. If |z| < 1, then z is in the
interior of S; if |zp| > 1, then zp is in the exterior
of S; of |zg] = 1, then zj is in the boundary of S.
Since S does not contain any part of its boundary, it
is open.

e The set S = {z : |z| < 1} has the same interior, ex-
terior, and boundary, but it contains all its boundary;,
so it is closed.

e Theset S=C—{z€R:2<0}has{r eR:
x < 0} as its boundary, so it is open. Note that this
set has no exterior.

e Theset S ={0}U{z € R: Arg(z) = n/4} has no
interior, and the exterior is just C — §. So S is its
own boundary, so this set is closed.

e Rule of thumb: sets drawn with solid lines are closed,
those drawn with dotted lines are open.

e Open sets have the property that for any point inside
the set, you can move a little bit in every direction
and stay inside the set. This is handy for differenti-
ation.

15



Connected sets

e We can divide open sets into two types: connected
sets and disconnected sets.

e If S is an open set, we say that .S is connectedif every
two points z1, 29 in S can be connected by a polyg-
onal path. (A polygonal path is a finite sequence of
line segments such that each segment starts where
the previous segment ends).

e If an open set is not connected, we say it is discon-
nected. (It is possible to classify non-open sets as
being connected or not connected, but that’s a little
trickier to do rigorously).

e For instance, the open set {z : |z| > 1} is connected
despite having a “hole” in it; any two points in this
set can be connected by a polygonal path. However,
the open set {z : Re(z) # 0} is not connected.

e Connected sets are good for integration, because you
can get from any point to any other point in the
set. Sets which are both open and connected are
known as domains, and are the best class of sets for
doing analysis (because you can differentiate AND
integrate).

16



Bounded sets

e There is one final distinction we will use; we shall
divide sets into bounded and unbounded sets.

e A set is bounded if it can be contained in some ball
{z : |z| < R} for some 0 < R < oo. If a set
cannot be contained in any such ball, it is said to be
unbounded.

e Forinstance, the closed unit square {2z : 0 < Re(z) <
1,0 < Im(z) < 1} is bounded because it can be
contained in the ball {z : |z| < 10} (for instance).
However, the open right half-plane {z : Re(z) > 0}
cannot be contained in any such ball, and is therefore
unbounded.

e Another way of saying this is that unbounded sets go
off to infinity, whereas bounded sets do not.

17



Complex differentiation - overview

o If y = f(z) is a real-valued function, the derivative
f'(x) is defined as the limit

P(wo) = lim =70

T T — Iy

Not all functions are differentiable everywhere; for
instance, there might be a point where the right limit
x — g differs from the left limit  — ;.

e In these lectures we’ll work out how to differentiate
complex functions w = f(z). Of course, to use the
above definition we must first define complex limits.

e Complex differentiation is very similar to real differ-
entiation, but there is one big difference: most com-
plex functions are not differentiable! In order to be
differentiable one must satisfy certain compatibility
conditions, called the Cauchy-Riemann equations.

e Fortunately, almost all the standard functions (poly-
nomials, e?, etc.) satisfy the Cauchy-Riemann equa-
tions and are differentiable.

18



Complex functions

e A complex function is a function which takes one
complex number as input (usually called z) and spits
out one complex number as output (usually called
f(2), or w). Examples:

f(z)=2z+4+2—1
Fe) = 2°
f(z) =3

e A real function y = f(z) can be easily graphed on a
two-dimensional piece of paper, with one axis for the
domain and one for the range. But a complex func-
tion cannot - one needs two axes for the domain and
two for the range! (This hasn’t stopped people from
trying, though, using color or animation to get the
extra dimensions). We’ll describe some other ways
to visualize complex functions later on, but for now
let’s think of functions just as abstract input-output
devices.

e The above examples of functions were described in
terms of a single complex variable z. But there are
other ways to describe these functions. As with com-
plex numbers, complex functions can be written in
Cartesian or polar form.

19



e In Cartesian form, we write complex functions in
terms of a variable z 4 iy, where x and y are re-
als. In some sense, we are turning a function of one
complex variable into a function of two real variables.
For instance, the function f(z) = z+2 — ¢ in Carte-
sian form becomes

flz+iy) = (z+2)+i(y — 1),

and the function f(z) = 2* in Cartesian form be-
comes

flz +iy) = (2 — y°) +i(2zy).

e In general, any complex function f(z) can be written
in Cartesian form

flz +iy) = u(z + iy) + iv(z + iy)

where u and v are real-valued functions. u(z + iy)
and v(z +1y) are called the real and imaginary parts
of f. For instance, if f(z) = |z|, then u(z + iy) =

V2?2 + y? and v(z + iy) = 0.

e One can always convert Cartesian form back to stan-
dard form, but it isn’t always pretty. For instance,

flz+iy) = 2"+ iy’

20



becomes
f(2) = Re(2)* + ilm(2)*.

e Functions can also be written in polar form by re-
placing z with re?, although this is less common.
For example, f(z) = 2* becomes

e These three ways of writing a complex function are
all equally valid - they all describe the same function
even though they do look very different. (Form and
Function are two different things!)

21



Limits of a function

e In order to make sense of a derivative, we're going to
have to give meaning to expressions such as

li_>m f(2).

e The formal definition is a bit unwieldy, unfortunately:

Definition. Let f(z) be a complex function whose
domain contains a punctured ball {z : 0 < |z — 2| <
r}. We say that

lim f(z) =L

Z—r2()

or
f(z) = L as z — z

if, for every € > 0, one can find a § > 0 such that

|f(2) — L| < & whenever 0 < |z — 2| < 6.

e Informally, this is saying that if you can keep z very
close to zy, then this forces f(z) to be close to L. We
won’t be using this definition in this course.

22



Partial limits

o Another way of thinking about the statement lim,_,,, f(2) =
L is that no matter which way you choose to move
z toward zy, f(2) is forced to converge to L.

e On the real line, there are only two ways for a variable
x to converge to xp: from the right and from the
left. On the complex plane, there are infinitely many
ways z could converge to zj.

Im +
Y->Y o

- +

X->X 0 X->X g

o
Zg= Xp* 1Yo

> -

Y->Y o Re

e For instance, we could let z approach z; from the
right and compute the partial limit. If zg = x4+ iy,

23



we write the right partial limit as

lim_ f(z +iyo).

.T—).T)O

This is just an ordinary real-variable limit and can
be computed by the usual techniques. Similarly, we
have the left partial limit

lim f(z + iyo).

LE—).TO

the partial limit from above

lim f(zo+iy).
Y=g

and the partial limit from below

lim f(zq+ iy).

Y=Yy

These are not the only partial limits; there are in-
finitely many others. For instance, we can approach
from the upper right diagonal:

lim f((zo+1¢) +i(yo + 1))
t—07T
or even from a parabola
im f((zg+1t) +i(yo + %))
t—07T
ete.
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o If the full limit lim, ,,, f(2) equals L, then every
single partial limit must also equal L. However, if
even just two of the partial limits do not agree, or if
one of the partial limits diverges, then the full limit
must diverge as well.

e For instance, consider the limit lim, o 2/|z|. If we
let z approach 0 from the right, the partial limit is 1:
lim z/|x| = lim x/z = 1.
z—0t /| | z—0t /
If we approach 0 from the left, the partial limit is -1:
lim z/|z| = lim z/(—x) = —1.
z—0" z—0~
If we approach 0 from above, we get i:
lim 4y/|ty| = lim 4 = 1.
Jlim,iy/liy| = lim, iy/y
And so forth. Since the partial limits do not match,
the limit as a whole does not exist, and we say that
z/|z| diverges at z = 0.

e Thus if you suspect a limit to not exist, a good way
to test it is to compute two partial limits (e.g. a
horizontal and vertical limit) and see if they disagree.
If two partial limits do agree, though, this does not
guarantee that the full limit exists, because other
partial limits might still disagree.

25



Continuity

e In many cases we can find a limit just by substitution:

lim f(2) = f(2).

Z—r2()

This does not happen for all functions though - only
those which are continuous.

e Definition Let f(z) be a complex function on a
domain (an open connected set), and let zy be a point
in this domain. We say that f is continuous at z
if we have lim,_,,, f(2) = f(20). If f is continuous
at every point in its domain, we say simply that f is
cOntinuous.

e Not every function is continuous. For instance, the
standard argument function Arg(z) is continuous ex-
cept at 0 (where it is undefined) and on the negative
real axis (where the partial limits from above and
below don’t match).

e Intuitively, a continuous function is stable: small
changes in the input do not translate to large changes
in the output.

26



A partial list of continuous functions

e Every polynomial in z or in x and y is continuous.
For instance f(z + iy) = x° — 3iz*y is continuous,
as is the real part function Re(z + iy) = =z, the
imaginary part function Im(z + iy) = y, and the
conjugtation function = + 1y = x — 1y.

e The absolute value function f(z) = |z| is continuous
everywhere, even at zero.

e The exponential function f(z) = e* is continuous.

o If f(z) and g(z) are continuous at 2y, then so are

f(2)+9(2), f(2) —g(2), and [(2)g(2). 1t g(z0) # 0,

then f(z)/g(z) is also continuous at z.

e If g is continuous at zp, and f is continuous at g(z2y),
then the composition fog(z) = f(g(2)) is continuous
at z. E.g. f(z) = e % is continuous as it is the
composition of two continuous functions.

o If u(z + iy) and v(x + iy) are continuous functions
of x and y, then f(x +iy) = u(z +iy) + iv(z + iy)
are continuous functions of x + #y.

27



Limit laws

e The limit laws for complex limits are much the same
as for real limits:

lim f(z) £g(z) = hm f(z) £ lim g(2)

e =clin 16
Jim f(z) = lim Re(f(2)) +¢ lim Im(f(z))
Jim f(z)g(2) = lim f(2) lim g(z)

lim f(z)/g(z) = lim f(z)/ lim g(z) if denom. # 0

e There is also a L’Hopital’s rule: if f(z5) = g(z9) = 0,
and f and g are continuously differentiable at z,
then

lim f(z)/9(z) = lim £'(z)/g'(2).

Z— 20

(We'll define what it means to be differentiable shortly).

e As mentioned already, lim,,,, f(2) = f(zo) if f is
continuous at zy.

e The squeeze test: if h is a real-valued function such
that lim,_,,, h(2) = 0 and |f(2) — L| < h(z) for all

28



z # 29, then lim,_, ,, f(z) = L. For instance,

22

lim — =0
z—0 Z

because

‘EQ

Z

and lim,_,o |z| = 0.
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Partial derivatives

e Just as there are partial limits and full limits in com-
plex analysis, there are partial derivatives and full
derivatives.

e A complex function f(z) can be thought of as a func-
tion f(x+yi) of two real variables x and y. As such,
one can form partial derivatives

a_f(a:o +1yo) = lim f@ + iyo) = Flwo + i)
(9:13 T2 T — X

and
0 iyt L0010~ S )
Ay Y—=Y0 Y — Yo

These partial derivatives work exactly like they do
in real analysis. For instance, if f is the squaring
function

flz+iy) = (2® — y°) +i(2zy),

then ot
8_:13(36 +1iy) = 2z +1i(2y)
and
of, . |
a—y(aj +1iy) = —2y + i(2)
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The complex derivative

e The complex derivative f’ or df /dz is defined as

dz 222 2 — 2

If this limit exists, we say that f is complex differ-
entiable at zy, or simply that f is differentiable at
AR

e Let’s look at the partial limits of this definition. If z
approaches zy = xy+1yp horizontally, so z = x +1yy,
then the above limit becomes

lim f(CU—F?:y()) - f(l‘(] +iy0) _ af(z )
z—=xo (T +1yo) — (zo + iyo) oz

If instead z approaches zy vertically, so z = zg + 1y,
then the above limit becomes

 flzo+iy) — flzo +iyo) _ 10f
P (@0 + 1Y) — (zo + i) _iay(%)'

e We conclude: if f is differentiable at zj, then

df of
5 (70) = %(20) = ———(2).

In particular, in order for f to be complex differen-
tiable at zy, the x derivative and y derivative must
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be related by the equation

of
5 20) =~ -(z0).

This equation is known as the Cauchy-Riemann equa-
tion(s). These equations must be satisfied in order
for the complex derivative to exist.

In fact, this is pretty much a necessary and sufficient
condition. Theorem: If the partial derivatives of f
exist and are continuous, then f is complex differen-
tiable exactly when the Cauchy-Riemann equations
are satisfied.

Informal proof (optional material): Start with

F(z0) = Tim L8 =S 0)

2—2 Z— 2

Writing z = z9 + Az + 1Ay, we get

. f(z0 + Az + iAy) — f(20)
l JR—
fz0) = Ax%ggﬁo Az 4+ 1Ay '

Now use Taylor’s theorem with remainder (which
works when the partial derivatives are continuous):

fzo+Az+iAy) = f(zo)—l—Ax%(zo)—l—Ayg—g(zo)+er7°0r.
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If we use the Cauchy-Riemann equations, this be-
comes

f(zo+Az+iAy) = f(zo)—l—(AaH—z'Ay)%(20)4—67“7“07“.

So the limit converges to g—f(z()) (from Taylors the

T
orem we can check that the error goes to zero).
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Examples

e Take the squaring function again:

f(z+iy) = (2° — ) +i(2xy).
The partial derivatives

of - of |
%—Qx—l—Qyz, oy 2y + 21z

satisfy the Cauchy-Riemann equations % =1 /z'g—f

y
for all x and y, and so this function is differentiable
everywhere. The derivative is

df _0f .
=2 = op 4+ 2.
dz Ox T oy
In other words, the function 22 is differentiable and
has derivative 2z.

e Now take the exponential function
f(z +iy) = exp(x + iy) = €* cosy + ie” siny.

The partial derivatives are

0 0 . .
— = e” cosy+ie’ siny, —f = —e" sin y+ie® cosy.

ox oy

Again, the Cauchy-Riemann equations are always
satisfied, so this function is differentiable everywhere,
with derivative e cosy + ie*siny. In other words,
e® is differentiable with derivative e?.
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e The conjugate function

Hz+iy) =z —1y
has partial derivatives

of _
or

of

1, —=—1.
Y ay

The Cauchy-Riemann equations g-ﬁ = %% are never
satisfied, so this function is never differentiable.

e Let’s take the function f(z) = |z|*, which in Carte-
sian form is

flz+iy) = 2 + o~

The partial derivatives are

o, 0f
or 8y_y'

The Cauchy-Riemann equations read 2z = 1/i2y,
or 2zt = 2y. Taking real and imaginary parts we

2T,

get x = 0 and y = 0. So this function is only dif-
ferentiable at the origin 0, and is not differentiable
otherwise.

Cartesian form of Cauchy-Riemann equations
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e The Cauchy-Riemann equations are
of 10f
or 0y
If we write f in Cartesian form as f(x +iy) = u(z+
iy) + tv(x + iy), then these equations become

ou Ov 10u 0Ov
9 i, = ;(8_34 +za—y).
Simplifying, we get
ou Ov Ov Ou

%+28x:8y_20y

Taking real and imaginary parts we get the Cartesian

form of the Cauchy-Riemann equations:

Ou Ov 87}__@
or Oy Oy Oz

This illustrates that in order for a function to be
differentiable, its real and imaginary parts must be
closely related.
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Some differentiable functions

e All polynomials in z, such as 2> — 4iz + 2 + i, are
differentiable, and they differentiate just as you’d ex-
pect (in this case, it’s 2z — 47). Polynomials in = and
y are generally not differentiable, as we’ve seen - even
though they are continuous.

e The exponential function e is differentiable, and is
its own derivative. The functions Arg(z), Re(z),
Im(z), |z|, and Z are not differentiable anywhere.

e The sum, difference, product, or composition of two
differentiable functions is again differentiable, and
one uses the product rule, chain rule, etc. to com-
pute the derivative of the combined expression. e.g.

- 2. . . . . . . - 2
e2%” is differentiable with derivative 4ize2%".

e The quotient of two differentiable functions is also
differentiable as long as the denominator is non-zero.
The derivative is worked out using the quotient rule.
Thus e?/z is differentiable everywhere except at z =
0.

e Asarule of thumb: ifit is obvious what the derivative
should be (e.g. 622, then the function is differentiable,
but if it is something more exotic (e.g. Arg(z)) then
chances are the function is not differentiable.
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