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Abstract. For a Markov chain on a finite partially ordered state space,
we show that its Siegmund dual exists if and only if the chain is Möbius
monotone. This is an extension of Siegmund’s result for totally ordered
state spaces, in which case the existence of the dual is equivalent to the
usual stochastic monotonicity. Exploiting the relation between the sta-
tionary distribution of an ergodic chain and the absorption probabilities
of its Siegmund dual, we present three applications: calculating the ab-
sorption probabilities of a chain with two absorbing states knowing the
stationary distribution of the other chain; calculating the stationary dis-
tribution of an ergodic chain knowing the absorption probabilities of the
other chain; and providing a stable simulation scheme for the station-
ary distribution of a chain provided we can simulate its Siegmund dual.
These are accompanied by concrete examples: the gambler’s ruin prob-
lem with arbitrary winning/losing probabilities; a nonsymmetric game;
an extension of a birth and death chain; a chain corresponding to the
Fisher–Wright model; a nonstandard tandem network of two servers,
and the Ising model on a circle.

We also show that one can construct a strong stationary dual chain
by taking the appropriate Doob transform of the Siegmund dual of the
time reversed chain.
Keywords: Markov chains; Siegmund duality; strong stationary dual-
ity; Möbius monotonicity; partial ordering; Doob h-transform, gambler’s
ruin problem.

1. Introduction

Siegmund [27] introduced a notion of duality (today called Siegmund du-
ality) for discrete time Markov chains with a general state space with a total
ordering. This duality is intended to relate the stationary distribution of the
process with the absorption probability of its dual. In the case of a total
ordering, Siegmund showed that the dual chain exists if and only if the orig-
inal chain is stochastically monotone (w.r.t. the total ordering). The aim of

E-mail address: Pawel.Lorek@math.uni.wroc.pl.
Work supported by NCN Research Grant DEC-2013/10/E/ST1/00359.

1



this note is to generalize this result to state spaces which are only partially
ordered. Liggett in his famous book [16] (Chapter II, Section 3, page 87)
writes (about Siegmund’s result for the total ordering):

“This result depends heavily on the fact that the state space of
the processes is totally ordered. In the particle system context,
the state spaces are only partially ordered, and unfortunately the
analogous result fails. [...] having a (reasonable) dual is a much
more special property than being monotone, when the state space
is not totally ordered.”

As our main result, we show that the existence of the Siegmund dual is
equivalent to the Möbius monotonicity of the chain (a concept introduced
in Lorek and Szekli [21]) w.r.t. a fixed partial ordering. In this case we give
the transitions of the dual.

It turns out that the usual stochastic monotonicity of a chain does not
imply the existence of the Siegmund dual for general partial orderings (it
does for linear orderings, since then stochastic monotonicity is equivalent to
Möbius monotonicities). In general, the required Möbius monotonicity is not
stronger, but different than stochastic monotonicity (examples are provided
in Section 7).

There is a one-to-one correspondence (the relation is given in (2.4)) be-
tween the stationary distribution of an ergodic chain and the absorption
probabilities of its Siegmund dual. We will present three potential applica-
tions of this relation. The first application is that given a chain with two
absorbing states (gambler’s ruin-like), we can find an ergodic chain for which
the original one is the Siegmund dual. Then finding the stationary distribu-
tion of this chain determines the absorption probabilities. We present two
examples for this application: a) we recover the ruin/winning probabilities
in the gambler’s ruin problem with arbitrary winning/losing probabilities;
b) we present a nonsymmetric game which turns out to be the Siegmund
dual of the nonsymmetric random walk on the cube considered in Lorek and
Szekli [21]. Second application: given an ergodic chain, the task is to find
its stationary distribution. We can calculate its Siegmund dual, and finding
the absorption probabilities of the dual recovers the stationary distribution
of the ergodic chain. Two examples of this application are provided: a) the
chain for which the Siegmund dual corresponds to the gambler’s ruin with
catastrophes considered in Hunter et al. [14], for which the absorption proba-
bilities are calculated therein explicitly; b) the chain for which the Siegmund
dual turns out to be the so-called Fisher–Wright model. In the latter case
we also give the eigenvalues of the corresponding transition matrix. Third
application: this is similar to the second one; we are given an ergodic chain,
and the task is again to find its stationary distribution. Calculating the Sieg-
mund dual can be relatively easy, but finding the absorption probabilities is
often a challenging task. However, if we are able to simulate the dual, then
we can have a stable simulation scheme for the stationary distribution of the
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ergodic chain via simply estimating the absorption probabilities. In contrast
to most Monte Carlo Markov chains (MCMC) methods, we do not require
a priori any knowledge about the rate of convergence, the mean absorption
time, etc. Besides, MCMC are designed to provide a sample from the sta-
tionary distribution, whereas a stable simulation scheme lets us estimate the
stationary distribution at a specific state. As examples, we present the Ising
model on a circle and a tandem network of two servers. The latter example
is a modification of the standard tandem (for which the stationary distribu-
tion is known): when one of the servers is empty, the rates of the other are
changed. It turns out that then the stationary distribution is not known.
Foley and McDonald [10] considered a similar modified tandem (if the server
is idle it helps the other) showing large deviations and rough asymptotics for
the stationary distribution. In particular they showed that such changes on
the borders imply dramatic changes in the stationary distribution.

Siegmund dualities appear in various contexts. The original paper of Sieg-
mund [27] deals with stochastically monotone chains w.r.t the total ordering.
Many authors have focused on birth and death chains, e.g., Cox and Rösler
[3], Diaconis and Fill [5] (where connections to strong stationary duality are
also given), Dette et al. [4] (where Siegmund duality is related to Wall du-
ality), and Huillet [12] (where a specific birth and death chain, the Moran
model, was considered). The observation that such duality holds for some
random walks on {0, 1, . . .} goes back to Lindley [17]. The duality was also
studied in an insurance context, where the probability that the steady-state
queue length exceeds a level k equals the probability that a dual risk pro-
cess starting at level k is ruined in a finite time. There have been some
approaches to extend this to non-linear state spaces. Błaszczyszyn and Sig-
man [2] considered Rd-valued Markov processes (their Siegmund dual was
set-valued). Recently, Huillet and Martínez [13] considered dualities related
to the Möbius matrix for other non-linear state spaces, namely for Markov
chains on partitions and sets. In Lorek and Szekli [21] we consider general
partial orderings and show that the Möbius monotonicity of a time reversed
chain implies the existence of a strong stationary dual (SSD) chain on the
same state space (more details in Section 5).

Recently, in Fill and Lyzinski [9] and in Miclo [23], dualities for one-
dimensional diffusions were studied. Further research includes studying the
existence of a Siegmund dual in d-dimensional diffusions, e.g., the ones stud-
ied in Harrison and Williams [11], as well as developing the theory for Möbius
monotone processes for continuous time and general state space chains.

The rest of this note is organized as follows. In Section 2 we describe
Siegmund duality and the relations between the stationary distribution of
a chain and the absorption probabilities of its dual. In Section 3 we recall
the notion of Möbius monotonicity. In Section 4 we present our main result
(Theorem 4.1) on the equivalence of Möbius monotonicity with the existence
of the Siegmund dual chain for general partial orderings. Section 5 gives a
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connection to strong stationary duality. In Section 6 we give three applica-
tions: in Section 6.1 we recover the ruin probabilities for the gambler’s ruin
problem with arbitrary losing/winning probabilities and provide a similar
result in a different game; in Section 6.2 we give the stationary distributions
of two chains exploiting existing results on ruin probabilities; in Section 6.3
we present stable simulation schemes for some nonstandard tandem queueing
system and for the Ising model on a circle. Finally, in Section 7 we provide
examples of chains showing relations between Möbius monotonicity and sto-
chastic monotonicity. In particular, we show that Möbius monotonicity does
not imply stochastic monotonicity.

2. Siegmund duality

Let X ∼ (ν,PX) be a discrete-time Markov chain with the initial dis-
tribution ν, transition matrix PX , and finite state space E = {e1, . . . , eM}
partially ordered by �. Throughout this paper we assume it is ergodic with
stationary distribution π. We assume that there exists a unique minimal
state, say e1, and a unique maximal state, say eM . For A ⊆ E, define
PX(e, A) :=

∑
e′∈A PX(e, e′) and similarly π(A) :=

∑
e∈A π(e). Define also

{e}↑ := {e′ ∈ E : e � e′}, {e}↓ := {e′ ∈ E : e′ � e} and δ(e, e′) = 1(e, e′).
Recall that the chain X is stochastically monotone if

∀(e � e′)∀(U − up-set) PX(e,U) ≤ PX(e′,U), (2.1)

where U is an up-set if (ea � eb, ea ∈ U) implies eb ∈ U . We say that a
Markov chain Z with transition matrix PZ is the Siegmund dual of X if

∀(ei, ej ∈ E) ∀(n ≥ 0) Pn
X(ei, {ej}↓) = Pn

Z(ej , {ei}↑). (2.2)

Siegmund [27] showed that for a total ordering (let us then denote the ele-
ments of E by the numbers {1, 2, . . . ,M}) such a dual exists if and only if
X is stochastically monotone. The main thing then is to show that (2.2)
holds for the one-step transitions. Since the main part of the proof is one
line long, we include it here. We want to have PX(i, {j}↓) = PZ(j, {i}↑).
We can calculate

PZ(j, i) = PZ(j, {i}↑)−PZ(j, {i+ 1}↑)

= PX(i, {j}↓)−PX(i+ 1, {j}↓).
(2.3)

The latter is nonnegative if and only if X is stochastically monotone. Note
that (2.3) does not have to define the transition matrix, since we may have∑

i PZ(j, i) < 1. Siegmund [27] adds then one extra absorbing state, call it
0, and defines PZ(j, 0) = 1 −

∑M
i=1 PZ(j, i). In a similar way, for a general

partial ordering, if we are able to find a subprobability kernel fulfilling (2.2)
for all ei, ej ∈ E, we may be forced to add one extra absorbing state, call it
e0. Note that (2.2) implies that eM is an absorbing state, thus Z has two
absorbing states. Taking the limits as n→∞ on both sides of (2.2), we have
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π({ej}↓) = limn→∞Pn
Z(ej , {ei}↑) = P (Z is absorbed in eM |Z0 = ej).

(2.4)
The stationary distribution of X is related in this way to the absorption of
its Siegmund dual Z.

3. Möbius monotonicity

Let C(ei, ej) = 1(ei � ej). We can always rearrange the states so that
ei � ej implies i ≤ j. Then the matrix C is 0–1 valued, upper triangular,
and thus invertible. The inverse C−1 is often denoted by µ and is called the
Möbius function. Let f, F̄ : E → R. The famous Möbius inversion formula
(see, e.g., Rota [26]) states:

Let F̄ (e) =
∑
e′�e

f(e′), then f(e) =
∑
e′�e

µ(e, e′)F̄ (e′). (3.1)

We say that the function F̄ : E→ R is Möbius monotone if
∑

e′�e µ(e, e′)F̄ (e′) ≥
0 for all e ∈ E. This can be equivalently stated in matrix form: Let F̄ =
(F̄ (e1), . . . , F̄ (eM )). The Möbius monotonicity of F̄ means that C−1F̄ ≥ 0
(each entry is nonnegative).

For each state e2 ∈ E write F̄e2(e′) = PX(e′, {e2}↓). We say that the
chain X is Möbius monotone if F̄e2 are Möbius monotone for all e2 ∈ E.
Equivalently, the definition can be stated in matrix form:

Definition 3.1. The Markov chain X with transition matrix PX is Möbius
monotone w.r.t. the partial order � if C−1PXC ≥ 0 (i.e., each entry is
nonnegative). In terms of the transition probabilities, this means that

∀(ei, ej ∈ E)
∑
e�ei

µ(ei, e)PX(e, {ej}↓) ≥ 0.

Remark 3.2. In a similar way to (3.1), we have the following version of the
Möbius inversion formula:

Let F (e) =
∑
e′�e

f(e′), then f(e) =
∑
e′�e

µ(e′, e)F (e′).

This way, once π({ej}↓) is calculated for all ej ∈ E in (2.4), we can calculate
π(ej) =

∑
e�ej

µ(e, ej)π({e}↓).

For more details on Möbius monotonicity, see Lorek and Szekli [21].

4. Main result

In this section we will show the existence of the Siegmund dual on the
state space E∗ = {e0} ∪ E, where we have added one extra absorbing state,
e0. At each step, the process can be possibly killed, i.e., absorbed in this
state.
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Theorem 4.1. Let X ∼ (ν,PX) be a Markov chain on E = {e1, . . . , eM}
with partial ordering �. Assume e1 is the unique minimal state and eM is
the unique maximal state. Then there exists a Siegmund dual Z of X on
E∗ = {e0} ∪ E if and only if X is Möbius monotone. The transitions of the
dual are as follows:

PZ(ej , ei) =
∑
e′�ei

µ(ei, e
′)PX(e′, {ej}↓), ei, ej ∈ E,

PZ(e0, ej) = δ(e0, ej), ej ∈ E∗,

PZ(ek, e0) = 1−
∑
e∈E

PZ(ek, e), ek ∈ E.

(4.1)

Proof. Note that the state space of the dual is enriched with one extra ab-
sorbing state, called e0. We need Equation (2.2) to hold for all states from
E. One can think that e0 is incomparable to all the other states in E∗, which
we assume, since it simplifies some of the notation.
First, we show that (2.2) holds for n = 1, which can be rewritten as

PX(ei, {ej}↓) =
∑
e�ei

PZ(ej , e).

Using the Möbius inversion formula (3.1), we have

PZ(ej , ei) =
∑
e�ei

µ(ei, e)PX(e, {ej}↓), (4.2)

which is nonnegative if and only if X is Möbius monotone. For a par-
tial order with a unique minimal element e1, the Möbius function satisfies∑

ei∈E µ(ei, e) = 1(e = e1) (to see this, consider the first row of C−1 after
applying the first elementary row operation of Gauss–Jordan elimination).
This implies that the right-hand side of (4.2) is not greater than 1, since∑

ei∈E
PZ(ej , ei) =

∑
ei∈E

∑
e�ei

µ(ei, e)PX(e, {ej}↓)

(∗)
=

∑
ei∈E

∑
e

µ(ei, e)PX(e, {ej}↓)

=
∑
e

PX(e, {ej}↓)
∑
ei∈E

µ(ei, e) = PX(e1, {ej}↓) ≤ 1,

where in (∗) we used the fact that µ(ei, e) = 0 for ei � e (see, e.g., the proof
of Proposition 1 in Rota [26]).

Note that the submatrix PZ with the column and row corresponding to
state e0 excluded can be written as (C−1PXC)T , i.e. we have
PZ(ej , ei) = (C−1PXC)T (ej , ei) for ej , ei ∈ E. The Chapman–Kolmogorov
equations allow extending the transition probabilities to Pn

Z(ej , ei) for all
ej , ei ∈ E∗ and n ≥ 0. Then the dual chain is defined. To see that (2.2)
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holds for ej , ei ∈ E, note that since e0 is an absorbing state, we must have
Pn
Z = (C−1Pn

XC)T , i.e.

C(Pn
Z)T = Pn

XC, (4.3)

which is (2.2) written in matrix form.
�

Remark 4.2. Note that the Siegmund dual chain will have two absorbing
states. Beside the extra state e0, the state which is maximal w.r.t. � is also
absorbing. Indeed,

PZ(eM , ei) =
∑
e′�ei

µ(ei, e
′)PX(e′, {eM}↓)

=
∑
e′�ei

µ(ei, e
′) = 1(ei = eM ).

Remark 4.3. The assumption of the existence of the minimal state cannot
be relaxed, as the following example shows (with the Hasse diagram of the
ordering on the right-hand side):

PX =


4
6

1
6

1
6

4
6

1
6

1
6

1
6

1
6

4
6

 , C =


1 0 1

0 1 1

0 0 1

 ,

e3

e2e1

In other words, we have three states, say e1, e2, e3. The state e3 is a
maximal one and the states e1, e2 are incomparable. Then we can calculate

(C−1PXC)T =


1
2

1
2

1
6

0 0 1
6

0 0 1

 .

Thus, the PZ given in (4.2) does not define a subprobability kernel.

Remark 4.4. For given X we can distinguish two Siegmund dual chains. The
one defined in (2.2) can be called the Siegmund↓ dual, say Z↓. The other,
say Z↑, called the Siegmund↑ dual, is the one fulfilling

∀(ei, ej ∈ E) ∀(n ≥ 0) Pn
X(ei, {ej}↑) = Pn

Z(ej , {ei}↓).

The monotonicity defined in Lorek and Szekli [21] was actually called ↓-Möbius
monotonicity, whereas ↑-Möbius monotonicity was defined as (CT )−1PCT ≥
0. In a similar way one can have a version of Theorem 4.1, showing that
the Siegmund↑ dual exists if and only if X is ↑-Möbius monotone. We skip
the details, noting that these monotonicities are not equivalent (see [20] for
details).

The matrix form (4.3) implies the following corollary.
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Corollary 4.5. Denote the eigenvalues of PZ by λ0 = 1, λ1, . . . , λM = 1 (the
eigenvalues λ0 and λM correspond to two absorbing states). Then λ1, . . . , λM
are the eigenvalues of PX .

5. Siegmund duality and strong stationary duality

In this section we point out a connection with strong stationary duality.
Diaconis and Fill [5] show that their strong stationary dual chain can be
constructed in three steps, where one step involves calculating the Siegmund
dual w.r.t. the total ordering. It turns out that the strong stationary dual
chain given in Lorek and Szekli [21] can be constructed in three similar
steps, where one involves calculating the Siegmund dual w.r.t. a fixed partial
ordering.

Recall that X ∼ (ν,P) is an ergodic Markov chain on the finite state space
E = {e1, . . . , eM} with the stationary distribution π. Let E∗ = {e∗1, . . . , e∗N}
be the, possibly different, state space of the absorbing Markov chain X∗ ∼
(ν∗,P∗) whose unique absorbing state is denoted by e∗N . An N ×M matrix
Λ is called a link if it is a stochastic matrix satisfying Λ(e∗N , e) = π(e). We
say that X∗ is a strong stationary dual (SSD) of X with link Λ if

ν = ν∗Λ and ΛP = P∗Λ.

Diaconis and Fill [5] prove that then the absorption time T ∗ of X∗ is the so
called strong stationary time for X. This is a random variable T such that
XT has distribution π and T is independent of XT . The main application
is to studying the rate of convergence of an ergodic chain to its stationary
distribution, since for such a random variable we always have dTV (νPk, π) ≤
sep(ν,Pk, π) ≤ P (T > k), where dTV stands for the total variation distance,
and sep stands for the separation ‘distance’. For details, see Diaconis and
Fill [5].

In general, there is no recipe on how to find an SSD, i.e., a triple E∗,P∗,Λ.
Diaconis and Fill [5] give a recipe for a dual on the same state space E∗ = E
provided that the time reversed chain

←−
X is stochastically monotone with

respect to the total ordering. For a given P, let h be its harmonic function,
i.e., a nonnegative function h such that Ph = h. By h we denote the vector
h = (h(e1), . . . , h(eM )). Then Ph, defined as Ph(e, e′) = P(e, e′)h(e′)/h(e)
on {e : h(e) > 0}, is a transition matrix and is often called the Doob
h-transform of P. The SSD, in the case when the time reversed chain is
stochastically monotone, is then given by the authors in three steps (Theorem
5.5 in Diaconis and Fill [5]):

i) Calculate the time reversal
←−
P of P.

ii) Calculate the Siegmund dual (
←−
P)Z of

←−
P .

iii) Calculate the Doob H-transform P∗ = ((
←−
P)Z)H of (

←−
P)Z , where

H = πC with π = (π(e1), . . . , π(eM )).
In the above procedure, the Siegmund dual must be calculated w.r.t. a total
ordering, and then we have C(e, e′) = 1(e ≤ e′).
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In Lorek and Szekli [21], we give a recipe for an SSD on the same state
space E∗ = E for those chains whose time reversal is Möbius monotone with
respect to a partial ordering expressed by the matrix C(e, e′) = 1(e � e′).
In matrix form, the transitions are given by

P∗ = diag(H)−1(C−1
←−
PC)Tdiag(H),

where H = πC (i.e., H = (H(e1), . . . ,H(eM )) with H(e) =
∑

e′:e′�e π(e))
and diag(H) denoting the diagonal matrix with the vector H on the diag-
onal. Thus, P∗ is a Doob H-transform of (C−1

←−
PC)T , which is exactly the

Siegmund dual of
←−
P from Theorem 4.1. In other words, the SSD given in

Lorek and Szekli [21] results from exactly the same steps i)–iii) as in Theorem
5.5 in Diaconis and Fill [5].

Remark 5.1. For a non-linear ordering, Möbius monotonicity and stochastic
monotonicity are, in general, different. In particular, we can have a chain
which is not stochastically monotone, but for which we can construct both a
Siegmund dual and a strong stationary dual, since it can be Möbius monotone
(for an example, see Section 7.2). According to our knowledge, Falin [7] was
the first who observed that these are two different notions of monotonicity
(however, connections to daulities were not given there). In a subsequent
paper, Lorek and Markowski [20], we gave more details on the relations
between Möbius, realizable, weak, and the usual stochastic monotonicities
in chains on partially ordered state spaces.

6. Applications

Let us recall the relation between the stationary distribution of X and the
absorption probabilities of its Siegmund dual Z (i.e., (2.4))

π({ej}↓) = P (Z is absorbed in eM |Z0 = ej).

This relation can have three potential applications:
A1) Suppose we are given a Markov chain Z with two absorbing states

(winning and losing). To calculate the probability of being absorbed
in one of them, we can find an ergodic chain X for which Z is its
Siegmund dual. Then the task reduces to calculating the stationary
distribution of X.

A2) Suppose we are given an ergodic Markov chain X. The task is to
find its stationary distribution. Then we can calculate its Siegmund
dual Z and if we are able to determine the absorption probabilities,
then we have found the stationary distribution of X.

A3) Similarly to A2): We are given an ergodic chain X. Assume that
the approach given in A2) is infeasible: we can find the Siegmund
dual, but we are unable to calculate its absorption probabilities, but
we are nevertheless able to simulate it. Then we have a so-called
stable simulation scheme for estimating the stationary distribution.
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To estimate π({e}↓), we calculate the Siegmund dual Z of X and
simulate it several times, always starting the chain at e, and simply
estimate the winning/losing probabilities. The value of π(e) can be
estimated by estimating π({e′}↓) at several points e′, see Remark
3.2.

In this section we provide two examples for each type of application. In
Section 6.1 (A1) we consider gambler’s ruin problems: first we give a simple
proof of the ruin probability in the gambler’s ruin problem with arbitrary
winning/losing probabilities, then we solve another version of the game. In
Section 6.2 (A2) we exploit the results from the literature on the ruin prob-
abilities in the Fisher–Wright population model and on the ‘gambler’s ruin
with catastrophes’ problem to determine the stationary distribution of some
chains. In the first one, we also determine its eigenvalues. Section 6.3 (A3)
includes stable simulation schemes and numerical results for the Ising model
(on a circle) and a nonstandard tandem network of two stations. In both
cases, an error analysis is provided.

Stable simulation schemes vs Markov chain Monte Carlo methods.
Classical Markov chain Monte Carlo methods are mainly used to obtain a
sample from the stationary distribution of given chain. They can however
also be used to estimate π(A) for some subset A of the state space. For
example, a natural estimator of π(A) is the sample proportion of visits to A,
i.e., π̂MCMC(A) = 1

n

∑n
i=1 1A(Xj), where 1A is the indicator of A. However,

the ‘quality’ of the estimation depends strongly on the rate of convergence
of X to its stationary distribution. Such an estimator was considered in [1].
Estimating the stationary distribution at one state was considered in [15].
In contrast, for a stable simulation scheme, we do not need any knowledge
about, e.g., the rate of convergence or the time to absorption, we simply run
the Siegmund dual Z until it is absorbed. We thus actually estimate the
mean of a Bernoulli random variable. This can be done by the Monte Carlo
estimator, providing also a confidence interval (thus an error analysis can
also be provided, which is done in Section 6.3).

6.1. Application A1: Explicit formulas for the probabilities of win-
ning and losing.

6.1.1. Application A1: Recovering the ruin probability in the one-dimensional
gambler’s ruin problem with arbitrary winning/losing probabilities. Consider
the chain Z on E∗ = {0, 1, . . . ,M} with the transitions

PZ(i, j) =

 pi ifj = i+ 1,
qi ifj = j − 1,
1− pi − qi ifj = i,

(6.1)

with positive pi, qi such that pi + qi ≤ 1 for i = 1, . . . ,M − 1 and p0 = q0 =
0, pM = qM = 0. This is a birth and death chain with two absorbing states, 0
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and M , which can be thought of as a generalized one-dimensional gambler’s
ruin problem. We are interested in

ρ(i) = P (τM < τ0|Z0 = i),

where τi = inf{n ≥ 0 : Zn = i}. The case pi = p > 0, qi = q > 0 for
i = 1, . . . ,M is the classical gambler’s ruin problem. The formula for ρ(i)
goes back to Parzen [24] (Section 6-6, eq. (6.27)). We will recover the
result via Siegmund duality with an additional assumption. This example is
intended to present a simple, yet powerful, application of (2.4) in the case of
a total ordering.
Lemma 6.1. Consider the above generalized one-dimensional gambler’s ruin
problem. Assume that

pi−1 + qi ≤ 1, i = 1 . . . ,M. (6.2)

Then we have

ρ(i) =

i∑
n=1

n−1∏
r=1

(
qr
pr

)
M∑
n=1

n−1∏
r=1

(
qr
pr

) .
Proof. Because of assumption (6.2), the matrix

PX(i, j) =

 qi if j = i+ 1,
pi−1 if j = i− 1,
1− pi−1 − qi ifj = i,

is the transition matrix of a chain X on E = {1, . . . ,M}. It turns out that Z
is a Siegmund dual of X. Using (2.3), i.e., PZ(j, i) = PX(i, {j}↓)−PX(i+
1, {j}↓), we have

PZ(i, i− 1) = PX(i− 1, {i}↓)−PX(i, {i}↓) = 1− (1− qi) = qi, 1 < i ≤M,

PZ(i, i+ 1) = PX(i+ 1, {i}↓)−PX(i+ 2, {i}↓) = pi, 1 ≤ i < M,

PZ(i, i) = PX(i, {i}↓)−PX(i+ 1, {i}↓) = 1− qi − pi, i ≤M.

PZ(i, j) = 0, |i− j| > 1.

The first row is the only one which does not sum to 1 (it sums to 1−q1). Thus
we add one extra absorbing state, ‘0’ (i.e., E∗ = {0} ∪ E = {0, 1, . . . ,M})
and transition PZ(1, 0) = q1, obtaining the chain given in (6.1). Note that
X is a birth and death chain on E with birth rate qi and death rate pi−1
(both given that we are at state i), thus its stationary distribution is

π(n) =

n−1∏
r=1

(
qr
pr

)
M∑
k=1

k−1∏
r=1

(
qr
pr

) .
11



Applying (2.4) completes the proof.
�

Remark 6.2. The assumption (6.2) is equivalent to the stochastic mono-
tonicity of the chain (w.r.t. the total ordering, for which it is equivalent
to Möbius monotonicity) and is not essentially needed for a duality-based
proof, see Lorek [19] for details (where the more general, multidimensional
gambler’s ruin problem is considered).

6.1.2. Application A1: A nonsymmetric game: explicit formula for the prob-
abilities of winning and losing. In this section we consider another ‘gambler-
ruin like’ game. The states of the game are (0,WON,LOST ). The state
0 means we have not yet either won or lost. The names of the other states
speak for themselves. We start at state 0. At each step we can win with
probability p > 0, lose with probability q > 0, or nothing can happen with
probability 1 − (p + q). Of course, eventually we will end up in the WON
or LOST state with probabilities p/(p+ q) and q/(p+ q) respectively.

Now consider the following generalization. We are given d gamesG1, . . . , Gd
and parameters pi, qi, i = 1, . . . , d such that

∑d
i=1(pi + qi) ≤ 1. We win

the whole game if we win all the games G1, . . . , Gd and we lose the whole
game if we lose at least one game Gi, i ∈ {1, . . . , d}. If we win game Gi,
we will not play it anymore. The generic state is either eL := LOST or
e = (e(1), . . . , e(d)), e(i) ∈ {0, 1}, i = 1, . . . , d, where e(i) = 1 means that
we have already won game Gi. Write eW := (1, . . . , 1). At each step we
can win the new game Gi with probability pi (provided we have not won
it already) or lose it with probability qi (in which case we automatically
lose the whole game), or we can do nothing, with the remaining probability
1−

∑
i:e(i)=0(pi + qi). The described dynamics is a Markov chain, call it Z,

on the state space E∗ = {0, 1}d ∪ {eL}, with the following transitions:

PZ(e, e′) =



pi if e′ = e + si,∑
i:e(i)=0

qi if e′ = eL, e 6= eL,

1−
∑

i:e(i)=0

(pi + qi) if e′ = e 6= eL,

1 if e′ = e = eL,

(6.3)

where si = (0, . . . , 0, 1, 0, . . . , 0) with 1 at the ith coordinate. The chain
has two absorbing states: eL and eW (we lose or we win). Eventually, the
chain will be absorbed in one of them. A natural question arises: What
is the probability of winning the whole game starting with an arbitrary set
of already won games e′ ∈ E? In other words, we want to calculate the
following probabilities:

ρ(e′) = P (τeM < τeL | Z0 = e′),
12



where τe := inf{n ≥ 0 : Zn = e}. To answer the question, consider first
another chain, the nonsymmetric random walk X on E = {0, 1}d, defined
for the same parameters pi, qi, i = 1, . . . , d, with the transitions

PX(e, e′) =


qi if e′ = e + si,

pi if e′ = e− si,

1−
∑

i:e(i)=0

qi −
∑

i:e(i)=1

pi if e′ = e.

Under the mild assumption that at least for one state e we have that
PX(e, e) > 0, the chain is ergodic with the stationary distribution

π(e) =
∏

i:e(i)=1

qi
pi + qi

∏
i:e(i)=0

pi
pi + qi

.

Let |e| =
∑d

i=1 e(i) (called a level of e). We consider the coordinate-wise
ordering, i.e. e � e′ if e(i) ≤ e′(i) for all i = 1, . . . , d. The state e1 =
(0, . . . , 0) is the unique minimal state and eM = (1, . . . , 1) is the unique
maximal one. Then (E,�) is a Boolean lattice with the following Möbius
function:

µ(e, e′) = (−1)|e
′|−|e|1(e � e′).

To calculate the Siegmund dual, we have to calculate

PZ(e, e′) =
∑
e2�e′

µ(e′, e2)PX(e2, {e}↓). (6.4)

Consider the case e′ = e + si. Then there is one state e2 � e + si in (6.4)
for which PX(e2, {e}↓) > 0, namely e2 = e + si. We have

PZ(e, e + si) =
∑

e2�e+si

µ(e + si, e2)PX(e2, {e}↓) = pi.

In Lorek and Szekli [21] we calculated SSD of PX . Thus, according to Section
5, we have also calculated its Siegmund dual. That is why we skip the
remaining calcuations. It turns out that PZ given in (6.3) is the Siegmund
dual of X. The chain X is thus Möbius monotone if and only if

∑d
i=1(pi +

qi) ≤ 1. Note that for any e ∈ E, we have
∑

e′∈EPZ(e, e′) = 1−
∑

i:e(i)=0 qi.
We add one extra absorbing state, call it eL, and we end up exactly with
the transitions given in (6.3). Thus via (2.4), we have

ρ(e′) =
∑
e�e′

∏
i:e(i)=1

qi
pi + qi

∏
i:e(i)=0

pi
pi + qi

.

For example, if pi = p and qi = q for all i = 1, . . . , d, then we have

ρ(e′) =
1

(p+ q)d

∑
e�e′

q|e|pd−|e|

=
1

(p+ q)d

|e′|∑
k=0

(
|e′|
k

)
qkpd−k =

(
p

p+ q

)d−|e′|
.
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Note that then of course the probability ρ(e′) depends only on the level |e′|.
In particular, for p = q we have that ρ(e′) = 2|e

′|−d.

Remark 6.3. The matrix PZ can be written as an upper triangular matrix,
and thus we can read off the eigenvalues from the diagonal. Corollary 4.5
implies that λA = 1 −

∑
i∈A(pi + qi), A ⊆ {1, . . . , d} are the eigenvalues of

PX .

6.2. Application A2: Explicit formulas for the stationary distribu-
tion of some chains.

6.2.1. Application A2: Finding the stationary distribution of an extension of
the birth and death chain. Consider the classical birth and death chain on the
state space E = {1, 2, . . . , N} with constant birth rate q > 0 and death rate
p > 0. Assume p 6= q and p+ q < 1. Let X be the following modification of
this birth and death chain: in addition, there is an extra probability 1−p−q
of going from any state to the maximal state N . Formally, the transitions
of X are given by

PX(i, j) =



q if j = i+ 1, i = 1, . . . , N − 2,

1− p if (i = N − 1, j = N) or (i = j = N),

p if (j = i− 1, i = 2, . . . , N) or (i = j = 1),

1− p− q if i = 1, . . . , N − 2, j = N,

0 otherwise.
(6.5)

Theorem 6.4. Consider the Markov chain X on E = {1, . . . , N} with the
transitions given in (6.5). Assume that p 6= q and p + q < 1. Then the
stationary distribution of the chain is given by

π(k) =

 1

2p

b k−1
2
c∑

j=0

(
k

2j + 1

)
γj −

b k
2
c−1∑
j=0

(
k − 1

2j + 1

)
γj


bN−1

2
c∑

j=0

(
N

2j + 1

)
γj

2(2p)N−k+2, (6.6)

where γ = (1− 4pq).

Proof. First, we will calculate the Siegmund dual of X. Consider the linear
ordering �:=≤ on E. The transitions of the Siegmund dual are then calcu-
lated using (2.3), i.e., PZ(j, i) = PX(i, {j}↓)−PX(i+ 1, {j}↓). Considering
all the cases, we have

14



PZ(j, j − 1) = PX(j − 1, {j}↓)−PX(j, {j}↓)
= q + p− p = q, j = 2, . . . , N,

PZ(j, j + 1) = PX(j + 1, {j}↓)−PX(j + 2, {j}↓)
= p− 0 = p, j = 1, . . . , N − 1,

PZ(N − 1, N) = PX(N, {(N − 1)}↓) = p,

PZ(N,N) = PX(N, {N}↓) = 1.

For every j = 1, . . . , N − 1 we have that
∑

i PZ(j, i) < 1, more precisely
N∑
i=1

PZ(1, i) = p < 1,

N∑
i=1

P(j, i) = p+ q < 1, j = 2, . . . , N − 1.

Thus we add one extra state, call it ‘0’, obtaining the transition matrix of
the Siegmund dual Z on E∗ = {0, 1, . . . , N}:

PZ(i, j) =



p if j = i+ 1, i = 1, . . . , N − 1,

q if j = i− 1, i = 2, . . . , N − 1,

1− p if i = 2, j = 1,

1− p− q if i = 2, . . . , N − 1, j = 0,

1 if (i = j = 0) or (i = j = N),

0 otherwise.

(6.7)

These are exactly the transitions corresponding to the ‘gambler’s ruin with
catastrophes’ considered in Hunter [14]. The ruin probability is given therein
in eq. (2.6), the winning probability is (with ρ(0) = 0)

ρ(k) =

(
1 +
√

1− 4pq

2p

)k
−
(

1−
√

1− 4pq

2p

)k
(

1 +
√

1− 4pq

2p

)N
−
(

1−
√

1− 4pq

2p

)N .
For a linear ordering, the relation (2.4) is π({k}↓) = ρ(k), thus

π(k) = ρ(k)− ρ(k − 1).

The above relation and some elementary calculations using the binomial
expansion

(1 +
√
x)k − (1−

√
x)k = 2

√
x

b k−1
2
c∑

j=0

(
k

2j + 1

)
xj
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yield (6.6) and thus complete the proof. �

6.2.2. Application A2: Finding the stationary distribution, another example.

Lemma 6.5. Let X be a Markov chain on E = {1, . . . , 2N} with the follow-
ing transition matrix:

PX(i, j) =
1

(2N)2N

2N∑
r=i

(
2N

r

)[
jr(2N − j)2N−r − (j − 1)r(2N − j + 1)2N−r

]
.

Then the chain has a uniform stationary distribution, it is not reversible,
and the eigenvalues are

λk =
k!

(2N)k

(
2N

k

)
, k = 1, . . . , N.

Proof. We will calculate the transitions of the Siegmund dual Z of X with
respect to the total ordering. To shorten the notation, let us write PX(2N+
1, j) = 0 for any j. For any i, s ∈ E, we have

PX(i, s)−PX(i+ 1, s)

=
1

(2N)2N

(
2N

i

)[
si(2N − s)2N−i − (s− 1)i(2N − s+ 1)2N−i

]
.

Using (2.3) we have

PZ(j, i) = PX(i, {j}↓)−PX(i+ 1, {j}↓) =

j∑
s=1

(PX(i, s)−PX(i+ 1, s))

=
1

(2N)2N

(
2N

i

)
ji (2N − j)2N−i =

(
2N

i

)(
j

2N

)i(
1− j

2N

)2N−i
.

For every j < 2N we have
∑

i PZ(j, i) < 1, thus we add one extra absorbing
state, call it ‘0’, and set P(j, 0) = 1 −

∑2N
s=1 PZ(j, s). These are exactly

the transitions of the so-called Fisher–Wright population model (see, e.g.,
Ewens [6]). The states 0 and 2N are absorbing. It is known that for this
model P (Z is absorbed in 2N |Z0 = i) = i

2N , thus the relation (2.4) implies
that π(1) = π({1}↓) = P (Z is absorbed in 2N |Z0 = 1) = 1

2N and for i > 1

we have π(i) = π({i}↓) − π({i − 1}↓) = i
2N −

i−1
2N . It is easy to verify

that X is not reversible. The eigenvalues of the Fisher–Wright model are
λk = k!

(2N)k

(
2N
k

)
, k = 0, . . . , N , as shown in Feller [8]. Applying Corollary

4.5 completes the proof. �

Remark 6.6. It is relatively easy to show directly that the uniform distri-
bution is the stationary distribution of X. However, finding directly the
eigenvalues seems to be a challenging task.
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6.3. Application A3: Stable simulation schemes. We will present two
examples: a nonstandard two-node closed tandem network with an unknown
stationary distribution, and the Ising model on a circle. In both cases, sim-
ulations for some concrete sets of parameters are provided. The procedure
is the following:

• For an ergodic chain X on E = {e1, . . . , eM} (denote its stationary
distribution by π), calculate its Siegmund dual Z with respect to a
partial ordering � on E∗ = {e0} ∪ E.
• For all e, simulate n chains Z(1), . . . , Z(n) independently, each start-
ing at e.
• Estimate π({e}↓) via (2.4) with the Monte Carlo estimator

π̂({e}↓) =
1

n

n∑
i=1

Yj ,

where Yj = 1(Z(j) is absorbed in eM |Z(j)
0 = e).

• Finally, approximate π(e) by (see Remark 3.2)

π̂(e) =
∑
e′�e

µ(e′, e)π̂({e′}↓),

where µ is the Möbius function of the partial ordering �.

Remark 6.7. In practice, we usually deal with chains on a huge state space,
and our goal is to approximate π at a given point e. We then do not have
to start the chains at every state (which is infeasible), but only for {e′ :
µ(e′, e) 6= 0}.

In other words, we estimate the mean of the Bernoulli random vari-
able Y with π({e}↓) being its success probability (and thus the mean).
From the Central Limit Theorem, we know that π({e}↓) is in the interval(
Ŷn − z1−α/2 σY√n , Ŷn + z1−α/2

σY√
n

)
with probability (approximately) 1 − α,

where σ2Y = π({e}↓)(1− π({e}↓)) is the variance of Y and z1−α/2 is the αth
quantile of the standard normal distribution. For a typical α = 0.05 (then
z1−0.025 = 1.96), we want to control the error err = 1.96σY√

n
. Since σ2Y ≤

1
4 ,

it is enough to run at least

n =

(
1.96

2err

)2

(6.8)

simulations for any e.

6.3.1. Application A3: A stable simulation scheme for a nonstandard tan-
dem network of two servers. In this section we will present a two-node closed
tandem network with an unknown stationary distribution. Studying the ab-
sorption probability in the resulting Siegmund dual chain is a rather compli-
cated task. We will present a stable simulation scheme and will estimate the
stationary distribution for some concrete parameters. It is also worth noting
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that the structure of the resulting Siegmund dual is interesting: e.g., once it
hits a barrier, it will not leave it, for details, see below.

Consider a tandem network of two stations, each with a finite buffer of
size N . Denote the chain by X ≡ (X)n≥0 with state space E = {0, . . . , N}2,
where (x, y) is the state in which there are x customers at server 1 and y
customers at server 2.

When x > 0 and y < N , the system operates as the following classical
tandem: with probability λ1 there is an arrival at station 1 (if x < N); with
probability λ2 there is an arrival at station 2 (if y < N); with probability
µ1 customers traverse from server 1 to server 2; with probability µ2 the
customer from server 2 leaves the network (if y > 0); with the remaining
probability nothing happens. Without loss of generality we may assume
that λ1 + µ1 + λ2 + µ2 = 1. However, at the borders x = 0 and y = N ,
the system operates differently from the classical tandem: when x = 0, the
probability of arrival at station 2 is λ2 + µ1 (if y < N) and when y = N
there is a departure from server 1 with probability µ1 (if x > 0). This can
be seen as a modification of the standard Gordon–Newell network. A similar
modification (of the Jackson network, i.e., with a countable state space) was
considered in Foley and McDonald [10], where the rough asymptotics (and
large deviations) were derived, showing that a relatively slight modification
(only at the borders) changes the stationary distribution dramatically. The
transitions of the chain are as follows:

PX((x, y), (x′, y′)) =

λ1 if (x′ = x+ 1, y′ = y) or (x = x′ = N, 0 < y′ = y < N),

λ2 if (y′ = y + 1, x′ = x > 0) or (0 < x′ = x < N, y′ = y = N),

µ1 if (x′ = x− 1, y′ = y + 1) or (x′ = x− 1, y′ = y = N),

µ2 if (y′ = y − 1, x′ = x) or (x′ = x < N, y′ = y = 0),

µ1 + λ2 if (y′ = y + 1, x′ = x = 0) or (x′ = x = 0, y′ = y = N),

µ2 + λ1 if x′ = x = N, y′ = y = 0,

λ1 + λ2 if x′ = x = y′ = y = N.

(6.9)
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Consider the coordinate-wise ordering, i.e., (x, y) � (x′, y′) ⇐⇒ x ≤ x′ and
y ≤ y′. Then the Möbius function is

µ((x, y), (x′, y′)) =



1 if (x′ = x and y′ = y) or
(x′ = x+ 1 and y′ = y + 1),

−1 if (x′ = x+ 1 and y′ = y) or
(x′ = x and y′ = y + 1),

0 otherwise.
(6.10)

We will calculate the transition matrix PZ of the Siegmund dual Z directly
from Theorem 4.1:

PZ((x1, y1), (x2, y2)) =∑
(x,y)�(x2,y2)

µ((x2, y2), (x, y))PY ((x, y), (x1, y1)
↓),

where PY ((x, y), (x1, y1)
↓) :=

∑
(x′,y′)�(x1,y1)

PY ((x, y), (x′, y′)). With our Möbius

function µ we have

PZ((x1, y1), (x2, y2)) (6.11)
= PY ((x2, y2), (x1, y1)

↓)−PY ((x2 + 1, y2), (x1, y1)
↓)

−PY ((x2, y2 + 1), (x1, y1)
↓) + PY ((x2 + 1, y2 + 1), (x1, y1)

↓),

where we should understand that, for example, for y2 = N the corresponding
terms, in this case PY ((x2, y2+1), (x1, y1)

↓) and PY ((x2+1, y2+1), (x1, y1)
↓),

are equal to 0. Let us start with the case x1, x2, y1, y2 > 1 and x1, x2, y1, y2 <
N . Then using (6.11) we have, for example,

PZ((x1, y1), (x1 − 1, y1))

= PY ((x1 − 1, y1), (x1, y1)
↓)−PY ((x1, y1), (x1, y1)

↓)

−PY ((x1 − 1, y1 + 1), (x1, y1)
↓) + PY ((x1, y1 + 1), (x1, y1)

↓)

= λ1 + µ2 − µ2 − µ2 + µ2 = λ1.

We also have PZ((x1, y1), (x1−k, y1)) = 0 for k = 1, . . . , x1−1. Considering
some possible transitions to the border of the state space:

PZ((x1, y1), (0, y1 − 1))

= PX((0, y1 − 1), (x1, y1)
↓)−PX((1, y1 − 1), (x1, y1)

↓)

−PX((0, y1), (x1, y1)
↓) + PX((1, y1), (x1, y1)

↓)

= 1− 1− (λ1 + µ2) + (µ2 + λ1) = 0.

We will skip the rest of the (lengthy) calculations, but considering it on a
case-by-case basis, X turns out to be Möbius monotone. We add one extra
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state, let us name it (+∞,+∞). The transitions of the Siegmund dual are
as follows:
PZ((x, y), (x′, y′)) =



λ1 if (N − 1 > x′ = x− 1, y′ = y)

or (x′ = x = N, y′ = y < N)

or (x = 0, y > 0, x′ = +∞, y′ = +∞),

λ2 if N − 1 > y′ = y − 1, x′ = x < N,

µ1 if x′ = x+ 1, N − 1 > y′ = y − 1

or x′ = x+ 1, y′ = y = N,

µ2 if x′ = x, y′ = y + 1,

µ1 + λ2 if (N − 1 > y′ = y − 1, x′ = x = N)

or (x > 0, y = 0, x′ = +∞, y′ = +∞),

µ2 + λ2 if x′ = x < N, y′ = y = N

λ1 + λ2 + µ1 if x = 0, y = 0, x′ = +∞, y′ = +∞,

1 if (x′ = x = y′ = y = N)

or (x′ = x = y′ = y = +∞).

(6.12)

Note that outside the borders, the transitions look like a reversed network
(however, note that this is not the usual time reversal). The behavior on the
borders is different. First, the chain can go to (+∞,+∞) only from states of
the form (0, y) or (x, 0). Second, once the process is on the ‘upper’ ((x,N))
or the ‘right’ ((N, y)) border, it behaves like the usual, absorbing birth and
death chain with probabilities of being killed only possible on (0, N) and
(N, 0) respectively. On the upper border, the birth rate is µ1 and the death
rate is λ1, whereas on the right border, the birth rate is µ2 and the death
rate is µ1 + λ2.

One can also notice a similar behaviour (i.e., not leaving the borders)
in the strong stationary dual for the two-node network representing two
independent servers, see Lorek and Szekli [22] for details.

Stable simulation scheme. We will estimate the stationary distribution
of the tandem for N = 5 (thus the state space is E = {0, . . . , 5}2 with
|E| = 36) with parameters λ1 = 3

16 , λ2 = 1
16 , µ1 = µ2 = 6

16 . The simulations
were performed in The Julia Language. We consider two levels of accuracy:
err1 = 0.005 and err2 = 0.0005. Using (6.8) we calculate a sufficient number
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of simulations:

err1 = 0.005 :

(
1.96

0.01

)2

= 3.8416 · 104 ≤ 4 · 104 =: n1,

err2 = 0.0005 :

(
1.96

0.01

)2

= 3.8416 · 106 ≤ 4 · 106 =: n2.

Once we estimate π({x, y}↓) by π̂({x, y}↓), we estimate π(x, y) by (see Re-
mark 3.2)

π̂(x, y) =
∑

(x′,y′)�(x,y)

µ((x′, y′), (x, y))π̂({(x′, y′}↓)

= π̂({(x, y)}↓)− π̂({(x− 1, y)}↓)

− π̂({(x, y − 1)}↓) + π̂({(x− 1, y − 1)}↓),

(6.13)

(where we should understand that π̂({(x, y)}↓) = 0 if some coordinate is
negative). The results of the simulations are presented in Table 1. Besides
estimating the stationary distribution, we also estimate the mean (τ̂) and
the standard deviation (σ̂2) of time till absorption.

Although it is not included in the Table 1, repeating the simulations for
n2 = 4 · 106 several times yields estimators of π which always agree to the
first three decimal places. The total variation distance between two such
estimations was always ≤ 0.0071.

6.3.2. Application A3: Stable simulation scheme for the Ising model on a
circle. Let G = (V,E) be a finite graph. Let E = {−1, 1}V (set of so-called
configurations). The Ising model on graph G with parameter β ≥ 0 is the
probability measure on E given by

π(e) =
1

Cβ
exp

β ∑
{x,y}∈E

e(x)e(y)

 ,

where sum is over all edges of the graph and Cβ is a normalizing constant
(hard to compute in general). We shall consider G being a circle, i.e., V =
{0, . . . , N − 1} and E = {(i, (i + 1) mod N) : i = 0, . . . , N − 1}. The
distribution is then of form

π(e) =
1

Z
exp

(
β
N−1∑
i=0

e(i)e(i+ 1)

)
, (6.14)

where we always perform addition modulo N . Let X on E be the classical
Gibbs sampler for this model, it has the following dynamics. Given Xk = e,

• Choose vertex i ∈ V with probability 1
N .
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y\x 0 1 2 3 4 5

0
π̂ 0.030349 0.051093 0.064 0.089953 0.115488 0.152256
τ̂ 3.432581 6.516953 8.838628 10.490814 11.159698 10.898512
σ̂2 37.126458 71.878733 92.804187 107.71656 110.579045 107.214705

1
π̂ 0.027628 0.029558 0.046256 0.04214 0.053326 0.061907
τ̂ 5.174186 9.379605 12.625 14.243023 14.688047 13.80893
σ̂2 59.11922 89.951922 104.240892 102.786725 99.409276 96.261684

2
π̂ 0.02193 0.023814 0.018767 0.026605 0.01507 0.019116
τ̂ 5.92793 10.416093 13.449814 14.923465 14.533163 12.371256
σ̂2 68.774475 94.621951 97.120298 91.983189 90.545936 84.547763

3
π̂ 0.014721 0.011116 0.01714 4.7e-5 0.014814 0.004
τ̂ 6.109372 10.44014 13.141 13.863535 12.545814 9.115233
σ̂2 70.331045 92.117536 88.790347 84.163846 83.647753 72.533966

4
π̂ 0.00893 0.008651 0.00093 0.010442 0.005093 0.001233
τ̂ 5.829372 9.947884 12.078233 12.073163 9.741093 4.85114
σ̂2 62.136261 80.03354 81.073393 77.194024 74.588772 44.553598

5
π̂ 0.009233 0.001465 0.000953 0.006791 0.000651 0.001326
τ̂ 5.579488 9.188023 10.855837 10.235651 6.744186 0.0
σ̂2 55.045706 70.475751 71.311736 73.753556 66.707552 0.0

n1 = 4 · 104 (err1 = 0.005)

y\x 0 1 2 3 4 5
0 π̂ 0.029462 0.049277 0.067276 0.087678 0.115476 0.158547

τ̂ 3.42784 6.48493 8.857538 10.419037 11.117143 10.907459
σ̂2 35.946223 70.050356 93.86759 107.100301 111.100368 105.813727

1 π̂ 0.029505 0.033735 0.041213 0.046289 0.052367 0.051459
τ̂ 5.186866 9.447477 12.550259 14.317646 14.701667 13.70708
σ̂2 59.127635 91.033304 102.503483 102.602434 99.065673 94.155181

2 π̂ 0.02127 0.021866 0.020932 0.023654 0.021371 0.017472
τ̂ 5.892092 10.463687 13.501422 14.889388 14.544947 12.450019
σ̂2 68.901012 95.30462 97.564506 92.816501 89.189174 85.646968

3
π̂ 0.014304 0.012097 0.011997 0.009563 0.009726 0.00579
τ̂ 6.029211 10.440957 13.09187 13.842725 12.557437 9.142111
σ̂2 69.044913 90.025534 89.396487 84.83922 82.871419 72.118169

4
π̂ 0.008411 0.007586 0.005305 0.004613 0.003635 0.002299
τ̂ 5.846186 9.8955 12.065144 12.108027 9.742326 4.82419
σ̂2 63.076118 79.801387 79.770588 78.464214 74.763627 43.825968

5

π̂ 0.006554 0.003745 0.002153 0.001752 0.000802 0.000818
τ̂ 5.476035 9.225108 10.904013 10.212549 6.723262 0.0
σ̂2 53.437619 70.099047 72.300547 74.038874 65.987165 0.0

n2 = 4 · 106 (err2 = 0.0005)

Table 1. Results of n1 = 4 · 104 and n2 = 4 · 106 sim-
ulations for the non-standard tandem queue system with N =
5, λ1 = 3

16 , λ2 = 1
16 , µ1 = µ2 = 6

16 . Together with the estimator
π̂ ≡ π̂(x, y), x, y ∈ {0, . . . , N} the estimators of the expected time
to absorption (τ̂) and its variance (σ̂2) are presented. The total
variation distance between the estimated stationary distribution
after n1 and n2 simulations was ≤ 0.056.
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• Take Uk+1, uniform random variable U(0, 1), independent of Uj , j ≤
k. Update the value at vertex i:

Xk+1(i) =

 +1 if Uk+1 <
e2β(e(i+1)+e(i−1))

1 + e2β(e(i+1)+e(i−1)) ,

−1 otherwise.

Denote the transition matrix of X by P. Let � denote coordinate-wise
partial ordering of E, i.e., e � e′ if e(i) ≤ e′(i) for i = 0, . . . , N − 1. We will
start with:
Numerical results. Let X be the Gibbs sampler for the Ising model on

a circle with 3 points (N = 2). Let us enumerate the states in the follow-
ing way: e1 = (−1,−1,−1), e2 = (+1,−1,−1), e3 = (−1,+1,−1), e4 =
(−1,−1,+1), e5 = (+1,+1,−1), e6 = (+1,−1,+1), e7 = (−1,+1,+1),
e8 = (+1,+1,+1). The transition matrix of X is following:

PX =



1− q 1
3q

1
3q

1
3q 0 0 0 0

1
3 −

1
3q

1
3 + 1

3q 0 0 1
6

1
6 0 0

1
3 −

1
3q 0 1

3 + 1
3q 0 1

6 0 1
6 0

1
3 −

1
3q 0 0 1

3 + 1
3q 0 1

6
1
6 0

0 1
6

1
6 0 2

3 −
1
3p 0 0 1

3p

0 1
6 0 1

6 0 2
3 −

1
3p 0 1

3p

0 0 1
6

1
6 0 0 2

3 −
1
3p

1
3p

0 0 0 0 1
3 −

1
3p

1
3 −

1
3p

1
3 −

1
3p p



,

where p = e4β

1+e4β
and q = e−4β

1+e−4β . The stationary distribution in this case is
given by:

π(e1) = π(e8) =
e3β

Cβ
, π(e2) = . . . = π(e7) =

e−β

Cβ
, Cβ = 2e3β + 6e−β.

Introducing coordinate-wise partial ordering, it is easy to calculate the Sieg-
mund dual chain Z on E∗ = E ∪ {e0}. Its transition matrix PZ is following
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(with states enumerated: e0, . . . , e8)

PZ =



1 0 0 0 0 0 0 0 0

1− p1 0 1
3p1

1
3p1

1
3p1 0 0 0 0

1
3 (1− p2) 0 1

3
1
6p2

1
6p2

1
6

1
6 0 0

1
3 (1− p2) 0 1

6p2
1
3

1
6p2

1
6 0 1

6 0

1
3 (1− p2) 0 1

6p2
1
6p2

1
3 0 1

6
1
6 0

1
3 (1− (q1 + q2)) 0 0 0 0 2

3
1
6q2

1
6q2

1
3q1

1
3 (1− (q1 + q2)) 0 0 0 0 1

6q2
2
3

1
6q2

1
3q1

1
3 (1− (q1 + q2)) 0 0 0 0 1

6q2
1
6q2

2
3

1
3q1

0 0 0 0 0 0 0 0 1



,

where

p1 =
1

1 + e−4β
, p2 =

1− e−4β

1 + e−4β
, q1 =

1

1 + e4β
, q2 =

e4β − 1

1 + e4β
.

We consider two different values for β, β1 = 0.01 and β2 = 0.1, and two levels
of accuracy err1 = 0.005 and err2 = 0.0005. These are the same accuracy
levels as in Section 6.3.1, thus similarly we take n1 = 4 ·104 and n2 = 4 ·106.
The results, together with mean and variance of absorption time (denoted
by τ̂ and σ̂2) are given in Table 2.

β = 0.01 β = 0.1

π n1 = 4 · 104 n2 = 4 · 106 π n1 = 4 · 104 n = 4 · 106
(err1 = 0.005) (err2 = 0.0005) (err1 = 0.005) (err = 0.0005)

π̂ τ̂ σ̂2 π̂ τ̂ σ̂2 π̂ τ̂ σ̂2 π̂ τ̂ σ̂2

e1 0.129 0.128 2.563 5.587 0.129 2.564 5.574 0.166 0.166 3.235 9.463 0.166 3.237 9.498
e2 0.124 0.123 3.050 6.263 0.124 3.063 6.310 0.111 0.111 3.731 10.224 0.111 3.736 10.209
e3 0.124 0.128 3.062 6.328 0.124 3.063 6.312 0.111 0.110 3.742 10.297 0.111 3.735 10.226
e4 0.124 0.124 3.059 6.284 0.124 3.063 6.322 0.111 0.112 3.733 10.164 0.111 3.742 10.268
e5 0.124 0.116 3.062 6.329 0.123 3.060 6.314 0.111 0.113 3.731 10.229 0.112 3.735 10.233
e6 0.124 0.128 3.054 6.251 0.124 3.061 6.315 0.111 0.109 3.742 10.246 0.112 3.738 10.236
e7 0.124 0.122 3.065 6.337 0.124 3.061 6.319 0.111 0.111 3.743 10.240 0.112 3.736 10.243
e8 0.129 0.131 – – 0.128 – – 0.166 0.168 – – 0.165 – –

d(π, π̂) 0.010 0.001 0.003 0.001

Table 2. Simulation results for two Ising models (with β = 0.01
and β = 0.1) on a circle with 3 vertices. We calculated: π̂(ei) -
the estimator of the stationary distribution; τ̂ , σ̂2 - estimators of
expected number of steps till absorption and its variance. The ac-
tual stationary distribution is bolded. The total variation distance
between the stationary distribution and its estimation is given in
last row.

For N = 2 of course the stationary distribution can be calculated, thus
we can compare it with simulations’ results. From Table 2 we can read that
estimating π using n1 = 4 · 104 simulations was more accurate for β = 0.1
then for β = 0.01 (total variation distance between the estimated and the
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real stationary distribution being 0.003 and 0.01 respectively). However,
after n2 = 4 · 106 simulations no significant differences can be observed.
Note also that each simulation took on average around 0.7 steps longer for
β = 0.1 than for β = 0.01.

Remark 6.8. In estimating the mean value of Bernoulli random variable one
may want err to be a fraction of variance σ2Y . The variance is unknown,
however it can be first estimated by running initially some number of simu-
lations and calculating its sample variance. This should be done separately
for each e for which we want to estimate π({e}↓).

General N . We presented an example with three vertices (N = 2). In this
case, we can simply calculate PZ = (C−1PXC)T (and add an extra absorb-
ing state). How should one proceed with the general number of vertices?
This chain was considered in [22] in the context of strong stationary duality
(and studying the rate of convergence of the chain to its stationary distribu-
tion), where the form of this dual for general N was given in Conjecture 1.
The conjecture translates into

Conjecture 6.9. Let X be the Gibbs sampler for the Ising model on a
circle. Then it is Möbius monotone with respect to the coordinate-wise
partial ordering. The transitions of its Siegmund dual Z on E∗ = {e0} ∪ E
are as follows.
PZ(e, e′) =

0 if e � e′,

1
N S(e) if e = e′,

1
N

(
1− e2β(e(i+1)+e(i−1))

1+e2β(e(i+1)+e(i−1))

)
if e′ = e + sv, e(v) = −1,

1
N

(
e2β(e(i+1)+e(i−1)+2)

1+e2β(e(i+1)+e(i−1)+2) − e2β(e(i+1)+e(i−1))

1+e2β(e(i+1)+e(i−1))

)
if e′ = e(i↔ i+ 1),

e(i)e(i+ 1) = −1,

1−
∑

e′∈EPZ(e, e′) if e′ = e0,
(6.15)

where sv = (0, . . . , 0, 2, 0, . . . , 0) (the 2 on the coordinate corresponding to
vertex v), S(e) =

∑N−1
i=0 111{e(v) = 1} and e(i↔ i+ 1) denotes the state e

with spins at vertices i and i+ 1 swapped.

Note that if the conjecture is true, then it is easy to simulate the Siegmund
dual. The only nonzero transitions are i) the chain can stay at each state
(except e = (0, . . . , 0)); ii) it can change some coordinate from -1 to +1;
iii) if +1 and -1 are neighbours, then they can be “swapped”; iv) with the
remaining probability the chain can be absorbed in e0. Thus, it is easy
to estimate π({e}↓). However, estimating π(e) for large N is not trivial.
Remark 3.2 (with the Möbius function of the coordinate-wise ordering on
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{0, 1}N ) implies that we need to estimate π({e′}↓) for 2S(e) different states
e′. Note that in the nonstandard queue example (Section 6.3.1), for each
e = (x, y) we had to estimate π at at most four other states (cf.(6.13)).

Note that for the minimal state, we have {e1}↓ = e1, thus to estimate
π(e1) we need only to run chains starting at this minimal state. For example,
we can estimate then the normalizing constant Cβ (often called a partition
function) via Ĉβ = e3β/π̂(e1). For the Ising model on a circle with N vertices
it is known that Cβ = (2 sinh(β))N + (2 cosh(β))N .

7. Stochastic vs Möbius monotonicity

In Section 4, we showed that the Siegmund dual exists if and only if the
chain is Möbius monotone. We also mentioned that this monotonicity and
stochastic monotonicity are indeed different. In this section we will present
two chains: a) a chain which is stochastically but not Möbius monotone, and
b) a chain which is Möbius but not stochastically monotone.

7.1. Example of a chain that is stochastically but not Möbius mono-
tone. Consider X on E = {e1, e2, e3, e4} with the following partial ordering
(expressed by C, its Hasse diagram is presented)

C =


1 1 1 1
0 1 0 1
0 0 1 1
0 0 0 1


e4

e3e2

e1

Let α1, α2, β1, β2 be nonnegative numbers such that

max(α1 + α2, β1 + α2, β1 + β2, α1 + β2) ≤ 1. (7.1)

Define the transition matrix

PX =

 1− α1 − α2 α1 α2 0
β1 1− β1 − α2 0 α2

β2 0 1− α1 − β2 α1

0 β2 β1 1− β1 − β2

 .

Simple computations yield

(C−1PXC)T =

 1− α1 − α2 − β1 − β2 β1 β2 0
0 1− α2 − β2 0 β2
0 0 1− α1 − β2 β1
0 0 0 1

 ,

thus the chain is Möbius monotone iff α1+α2+β1+β2 ≤ 1. As for stochastic
monotonicity, condition (2.1) is calculated for some e � e′ and some up-sets,
the results are given in Table 3.
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e � e′ U P(e,U) ≤ P(e,U)
e1 � e2 {e2, e3, e4} α1 + α2 + β1 ≤ 1
e1 � e3 {e2, e3, e4} α1 + α2 + β2 ≤ 1
e2 � e4 {e4} α2 + β1 + β2 ≤ 1
e3 � e4 {e4} α1 + β1 + β2 ≤ 1

Table 3. Conditions for stochastic monotonicity of X.

It can be checked that the conditions from Table 3 imply all other con-
ditions for stochastic monotonicity. The chain is stochastically monotone
iff

max

(
α1 + α2 + max

i=1,2
{βi}, β1 + β2 + max

i=1,2
{αi}

)
≤ 1.

Thus, in this example, Möbius monotonicity implies stochastic monotonicity
but not vice versa. For example, for α1 = α2 = β1 = β2 = 1

3 the chain is
stochastically but not Möbius monotone.

7.2. Example of a chain that is Möbius monotone but not stochas-
tically monotone. This example is taken from Lorek and Markowski [20]
(the chain with the transition matrix P6). The detailed calculations were
not given therein, which is why we include them here. The state space is
E = {e1, . . . , e6} and the partial order (and its Hasse diagram) is the follow-
ing:

C =


1 1 1 1 1 1
0 1 0 1 1 1
0 0 1 1 1 1
0 0 0 1 0 1
0 0 0 0 1 1
0 0 0 0 0 1



e6

e5e4

e3e2

e1

The transitions are

PX =


17/24 0 0 1/8 1/8 1/24
1/8 5/16 5/16 1/12 1/12 1/12
1/8 5/16 5/16 1/12 1/12 1/12
1/12 1/12 1/12 5/16 5/16 1/8
1/12 1/12 1/12 5/16 5/16 1/8
1/24 1/8 1/8 0 0 17/24

 .
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Simple calculations yield

(C−1PXC)T =


7/12 0 0 1/24 1/24 1/24

0 13/48 13/48 0 0 1/6
0 13/48 13/48 0 0 1/6
0 0 0 13/48 13/48 7/24
0 0 0 13/48 13/48 7/24

 ,

thus the chain is Möbius monotone. Consider the up-set U = {e4, e5, e6}.
For e1 � e2 we have

P(e1,U) =
7

24
6≤ 1

4
= P(e2,U),

thus the chain is not stochastically monotone.

Remark 7.1. There are many chains where Möbius monotonicity implies
stochastic monotonicity. For example, the non-standard queue system con-
sidered in Section 6.3.1 was both Möbius and stochastically monotone. If one
considers a standard tandem (without changes at the border) it turns out to
be stochastically but not Möbius monotone. The example from Section 7.1
is a special case of a nearest neighbor walk on the cube considered in Lorek
and Szekli [21] (Chapter 4, eq. (4.1)). Roughly speaking, this is the follow-
ing chain on E = {0, 1}d. At any step, only at most one coordinate can be
changed: a 0 on the i-th coordinate can be changed to 1 with probability αi
and a 1 on the i-th coordinate can be changed to 0 with probability βi with
proper sequences αi, βi, i = 1, . . . , d assuring aperiodicity. Considering the
coordinate-wise ordering, the chain is Möbius monotone iff

∑d
i=1(αi+βi) ≤ 1

(Theorem 3 in Lorek and Szekli [21]), whereas it is stochastically monotone
iff

max

(
d∑
i=1

αi + max
i
{βi},

d∑
i=1

βi + max
i
{αi}

)
≤ 1

as was determined in Lorek [18] (Lemma 5.4.1). It can also be checked that
in this example Möbius monotonicity is equivalent to realizable monotonicity
(required, e.g., for efficient perfect simulation via the coupling from the past
algorithm [25]).

However, so far we do not have any “natural” example of a chain which
is Möbius but not stochastically monotone. By natural, we mean, e.g., a
chain having some interpretation in terms of a random walk on some known
structure, etc. (The example from Section 7.2 – and taken from Lorek and
Markowski [20] – was found ad hoc). Note that such an example could
potentially strongly benefit from the results of this paper.
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