podstawowy_nowy/main.cpp

//UWAGA: Testowane na Qt Creator 4.2.1 based on Qt 5.8.0

#include <QCoreApplication>
#include <QtCore/QCoreApplication>
#include <QDebug>

#include <QString>

#include <QFile>

#include <QImage>

#include <QColor>

#include "gpainter.h"

#include <QPainter>

#include <QPixmap>

#include <algorithm>

#include <iostream>
#include <sstream>

#include <QApplication>

#include "iostream"

using namespace std;

int mnoz(int & zmienna, int ile)

{
gDebug()<<"mnoz: zmienna="<<zmienna<<", ile="<<qle;
zmienna=ilexzmienna;
gDebug()<<"mnoz: zmienna='"<<zmienna;

}

void rys_linie(QImage &img)
{

int dimg_width=1img.width();
int dimg_height=img.height();

int y=img_height-1;
for(int x=0; x<img_width; x++)

{
if(y>=0) {
QColor col(255,255,0);
img.setPixel(x,y,col.rgha()); }
y=5
}

podstawowy_nowy/main.cpp

int main(int argc, char *argv[])

{
//QCoreApplication a(argc, argv);
QApplication a(argc, argv);

//UWAGA: do zmiany:
QString path="/sciezka_do_katalogu_z_obrazkami/";

gDebug()<<" ssss="<<path;
//QString file_input= path+"TOPRO_cat_N_sl1.bmp";
// QString file_output=path+"TOPRO_cat_N_sl_output.bmp";

QString file_input= path+"lena512.bmp";
QString file_output=path+"lena512_output.bmp";

gDebug()<<" file_input ="<<file_input ;

QImage img;
if(img.load(file_input))

{
gDebug()<<"OK. Wczytano obrazek "+ file_input;

}

else

{
gDebug()<<"BLAD: Nie wczytano obrazka "+ file_input;
exit(0);

}

//odczytujemy szerokosc i wysokosc obrazka
int img_width=img.width();
int dimg_height=img.height();

gDebug () <<" img_width="<<img_width<<" |, img_height="<<img_height;

//img_output to bedzie wynikowy obrazek
QImage img_output(img_width,img_height,QImage::Format_RGB32);//
img_width,img_height); //

//kopiowanie obrazka:
for(int x=0; x<img_width; x++)
for(int y=0; y<img_height; y++)
{
QColor col(img.pixel(x,y));
//qDebug ()<< col.red();
img_output.setPixel(x,y,col.rgba());

podstawowy_nowy/main.cpp

//rysowanie czerw. kreski
for(int x=0; x<img_width*3/4; x++)

{
QColor col(255,0,0);
img_output.setPixel(x,x,col.rgba());
}
//dla x i vy

for(int x=0.375%img_width; x<0.625ximg_width; x++)
{

for(int y=0.375%img_height; y<0.625ximg_height;
{
QColor col(img.pixel(x,y));
col.setBlue(255);
img_output.setPixel(x,y,col.rgba());
}
}
//napis

QPainter p(&img_output);
p.setFont(QFont("Times", 12));
p.setPen(QPen(Qt::green));

QPoint pkt(img_width/20, img_height/4);
p.drawText(pkt, "Testowy napis");

//zapis obrazka

gDebug ()<< "Zapisujemy " << file_output;
img_output.save(file_output);

// QString file_input2= path+"war-time-1.bmp";

// QString file_output2=path+"war-time-1_output.bmp";

QString file_input2= path+"car.bmp";
QString file_output2=path+"car_output.bmp";

QImage img2;
if(img2.load(file_input2))
{

gDebug()<<"OK. Wczytano obrazek "+ file_input2;

}

else

{

y++)

podstawowy_nowy/main.cpp

gDebug()<<"BLAD: Nie wczytano obrazka "+ file_input2;
exit(0);

//odczytujemy szerokosc i wysokosc obrazka
int img2_width=img2.width();
int img2_height=img2.height();

QImage img2_output(img2_width,img2_height,QImage::Format_RGB32);//
img_width,img_height); //

int val_min=255, val_max=0;

for(int x=0; x<img2_width; x++)
for(int y=0; y<img2_height; y++)
{
QColor col(img2.pixel(x,y));
//qDebug ()<< col.red();
// 1img_output.setPixel(x,y,col.rgba());

if(col.red()<val_min) {val_min=col.red();}
if(col.red()>val_max) {val_max=col.red();}

}
gDebug()<<" val_min="<<val_min<<", val_max="<<val_max;
for(int x=0; x<img2_width; x++)
for(int y=0; y<img2_height; y++)
{
QColor col(img2.pixel(x,y));
//qDebug ()<< col.red();
int cc=col.red();

cc=255x(cc-val_min)/(val_max-val_min);

QColor col2(cc,cc,cc);

img2_output.setPixel(x,y,col2.rgba());

gDebug ()<< "Zapisujemy " << file_output2;
img2_output.save(file_output2);

[[xKkkkkkkkkkokokkk

QString file_input3= path+"tmp_col.bmp";
QString file_output3=path+"tmp_col_output.bmp";

podstawowy_nowy/main.cpp

QImage img3;
img3.load(file_input3);

int dimg3_width=img3.width();
int img3_height=img3.height();

QImage img3_output(img3_width,img3_height,QImage: :Format_RGB32);//
img_width,img_height); //

int val_r_min=255, val_r_max=0;
int val_g_min=255, val_g_max=0;
int val_b_min=255, val_b_max=0;

for(int x=0; x<img3_width; x++)
for(int y=0; y<img3_height; y++)
{
QColor col(img3.pixel(x,y));
//qDebug ()<< col.red();
// img_output.setPixel(x,y,col.rgba());

if(col.red()<val_r_min) {val_r_min=col.red();}
if(col.red()>val_r_max) {val_r_max=col.red();}

if(col.green()<val_g_min)
{val_g_min=col.green();}

if(col.green()>val_g_max)
{val_g_max=col.green();}

if(col.blue()<val_b_min)
{val_b_min=col.blue();}

if(col.blue()>val_b_max)
{val_b_max=col.blue();}

}

gDebug () <<" r_min="<<val_r_min<<", r_max="<<val_r_max;
gDebug()<<" g_min="<<val_g_min<<", g max="<<val_g_max;
gDebug()<<" b_min="<<val_b_min<<", b_max="<<val_b_max;

for(int x=0; x<img3_width; x++)
for(int y=0; y<img3_height; y++)
{
QColor col(img3.pixel(x,y));
//qDebug ()<< col.red();
int cr=col.red();
int cg=col.green();
int cb=col.blue();

podstawowy_nowy/main.cpp

cr=255%x(cr-val_r_min)/(val_r_max-val_r_min);
cg=255*(cg-val_g_min)/(val_g_max-val_g_min);
cb=255%(cb-val_b_min)/(val_b_max-val_b_min);
QColor col2(cr,cg,chb);
img3_output.setPixel(x,y,col2.rgba());

}

rys_linie(img3_output);

gDebug ()<< "Zapisujemy " << file_output3;
img3_output.save(file_output3);

std::pair<int,QString> moja_para;
moja_para.first=1;
moja_para.second="hoho";

std::vector<int> v;
// for(int i=0; 1i<40; i++) v.push_back(i%15);

// for(int i=0; 1i<40; i++) gDebug()<<v[i];

sort(v.begin(),v.end());
//for(int i=0; i<40; i++) gDebug()<<v[il];

int tmp_zmienna=7;
gDebug () <<"tmp_zmienna="<<tmp_zmienna;

mnoz (tmp_zmienna,3);
gDebug () <<"tmp_zmienna="<<tmp_zmienna;

printf("asdfasfd");
gDebug () <<"DONE.";

return a.exec();

