Uniwersytet Wroc³awski EN PL

[18] Lorek, P. Antiduality and Mobius monotonicity: Generalized Coupon Collector Problem. (submitted to ESAIM: Probability and Statistics.), 2017, .pdf
[17] Lorek, P. Siegmund duality for Markov chains on partially ordered state spaces. Probability in the Engineering and Informational Sciences, 1--27, 2017. DOI:10.1017/S0269964817000341, .pdf
[16] Lorek, P., Los, G., Zagorski, F., Gotfryd, K. On testing pseudo random generators via statistical tests based on arcsine law. Submitted to Applied Mathematics and Computation, 2017. .pdf
[15] Lorek, P., Markowski, P. Monotonicity requirements for efficient exact sampling with Markov chains. (to appear in Markov Processes and Related Fields), 2017, .pdf. See page http://www.math.uni.wroc.pl/~lorek/algorithms/ for software for checking various monotonicities in Markov chains.
[14] Kulis, M., Lorek, P., and Zagorski, F. Randomized Stopping Times and Provably Secure Pseudorandom Permutation Generators In Phan RW., Yung, M. (eds) Paradigms in Cryptology - Mycrypt 2016. Malicious and Exploratory Cryptology. Lecture Notes in Computer Science, vol. 10311. Springer, 145--167, 2017. DOI:10.1007/978-3-319-61273-7_8, available at https://eprint.iacr.org/2016/1049 (Cryptology ePrint Archive)
[13] Lorek, P., Generalized Gambler's ruin problem: explicit formulas via duality. Methodology and Computing in Applied Probability, 19 (2), 603--613, 2017, DOI: 10.1007/s11009-016-9507-6 (Open Access) .pdf
[14] Lorek, P., Zagorski, F., and Kulis, M. Strong stationary times and its use in cryptography. Accepted to IEEE Transactions on Dependable and Secure Computing, 2017. DOI:10.1109/TDSC.2017.2751475
[12] Lorek, P., Szekli, R. Strong Stationary Duality for Mobius monotone Markov chains: examples. Probability and Mathematical Statistics, 36 (1) , 75--97, 2016, .pdf
[11] Lorek, P., Szekli, R. Computable bounds on the spectral gap for unreliable Jackson networks. Advances in Applied Probability, 47, 402--424, 2015, .pdf.
[10] Lorek, P., Kulik, R. Empirical process of residuals for long memory regression models. Statistics & Probability Letters, 86 C, 7--16, 2014, 10.1016/j.spl.2013.11.018
[9] Tarnawski, W., Kurtcuoglu, V., Lorek, P., Bodych, M., Rotter, J., Muszkieta, M. Piwowar, L., Poulikakos, D., Majkowski, M., Ferrari, A. A Robust Algorithm for Segmenting and Tracking Clustered Cells in Time-Lapse Fluorescent Microscopy IEEE Biomedical and Health Informatics, 17(4), 862--869, 2013 (J-BHI link) .
[8] Lorek, P. Strong Stationary Duality for Mobius Monotone Markov Chains: Application to DNA sequence alignment (in perparation, 2012)
[7] Lorek, P., Szekli R. Strong stationary duality for Mobius monotone Markov chains. Queueing Systems, 71, 79--95, 2012 (.pdf, Springer link (open access))
[6] Kulik, R., Lorek, P. Some results on random design regression with long memory errors and predictors. Journal of Statistical Planning and Inference, 141, 508--523, 2011. (.pdf, arXiv:1102.4372 [math.ST])
[5] Lorek, P., Szekli R. Some properties of passage times for non-symmetric random walks via monotonicity. (in preparation, 2010)
[4] Lorek, P., Wichelhaus, C. The exact asymptotic for the stationary distribution of queueing systems with inventory management. (in preparation), 2010)
[3] Lorek, P. The exact asymptotic for the stationary distribution of some unreliable systems. (submitted to Stochastic Models, 2009) (.pdf, arXiv:1102.4707)
[2] Lorek, P. Speed of convergence for stochastically monotone Markov chains (Phd thesis, 2007) (.pdf)
[1] Dynia, M., Kutylowski, J., Lorek, P., Meyer auf der Heide, F. Communication Between an Explorer and a Base Station. IFIP 19th World ComputerCongress TC10: 1st IFIP International Conference on Biologically Inspired Computing, 1, 137-146, 2006. (.pdf)

  Last modification: 14.06.2018