
Przetwarzanie i analiza obrazów 11.03.2014

Lista nr 2 ver. 2 (poprawiona)
Paweł Lorek

Ta lista dotyczy głównie zainstalowania i uruchomienia biblioteki Armadillo (m.in.
do liczenia wartości i wektorów własnych)

1 Instalacja i uruchomienie biblioteki Armadillo

Załóżmy, że Twój projekt znajduje sie w katalogu qt-projekty/projekt1

1. Ze strony http://arma.sourceforge.net/download.html ściągnij ostatnią “Sta-
ble version”, obecnie jest to armadillo-4.100.2.tar.gz i nagraj ją w katalogu
qt-projekty/projekt1

2. Rozpakuj ów plik:

chaos:~$ cd qt-projekty/projekt1

chaos:~/qt-projekty/projekt1$ tar xfz armadillo-4.100.2.tar.gz

i zmieńmy nazwę armadillo-4.100.2.tar.gz na armadillo wydając polecenie:

chaos:~/qt-projekty/projekt1$ mv armadillo-4.100.2 armadillo

3. Następnie w pliku

qt-projekty/projekt1/armadillo/include/armadillo_bits/config.hpp

odkomentuj linijkę zawierającą

#define ARMA_USE_LAPACK

(Uwaga: Jeśli chcesz tego używać w domu, musisz jeszcze się upewnić czy masz
zainstalowaną bibliotekę LAPACK - niektóre dystrybucje linuksa mają ją zain-
stalowaną domyślnie)

Teraz otwieramy projekt w Qt-Creatorze. Musimy tutaj jeszcze ustawić dwie
rzeczy:

4. w pliku .pro (tzn. w projekt1.pro jeśli tak nazywa się Twój projekt) dodaj
linijkę

LIBS += /usr/lib/liblapack.so.3

5. W pliku main.cpp dodaj

#include "armadillo/include/armadillo"

oraz (gdzieś przed int main(int argc, char *argv[]))

2014image_analysis_lista2v2 1 1 INSTALACJA I URUCHOMIENIE BIBLIOTEKI ARMADILLO

using namespace arma;

W tym momencie biblioteka Armadillo wraz z Lapack powinny działać w
Twoim projekcie.

2 Armadillo - podstawy
Zapoznaj się ze stroną
arma.sourceforge.net/docs.html

Nie przeraź się - będziemy używali tylko kilku funkcji i typów danych. Podstawą jest
typ mat, który to jest macierzą (mat-rix). W poniższym przykładzie macierze A i B są
macierzami 4×4, a C = A ∗B, program również wyświetla macierz C:

mat A(4 , 4) ;
mat B(4 , 4) ;

for (int i =0; i <4; i++)
for (int j =0; j <4; j++)
{

A(i , j)= i+j +1;
B(i , j)= i ∗ j +1;

}

mat C = A ∗ B; // = A∗B;

qDebug () << "C=A∗B=" ;
for (int i =0; i <4; i++)
{

QString w ie r s z="" ;
for (int j =0; j <4; j++)

{ wie r s z = wie r s z + QString : : number (C(i , j))+"\ t " ; }
qDebug()<<wie r s z ;

}

Natomiast liczenie wartości własnych i wektorów własnych prezentuje poniższy przykład
(typ vec to wektor):

2014image_analysis_lista2v2 2 2 ARMADILLO - PODSTAWY

vec e i g v a l (4) ;
mat e i gve c (4 , 4) ;

// l i c z e n i e wektorow wlasnych i war to sc i wlasnych macierzy SYMETRYCZNEJ C
eig_sym (e i gva l , e igvec , C) ;

qDebug()<<"Wektory␣wlasne ␣macierzy ␣C: ␣" ;
for (int i =0; i <4; i++)
{

QString w ie r s z="" ;
for (int j =0; j <4; j++) { wie r s z = wie r s z + QString : : number (e i gve c (i , j))+"\ t " ; }
qDebug()<<wie r s z ;

}

qDebug()<<"Wartosci ␣wlasne ␣macierzy ␣C: ␣" ;
QString w ie r s z="" ;
for (int j =0; j <4; j++) wie r s z = wie r s z + QString : : number (e i g v a l (j))+"\ t " ;
qDebug()<<wie r s z ;

3 Zadanie
(Więcej informacji do tego zadania na wykładzie i laboratorium)

• Weź jakiś mały obrazek f (np. 20× 20, N = 20) i “przepisz” go do macierzy typu
mat. Policz wartości własne i wektory własne macierzy m1 = f · fT . Załóżmy, iż
mamy r różnych wartości własnych λ0, . . . , λr−1.

• Stwórz macierz D diagonalną rozmiaru r × r: D(i, i) = λi, D(i, j) = 0 dla i 6= j.

• Stwórz macierz U rozmiaru N × r, i−ty wektor tej macierzy to wektor własny
macierzy m1 odpowiadający wartości własnej λi.

• Podobnie: m2 = fT · f . Macierze m1 i m2 maja te same wartości własne. Stwórz
macierz V rozmiaru N × r, której ita kolumna to wektor własny macierzy m2

odpowiadający wartości własnej λi

• SPRAWDŹ, że
f = UD

1
2V T (1)

• Zauważ, że wzór (1) można zapisać jako:

f =
r∑

i=1

λ
1
2
i uivi

T , (2)

gdzie ui to i-ta kolumna macierzy U , a vi to i-ta kolumna macierzy V Wpowyższym
wzorze pomiń kilka wyrazów i zapisz pozostałą sumę jako obraz.

2014image_analysis_lista2v2 3 3 ZADANIE

