
Przetwarzanie i analiza obrazów 16.03.2019

Projekt nr 1
Paweł Lorek

Termin oddania: 5.05.2019

Do oddania: Raport w postaci pliku .pdf oraz plik(i) w Python (ver 3).

Uwaga: Poniżej znajduje się opis co powinno znaleźć sie w projekcie. Twój projekt
powinien te wszystkie elementy zawierać, ale nie musi się tylko i wyłącznie do nich
sprowadzać.

Część A: Rozkład SVD i kompresja obrazów (10pkt)

Opis projektu
Wykonaj dekompozycje SVD dla obrazka
http://www.math.uni.wroc.pl/~lorek/image_analysis/images/baboon.bmp
oraz dla min. 3 przez siebie wybranych czarno-bialych obrazków (najlepiej tego samego
rozmiaru bitmapy .bmp) Postaraj się, aby były tam obrazy zarówno skomplikowane
(prawie każdy mały obszar ma dużo szczegółów) jak i “proste” (np. jest dużo obszarów
o jednakowym lub mało się zmieniajacym kolorze)
Każdy obraz f przedstaw jako

f =
r∑

i=1

λ
1
2
i uivi

Nazwijmy λ
1
2
i uivi obrazem własnym (eigenimage) odpowiadającym wartości własnej λi.

Posortujmy wartości własne w taki sposób, by λ1 ≥ λ2 ≥ · · · ≥ λr. Oznaczmy fk =
k∑

i=1

λ
1
2
i uivi. Dla każdego obrazka przedstaw (jako obrazek) kilka pierwszych obrazów

własnych oraz fk dla kilku wybranych k (zwiększające sie o stałą liczbę).
Przez kompresję obrazu f metodą rozkładu SVD nazywamy obraz fk z odpowiednio
dobranym parametrem k. Wypracuj jakiś sposób wyznaczania tego parametru (np. k
ma być taką liczbą, by λk+1 + . . . + λr stanowiły maksymalnie jakiś ustalony procent

całej sumy
r∑

i=1

λi, procent ten może być wybrany eksperymentalnie na jednym obrazku).

Następnie wylicz w tak ustalony sposób k dla każdego obrazka. Czy wielkość k zależy
od stopnia skomplikowania obrazka?

Policz też ile pamięci zajmuje tak skompresowany obraz. Porównaj wynik do obrazów
(standardowych) .jpg otrzymanych na chaosie za pomocą komendy:
chaos:~$ convert obrazek.bmp obrazek.jpg

Zakładamy, że wszystkie obrazy są 8-bitowe (= 1 bajt) (skala szarości 0-255). Zatem
np. jeden wektor ui jest wektorem rozmiaru 256, i każdy element to 1 bajt, czyli ui jest

2019_image_analysis_project1 1

http://www.math.uni.wroc.pl/~lorek/image_analysis/images/baboon.bmp


zajmuje 256 bajtów = 0.25 Kb (1 Kb = 1024 bajty). Natomiast dla przykładu: obrazek

256× 256 trzymany w postaci 8-bitowej bitmapy zajmuje: 256 · 256 · 8 bitów = 524288
bitów = 524288/ (1024· 8)= 64 Kb.
(UWAGA: rozmiar pliku .bmp może być większy z kilku powodow: np. mimo iż obraz
jest czarnobiały, to każdy kanal r,g,b jest i tak pamietany osobno, wtedy rozmiar to
będzie 3 · 64Kb, albo może być 16, 24 lub 32-bitowy, trzymane też mogą być informacje
o rozdzielczości).

Scieżka do zdjęcia powinna być parametrem programu (użyj argparse).

Część B: PCA + Klasyfikacja obrazów (10pkt)

Baza twarzy Olivetti faces składa sie z 400 obrazów (w skali szarości) rozmiaru
64× 64. Są to zdjęcia 40 osób (po 10 zdjęć na osobę).
Bazę wczytujemy w następujący sposób:

from sklearn.datasets import fetch_olivetti_faces
faces = fetch_olivetti_faces()

(zob.: faces.keys(), faces.images.shape, faces.data.shape, faces.target.shape)

Do dalszej analizy wybierz tylko zdjęcia 10 (losowo wybranych) osób. Otrzymany zbiór
podziel losowo na dwie części

• Zbiór treningowy : po 7 zdjęć każdej z 10 osób.

• Zbiór testowy : pozostałe zdjęcia (tj. po 3 dla każdej z osób)

Zadania

• Wykonaj na zbiorze treningowym PCA redukując wymiar 642 do różnych wartości
d (w tym d = 0, tzn. de facto bez PCA)

• Przekształć punkty ze zbioru testowego za pomocą otrzymanej macierzy przeksz-
tałcenia z poprzedniego punktu.

• Wykonaj klasyfikację kNN tak przekształconych obrazów z różnymi wartościami
parametru k

• Podaj dla testowanych par d i k wynik klasifikacji (classification rate). Jakie
wartości d i k dały najlepsze wyniki?

Dodatkowo, dla kilku par d i k (w tym dla tej, która dała najlepsze wyniki dla kNN)
zamiast kNN zastosuj: GaussianNB, RandomForestClassifier, SVC, ich użycie jest
takie samo jak kNN (możesz używać ich domyślnych parametrów), przykładowe użycie
jest np. na stronie:
https://scikit-learn.org/stable/auto_examples/classification/plot_classifier_comparison.html

2019_image_analysis_project1 2

https://scikit-learn.org/stable/auto_examples/classification/plot_classifier_comparison.html

