Math 132 - Week 5

Textbook sections: 4.1-4.6
Topics covered:

e Curves and contours

e Contour integration

e Fundamental theorem of Calculus
e The Cauchy-Goursat theorem

e Cauchy integral formula

e Mean value principle

e Louville’s theorem; Fundamental theorem of Algebra



Contour integration

e In real analysis of one variable, we integrate functions
y = f(z) along intervals [a, b] to obtain a number,
called the definite integral

b
xr) dr = x) d.
@ [ 1

e In complex analysis, the analogue of this is called
the contour integral, in which a complex function
w = f(z) is integrated along a path or contour -y
from z; to z9:

L £(2) dz — /j £(2) dz.

This is analogous to the line integral, which occurs
in calculus of several variables.

e (The contour integral is distinct from the area inte-
gral [ [ f(z,y) dzdy, which you may have encoun-
tered in calculus of several variables. There is a con-
nection between the two, having to do with Stokes’
theorem - but we’ll come to that later).

e The definite integral in real analysis has an interpre-
tation as the area under a graph. In complex analysis
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the contour integral does not have an area interpre-
tation; it is more like a cumulative measure of work
or flux.

In real analysis, there is really only one way to in-
tegrate from a to b - namely, by going through the
interval from a to b. However, in complex analysis
there are infinitely many contours that go from 2; to
29, and these could potentially give different answers.
However, in many cases the value of the integral from
21 to 29 does not depend on the path; we’ll see why
shortly.

This week we’ll define contours and contour integrals;
we’'ll show how to compute these integrals directly,
and state the Fundamental Theorem of Calculus for
contour integrals. This is all pretty familiar-looking
stuff, but then we’ll do some more surprising things
with contour integrals, including new ways to com-
pute integrals which you wouldn’t have seen in real
analysis courses.



What is a contour?

e A contour is defined as a sequence of curves. To make
this more precise, we have to first define what a curve
is.

e Definition. A curve is a function v : [a,b] — C
from an interval to the complex plane which is dif-
ferentiable everywhere, and whose derivative is never
zero: '(t) # 0 forall a <t <b.

e In other words, a curve is the trajectory of a particle
which moves smoothly without ever stopping. Some
examples:

o y(t) = €*,0 < t < 27 describes a curve that tra-
verses the unit circle once anti-clockwise.

e v(t) = e",0 < t < 7 describes a curve that traverses
the upper unit semi-circle once anti-clockwise.

e y(t) = €0 < t < 47 describes a curve that tra-
verses the unit circle twice anti-clockwise.

e y(t) = e7®,0 < t < 2 describes a curve that tra-
verses the unit circle once clockwise.

o y(t) = e*,0 < t < m describes a curve that tra-
verses the unit circle once anti-clockwise. If we make
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the change of variables s = 2t then this becomes the
first example in this series. The two curves are said
to be reparameterizations of each other. Often, we
say that these two curves are two different parame-
terizations of the same curve.

v(t) = 1 +14t,0 < t < 1 describes a curve that
traverses the line segment from 1 to 1 + 2.

v(a) is called the initial point of vy, and ~(b) is called
the final point of . For instance, y(t) = e%,0 < t <
27 has initial and final point both equal to 1.

The length of a curve v : [a,b] — C is given by the
formula

b
b= [ bl

For instance, the length of v(t) = €?,0 <t < 27 is

2 ' 2
ie'| dt = dt = 2.
|
0 0

Note that the length of () = €,0 < t < 47 is 47
even though it only lives on a circle of circumference
2m.

If you reparameterize a curve, its length does not
change. (This can be proven using the change of
variables formula).



o If v : [a,b] — C is a curve, the negative —v :
[—b, —a] — C of v is defined by —v(t) = ~(—t).
This curve traverses the same region of the com-
plex plane as v, but in the reverse direction. For
instance, the negative of y(t) = €,0 < t < 27 is
—y(t)=e, 21 <t <0.



Some examples of curves:

ﬂé o

Some examples of non-curves:

A




Contours

e A contour is a finite sequence v + v + ... + Vp
of curves, such that the final point of each curve
matches up with the initial point of the next one.
An example is v1 + Y2 + 3 + V4, Where

nt)=t, 0<t<1
Yot)=1+it, 0<t<1
vt)=1+i—t, 0<t<I1
wt)y=i—it, 0<t<1

This contour describes a square traversed once anti-
clockwise.



e Two contours I" and [V can be added together to form
a longer contour I' + I' if the final point of I" equals
the initial point of I'". (Otherwise, we do not define
addition of contours).

e The length of a contour is the sum of the lengths of
the component curves. Thus the length of the square
above is 4.



e A contour can be reversed; the negation of v + v, +
oot Y is (=) o+ (=) + ().

e A contour is said to be closed if its final point is
equal to its initial point, otherwise it is open. (This
is not related to the notions of open and closed sets
mentioned in first week).

e Generally, curves are denoted v and contours are de-
noted I'.
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Integration along contours

e Recall that the definite integral in real analysis is
defined as

b n
[ #le) do=tim Y flaai - i)

where ¢ = g < 21 < ... < z, = b is a partition
of |a, b], and each x} is between z;_; and x;, and the
limit is as the separation between adjacent x;’s go to
zero. This limit exists as long as f is continuous on

a, b].

e The integral along a curve « is defined similarly as

/f(z) dz = lim Z f(z) (2 — zim1)

where z; = (), a = tg < t1 < ... < t, = b,
z¥ = ~(t¥), each t! is between t;_; and ¢; and the
limit is as the separation between adjacent t¢;’s go
to zero. It turns out that this limit exists if f is
continuous on some domain containing the range of
v, but we won’t prove that in this course, as it is
rather dull.
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e This definition is quite cumbersome, but it can be
quickly simplified. If we accept the approximation

x 2 — Zj—1
() /() S
17 bi—1

then we can rewrite the right-hand side as
hmz fy tH(t; —tii1).
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But this is just

b
/ FO )Y (2) d.

So we can convert a contour integral into an ordinary
definite integral by a change of variables z = ~(¢).

e To integrate on a contour v, + ...+ 7,, we simply
integrate on each curve separately and add up:

[ @[ i@ [ e
Y1+.--+7n Y

Tn
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Examples

e If ~; is the line segment from 1 to 1 + i, so y1(t) =
1+14,0 <t <1, then

1 1
/zdz:/(l—i—it)idt:/i—tdt
7 0 0

2., .1

e We could parameterize v; differently, e.g. v1(s) =
14+ 2is,0 < s < 1/2, but the integral you get is the
same (thanks to the change of variables formula). In
other words, the choice of parameterization does not
affect the value of the integral.

o If 7, is the line segment from 1 4 4 to i, S0 Yo(t) =
1+4—1t0<t<1, then

1 1
/zdz—/(1+i—t)(—1)dt—/ b—1—idt
72 0 0

t2 . 1
=(=—t—it)|y=—=—1i.
(G —t=itly=—5—i

e Combining the two, we have

/ zdz:/zdz+/zdz:—1.
Y1+72 71 72
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Properties of contour integration

e Integration is linear:

[ 1)+ 9 2= [ 1)+ [ o) as
/F cf(2) dz — o /F £(2) dz.

e Reversing a contour negates the integral:

| == 1) e

e Adding two contours adds integrals together:
/ fde— | fz)dz+ [ () d.
I+ I Iy

e In particular, integration along a doubled-back con-
tour I' + —1I" is always zero:

/F _ f@dz=o
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Estimating integrals

e Sometimes, an integral is too hard to compute ex-
actly. In that case we often just settle for finding an
upper bound for an integral.

e Lemma (triangle inequality for integrals).

We have
b b
I/ f(®) dtlﬁ/ |f(t)] dt.

e Proof. Write f; f(t) dt in polar co-ordinates as

b
[ 5wy e -
Then

|/f dt| = r = Re(r) = Re( "9/]” ) dt)

- / e(f(t)e ) dt

/|f )| dt.

e Corollary. If v is a curve and |f(z)| < M for all z
in 7y, then

[ $@) del < M.
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e Proof. We have

[1 =1 [ 1eero
< [ 6ol

<M / (1) dt
a
= Mly|.
e Example: suppose we want to estimate
/ dz
L2t 41
where v is the circle vy(t) = 10e”, 0 < t < 27. For

all 2 in 7, |z| — 10, so |z*| = 1000, so |z* + 1| > 999,
S0 | = +1| < 555. Thus we have

dz 1
| [ | < —2r - 10.
201 999
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The Fundamental theorem of calculus

e The easiest way to compute a definite integral is to
find an anti-derivative and use the Fundamental the-
orem of calculus. One can do the same in complex
analysis (although we shall soon see that there are
some more powerful tools than the FToC available!)

e Fundamental Theorem of Calculus I. Sup-
pose that f(z), F(z) are functions such that F' is
compl ex differentiable on a domain D, and f(z) =
F'(2) for all z in D. Then for any 2z, 25 in D and
any contour I' from z; to z9, we have

/F f(2) dz = F(2)|% = F(z) — F().

e Proof We first prove this theorem when I' is a curve;
once we prove it for curves, the statement for con-
tours follows (see figure)
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Z
3

If f f(2) dz = F(2)|2, and fwf(z) dz = F(2)|3,
thenf )dZ—F( )|z,

21"

o IfI': [ab—>Clsacurve then
[ 16 8= [ s0w)
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= F('(b)) — F(I'(a))
= F(ZQ) — F(Zl).
e Corollary: If f hasan anti-derivative on a domain

D, then [i. f(2) dz = 0 for all closed contours I' in
D.

e [t turns out this corollary can be reversed, to obtain

¢ Fundamental Theorem of Calculus II: If
J;- f(2) dz = 0 for all closed contours I' in a domain
D, then f has an anti-derivative F.

e Proof This will remind you of how the second Fun-
damental Theorem of Calculus was proven for real
variables.

e Pick a z;in D, and for each z; € D we define

F(a) = [ f2) ds

where I' is any contour in D from z to z;. In theory
this definition could depend on the choice of I, but
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our hypotheses will stop this from happening. In
fact, if we use two different paths I', I'' from 2 to 21,
then I' + —I" is a closed contour, so by hypothesis

we have
/ f(z)dz=0
r+-17
and therefore

/F F)d = [ 1) dx

Thus it doesn’t matter which path you choose to
perform the integral.

e We need to show that F'(z;1) = f(z1), or in other
words that

lim F(Zl + AZ) — F(Zl) _ f(21)

Az—=0 Az

From definition, we have

F(z1+Az) — F(z) = /f(z) dz,

v

where v is the line segment from z; to z; + Az.
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Z

Parameterizing vy as y(t) = 21 + Azt,0 <t < 1, we
thus get

1
F(z1+Az) — F(z) = / f(z1 + Azt)Az dt,
0

SO

B 1
F(z + AAzi F(z) _ /0 f(z + Azt) dt.

22



o [f we let Az — 0 we thus get
F A
i (z1+ Az) — F(z) / 1z

Az—0

so F' = f. QED
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Example: integration of 1/z.

e Suppose we wish to integrate 1/z on these two con-
tours:

e To integrate 1/z on 7, we need an anti-derivative
of 1/z which is differentiable on a domain containing
71- The principal logarithm Log(z) fits these require-



ments, and so we can calculate

dz = Log(2)|", = mi/2 — (—7i/2) = mi.

M o~

There are other branches which also work for this
integral, and they all give the same answer of course.
(It’s kind of like how one can add +C' to an anti-
derivative without affecting the value of a definite
integral).

To integrate 1/z on 7, the same calculation does
not work, because Log(z) fails to be differentiable
(and thus fails to be an anti-derivative of 1/z) on
its branch cut - the negative real axis. However |,
one can pick a different branch, such as Log g o(2),
whose branch cut does not intersect v, and compute
this integral as

d .
= Logam(2)|; = mi/2 — (3mi/2) = —i.

v %
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Simple contours

e A contour is said to be simple if it does not cross
itself, that is if every point in space is covered at most
once by the contour. (If the initial point and final
point coincide, we do not consider this a crossing).

e Thus, for instance, the contour v(¢) = € : 0 <t <
2m is a simple closed contour, while y(t) = e : 0 <
t < 47 is a non-simple but closed contour.

e [t is intuitively obvious that a simple closed contour
must divide the complex plane into two regions. For-
mally, we have

e Jordan curve theorem If I' is a simple closed
contour, then the complement C\I" is the union of
two disjoint domains, one of which is bounded.
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e The bounded region is called the interior of I', and
the unbounded region the exterior of I'.

e This theorem is plausible, but remarkably difficult
to prove, requiring some sophisticated topology. We
won’t prove it here, as it is beyond the scope of the
course.
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e We call a simple closed contour anti-clockwise ori-
ented or positively oriented if the interior is always
on the left. Otherwise we say that the contour is
clockwise-oriented or negatively oriented.

e By convention, if an orientation of a closed contour
is not specified, it is assumed to be anti-clockwise.
Thus if we don’t specify the orientation of the unit
circle, it is understood to be parameterized by e.g.
v(t) = e",0 <t < 2w as opposed toy(t) = e ", 0 <
t < 2.
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Integration on closed contours

e On the real line, an integral along a closed contour
is always equal to zero, regardless of the integrand:

/abf(:v) dx+/baf(:v) dx =0

/abf(a:) dx+/bcf(x) d;c+/caf(m) dz — 0, etc.

e In the complex plane, this is not always the case;
for instance, in the previous set of notes we found a
closed contour «y; + —2 such that

1
/ — dz = —2mi # 0.
n+-72 #

e Another example: let  be the unit circle |z| = 1 tra-
versed once anti-clockwise, and consider the contour

/Zdz.
v

We may parameterize v as y(t) = €%,0 < t < 2r.
Since z = e, dz = ie''dt, and we have

27r_ '
/E dz = / eitie’ dt
¥ 0
30
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2
:/ i dt =2mi # 0
0

e In the previous set of notes we showed that a function
f(2) had integral zero on every closed contour in a
domain D if and only if it had an anti-derivative
on D. Thus, many functions do not have an anti-
derivative.

e For instance, we now know that 1/z cannot have an
anti-derivative on any domain containing ~v; 4+ —s.
(This explains why we need branch cuts in order to
form an anti-derivative of 1/z). Similarly, Z cannot
have an anti-derivative on any domain that contains
the unit circle. (In fact, Z does not have an anti-
derivative anywhere).

e However, many functions do have integral zero on
every closed contour. For instance, we know that
$- 2> dz = 0 for every closed contour I', because z”

has an anti-derivative, namely 2°/3.

e (The notation § is often used instead of [ when in-
tegrating over a closed contour, but otherwise the
symbols have the same meaning.).

e However, it does not seem easy to check whether a
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function has an anti-derivative or not. For instance,
we can’t assert yet that fr e* dz = 0 for every closed
contour I', because we don’t know an anti-derivative
of e exists.

Fortunately, there is a very simple and important
theorem which covers these cases:

Cauchy-Goursat theorem. IfI'is a simple closed

contour, and f is analytic at every point on I' and in
the interior of I', then ¢ f(z) dz = 0.

This theorem is perhaps the most important result
in complex analysis, and most of the course will use
this theorem as a foundation.

This theorem is often referred to as “Cauchy’s the-
orem”. Augustus Cauchy proved the theorem (c.
1830) assuming that the derivative of f was contin-
uous, and Eduard Goursat removed this restriction
much later (c. 1880). I'll only prove Cauchy’s version
of the theorem, as the proof is a bit simpler.

Interestingly, the theorem requires f to be analytic
on the interior of the contour, even though the inte-
gration is only performed on the contour itself. For
instance, when integrating 1/z on v; + —7,, the
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Cauchy-Goursat theorem does not apply because 1/z
is not analytic at 0, which is inside v; + s.
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The case of a rectangle

e Let us first prove Cauchy’s theorem when I' is a rect-
angle connecting four points a + bi, ¢ + b, ¢ + dj,
and a + dz, as shown.

atdi y3 c+di
Y
4 Y,
atbi Y1 c+bi

e In this case we have I' = v + 9 + —73+ —4, Where

n(z)=z+bi, a<z<c
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Yo(y) = c+yi, b<y<d;
y(z)=z+di, a<z<c
uy)=a+yi, b<y<d.

e By changing variables, we thus have

]{Fﬂz) dz:[f(a:+bz') d:c+/bdf(c+yi) idy

c d
—/ f(x + di) daf;—/ fla+yi) idy
a b

which we can simplify as
c d
— / (f(x+di)— f(x+bi)) dx+i /b (flet+yi)—f(a+yi)) dy.

e However, from the (real variable) Fundamental The-
orem of Calculus, we have

19
flz + di) — f(z + bi) —/b a—§($+yz) dy
and

€0
f(c—l—yz')—f(a,+yz'):/ a—i(eryz) dz.
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e Substituting these equations into the first equation,
we get

j{rf(z) dz——/:/bdg—]yc(:v—i—yi) dydx
+/bd/acig—£(x+yz’) dxdy.

If we use Fubini’s theorem to interchange the inte-
grations, this becomes

7{]‘ dz—/ / —(z+yi) —g—z(a:+y2))dyda:,

which is zero by the Cauchy-Riemann equations, since
f is analytic everywhere on and inside the rectangle.
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The general case

e To prove the general case, we need to use Stokes’
theorem, which states that

%f:vyd:v%—g:vydy—// e~ d:cdy
dy

for any continuously differentiable functions f, g on
a domain D, where I' is the boundary of D.

e Since z = x + 1y, we have dz = dx + idy. Thus

]gf(z) dz:jgf(xntiy) dz +if(z +iy) d

By Stokes’ theorem, we thus have

74]" dz—// (z+1iy) —g—g(a:%—zy) dzdy.

where D is the interior of .

e Since f is analytic on D, it satisfies the Cauchy-
Riemann equations on D, so

Of of
"or Oy ’

and Cauchy’s theorem is proved.
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Example

e Consider the function e*/z. This function is analytic
everywhere except at 0. Thus, Cauchy’s theorem
says that ¢ o, € dz = 0. However, this theorem
says nothing about §|Z|:1 £ dz.
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Cauchy’s integral formula

e The Cauchy-Goursat theorem says that if f(z) is an-
alytic everywhere on and inside a simple closed con-
tour T, then [. f(z) dz = 0.

e However, when f(z) contains a singularity in the in-
terior of I', then Cauchy’s theorem does not seem
to apply directly. For instance, we cannot currently

zZ
e
?{ — dz
2|=1 <

where the integral is over the unit circle traversed

compute

once anti-clockwise.

e However, one can modify the Cauchy-Goursat theo-
rem to deal with singularities. The first result in this
direction is the Cauchy integral formula:

e Cauchy integral formula. Let I' be a simple
closed anticlockwise-oriented contour, and let zy be
a point in the interior of I'. If f(z) is analytic on and
inside I', then

) dz = 2mif(z).

[ 2~ <0
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e For instance, applying this theorem with f(z) = €*
and zy = 0 we can now compute

?{ c dz = 2mie’ = 2.
|

Zl=1 <
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Proof of Cauchy’s integral formula

e Let € > 0 be a small number, and let C; be the circle
of radius € around z; traversed once anti-clockwise.

e The integral

G g g LB,

[ Z— <0 —C. # T A0
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can be rewritten as

AR LG
I’ < — 20 < — %0

as shown below.

e Since % is analytic on and inside the simple closed

contour I, and on and inside the simple closed con-
tour I, both integrals vanish by Cauchy-Goursat.
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Hence

%Mf&dz: RIORPH

z— 2zp) C. 2 — 2

e The circle C. can be parameterized by v(t) = 2z +
get for 0 <t < 2m. So dz = eie', and we have

() (7 (et

- cie” dt.
c. 2 — 20 0 2ot+teetr — 2z

e Simplifying this, we get

]{ /) dz =i K f(z0 +ee™) dt.
r

(2 — 20) 0

Taking limits as € — 0, we obtain

7{ ue dz =i ’ f(z0) dt = 2mif(z)

(2 — 20) 0

which is Cauchy’s integral formula.
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Computing integrals

e The Cauchy integral formula can be used to compute
many contour integrals which are extremely difficult
to compute by more traditional techniques.

e For instance, consider the integral ﬁz\zl % dz where
the unit circle is traversed once anti-clockwise. The
Cauchy integral formula states that this integral is
2mi. If we were to compute this by parameterizing ~y
instead, we would obtain

2 it
0

eit

which would simplify to the impossible-seeming inte-
gral

z'/o ' e“®*(cos(sin(t)) + i sin(sin(t))) dt.

e The theorem is phrased for anti-clockwise or pos-
itively oriented contours, but can be extended to
clockwise contours simply by reversing the contour.
For instance, if —~ is the unit circle traversed once
clockwise, we have

ya
7{ € dr— —omi.
—y Z
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Or if 2 denotes the unit circle traversed twice anti-
clockwise, we have

z
7{ c dz = 4mi.
272

More sophisticated integrals can also be computed.

And so forth.

For instance, to compute

eZ
—— dz,
]{z—l z(z —2)

we move the z — 2 factor onto the numerator as

7{ /=2,
=1 2

The function e?/(z — 2) has a singularity at 2, but is
analytic on and inside the contour |z| = 1. Thus the

Cauchy integral formula gives this integral as
omie’ /(0 — 2) = —mi.

Now consider the integral

eZ
—— dz.
7|{z3 z(z —2)

The previous trick does not quite work. To resolve
this integral we may use partial fractions, or alter-
natively divide up the circle |z| = 3 into two closed
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contours I'y + I'y, where I'y goes around 0 once anti-
clockwise and I'y goes around 2 once anti-clockwise:

As before, we have

7{ “/(z=2) dz = —mi,

Z
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while

]{ CIE g~ omic?)o — rie.
Iy (2 —2)

Thus

eZ

2=3 2(2 — 2)

e This trick of adding and subtracting a contour is a
useful trick, and will be used often in this course.

dz = mi(e? — 1).

e Now suppose we integrate the same function, but on
a figure-eight contour:
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N

The contribution of the left loop is —mi as before,
but the contribution of the right loop is now —mie?
instead of mie? because that loop is clockwise instead
of anti-clockwise. So the integral of e*/z(z — 2) on

this contour is mi(—e? — 1) instead.

e Asone can see, the shape of the contour is not partic-
ularly important when evaluating closed contour in-
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tegrals. What is important is how the contour winds
around each singularity.

49



Differentiating the Cauchy integral formula

e The Cauchy integral formula can compute many in-
tegrals, but there are some which are out of its reach.
For instance, the integral

j{ sm(;) "
|z|=1 <

cannot be directly computed using the Cauchy inte-

gral formula, even if we place one of the 2’s in the
numerator.

e To get around this, we use a trick known as “differ-
entiating under the integral sign”.

e From the Cauchy integral formula that

7{ sin(z) oo sin(20)

z|=1 220

for all zy inside the unit circle. If we differentiate this
with respect to zy (!) we get

7{ (6—2 dz = 2mi cos(2)
|2|=1

z — 2zp)
for all zj.

e More generally, we have
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e Generalized Cauchy Integral Formula. Let
[' be a closed positively oriented contour, let z, be
a point in the interior of I', and let f be a function
which is analytic on and inside I". Then

f(z) o
————dz =2 :
More generally, we have
f(2) L)
75 (= 2o dz = %27rzf (20),

where ™ denotes the m!" derivative of f.

e This result has an interesting consequence, though:

e Corollary If f is analytic at 2y, then f(™(z;) exists
for all positive integers m. In other words, analytic
functions are infinitely differentiable.

e Proof. Let « be a small circle around z,. By defi-
nition of analyticity, f is analytic on and inside = if
the radius is small enough. From the GCIF we have

£ (z9) = m! 7{< /) dz.

2mi J., (2 — zg)™ !

f(2)

(z—2)m+1
continuous (in fact, it is analytic) on . So the left-

hand side must exist as well.

e The integral on the right exists because is
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e Thus, if a function is complex differentiable on a do-
main, it is automatically twice differentiable, three
times differentiable, etc. This is very different from
the situation in real analysis, and again shows how
strong the property of complex differentiability is.
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Example

e We can now compute integrals such as

4 . ;(2—92) dz.

We can write this as

f(QZ) "
z|=1 %
where f(z) =sin(z)/(z — 2). Since f(z) is analytic
on and inside |z| = 1, the generalized Cauchy inte-

gral formula applies, and the integral is equal to

» .cos(z)(z — 2) — sin(z2)
2mi f'(0) = 2mi R

|z:0 = —7T’i.

e Integrals for more complex contours, such as |z| = 3,
can be handled by the techniques of the previous
section, or by using partial fractions. Of course, both
methods give the same answer.
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Morera’s theorem

e Cauchy’s theorem says that if f is analytic on a sim-
ply connected domain D, then the integral of f on
any closed contour in D is zero. Morera (c. 1890)
showed that the converse is also true:

e Morera’s theorem. Let D be a domain, and sup-
pose that f is a continuous function such that the in-
tegral of f on any closed contour in D is zero. Then
f is analytic on D.

e Proof. If the integral of f on any closed contour is
zero, then f must have an anti-derivative F' on D,
by the previous week’s notes. Since F' is analytic,
it is differentiable infinitely often, by the GCIF. In
particular, F’ is differentiable at every point in D,
hence analytic on D. But F' = f. Thus f is analytic
on D.

e This shows that the properties of path independence,
analyticity, and having an anti-derivative are virtu-
ally identical (at least on simply connected domains).
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e So far, we've viewed Cauchy’s integral formula mainly
as a way to compute integrals. But it can also be
used to deduce many surprising properties of analytic
functions. We've already seen one already (that ev-
ery analytic function is infinitely differentiable). Now
we’ll see some others.

e Perhaps the simplest consequence comes from rewrit-
ing Cauchy’s formula in a different way:

! f(2) dz.

21w J, 2 — 2o

f(Zo) =

v

One consequence of this formula is that the value of
f at zy is completely determined by the value of f
on . In other words, the value of f on a closed
contour determines the value of f inside that con-
tour! This shows that analytic functions are some-
how very "rigid” - if one fixes the value on the bound-
ary of a domain, this automatically fixes the values
in the interior as well.
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Louiville’s theorem

e In real analysis there are many functions which are
bounded; for instance, the function f(x) = sin(x) is
bounded by 1 for all z, asis f(z) = 1/(z*+1). One
might think that we could also find many bounded
analytic functions in complex analysis, but there is
a surprising result of Louiville, which says that there
are very few such functions:

e Louiville’s theorem If f(z) is an entire function
which is bounded, so that |f(z)| < M for some M
and all z, then f must be constant.

e Proof. Let zy be any point in the complex plane,
and let R > 0 be any positive number. Since f is
entire, f is analytic on the disk {z : |z — 2| < R}
and is bounded by M on this disk.

e Now we use the generalized Cauchy integral formula

/(20) = — &,
fz) = j{zzo_R (2 — 20)? de

271
If |2 — 29| = R, then

1) 5l M
(z — 2p)? R? R?
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Since the contour has length 27 R, we therefore have

f(z) M
————dz| < 2rR—.
.o S5

z— 2p)

Putting this back into the previous identity we obtain

M

| f'(20)] < ik

But R is arbitrary, and M is a constant. So by letting
R — 0o we obtain f’(z9) = 0. Since 2 could have
been any complex number, we thus see that f must
be constant.
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The fundamental theorem of algebra,

e Consider the problem of factoring a polynomial P(x)
in the reals. Sometimes we are able to completely
factor P into linear factors, for instance

° — 4= (2 —2)(z+2).

However, many polynomials cannot be factored over
the reals, e.g. o2 + 4 cannot be factored because it
has no roots in the reals.

e In the complex numbers, though, the situation is
much better:

e Fundamental theorem of algebra. Every poly-
nomial P(z) can be completely factored into linear
factors in the complex numbers.

e Proof Let n be the degree of the polynomial P. We
prove by induction on n. If n = 1 then clearly P
is factorable into linear factors. Now suppose that
n > 1, and every polynomial of degree n — 1 can
already be factored into linear factors. If P has a root
2o, then we can factor z — zp from P and be left with
a polynomial of degree n — 1, which by induction can
already be factored. So P can be completely factored
if we can find a root.
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e Now suppose that P does not have a root. We will
get a contradiction from this. If P(z) has no roots,
then P(z) is never zero, which means that 1/P(2) is
analytic everywhere, i.e. it is entire. Now we argue

that 1/P(z) is bounded.
o Write
P(2) = ap2" + ap_12" 4+ ... +ay,
so that
1 1

L/ P(2) = 2han + ap1/z+ ...+ ag/z"
As z — o0, the first factor converges to zero, and
the second factor converges to 1/a,. So 1/P(z) — 0
as z — 00. This means that |1/P(z)| < 1 for suffi-
ciently large z (e.g. |z| > R). For the remaining
z (i.e. |z|] < R), 1/P(z) is bounded by the ex-

treme value theorem. (Every continuous function on

a closed bounded set has a maximum and minimum,
and is therefore bounded.) So 1/P(z) is bounded for
all z. Since 1/P(z) is both bounded and entire, it is
constant, so P(z) is constant, which is a contradic-
tion since n > 1.

e This is an example of a non-constructive argument
- it uses a proof by contradiction to show that P(z)
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must have a root somewhere, but doesn’t give any
indication as to where the root is or how to find it!
In fact, for most polynomials P of degree 5 or greater,
one can prove that there is no exact formula for the
roots of P (in terms of familiar arithmetic operations
such as addition, division, square roots, etc.)

Later on we shall show another, more geometric proof
of the Fundamental Theorem of Algebra.
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