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Abstract

The goal of this paper is to identify exponential convergence rates and to find computable
bounds for such a convergence for Markov network processes representing unreliable Jackson
networks. First we use the bounds of Lawler and Sokal in order to show that, for unreliable
Jackson networks, the spectral gap is strictly positive if and only if the spectral gaps for the
corresponding coordinate birth and death processes are positive. Next, using some Liggett’s
and some other results on birth and death processes, we find positive bounds on the spectral gap
for network processes in terms of the hazard and equilibrium functions of the one dimensional
marginal distributions of the stationary distribution. These distributions must be in this case
strongly light-tailed, in the sense that their discrete hazard functions have to be separated
from zero. We relate these hazard functions with the corresponding networks’ service rate
functions using the equilibrium rates of the stationary marginal distributions. We compare
the obtained bounds on the spectral gap with some other bounds for example, obtained by
stochastic ordering methods or by Lyapunov functions.
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1 Introduction

We start with description of a general setting used in this paper. Let X = (Xt, t ≥ 0) be a Markov
process on a countable state space E with a bounded generator Q and the corresponding semi-
group of operators (Pt, t > 0) on L2(E, π) (we assume the existence of the invariant probability
measure π). The usual scalar product on L2(E, π) we denote by

〈f, g〉π =
∑

n∈E

f(n)g(n)π(n), ||f ||22 = 〈f, f〉π,

and by 111 the constant function equal to 1 on E. We shall use the symbol π(f) to denote 〈f,111〉π =
Eπ(f(Xt)). We denote the spectral gap corresponding to X by

Gap(Q) := inf {−〈f,Qf〉π : ||f ||2 = 1, π(f) = 0} . (1)

We say that X = (Xt, t ≥ 0) has ”exponential rate of convergence” if Gap(Q) > 0. Then, for
reversible processes, the following (equivalent) conditions hold
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(i) for all f ∈ L2(E, π),

||Ptf − π(f)||2 ≤ e−Gap(Q)t||f − π(f)||2, t > 0,

(ii) for each e ∈ E there exists C(e) > 0 such that

||δePt − π||tv ≤ C(e)e−Gap(Q)t, t > 0,

where || · ||tv denotes the total variation norm. It is usually a very difficult (if not impossible) task
to compute Gap(Q). Sometimes it is possible to prove that Gap(Q) > 0) (the existence) without
being able to give computable bounds on the gap. We consider the problem of finding computable
bounds for the spectral gap of unreliable Jackson network Markov processes which we will define
later by the corresponding generators.
There exist very large literature on the speed of convergence to stationarity for general processes
X. Let us recall a few references. In order to prove the existence of the spectral gap for X it
is possible to use the theory of Harris recurrent Markov processes, utilizing Lyapunov functions
with appropriate drift conditions, see Meyn and Tweedie [36]. However, computable bounds are
not easily obtainable by the Harris recurrence techniques. Some exceptions are known such as for
example when E = R (totally ordered state space) and in addition when the process is stochas-
tically monotone, see [35], [37]. Other approaches are possible via coupling methods or renewal
theory methods, see e.g. [8] [2], [3],[4]. Sharper results leading to bounds on the spectral gap are
possible via strong stationary times, strong stationary duality, Cheeger type inequalities, Poincare
inequalities or direct spectral representations for the semi-group (Pt, t > 0), see e.g. [31], [32], [8],
[14], [16], [20], [21], [22], [17], [30], [8]. Symmetry assumptions turned out to be especially effective
in analysis, and reversibility of X is a typical assumption for many results. However, even for birth
and death processes analysis of spectra and the transient behaviour of (Pt, t > 0) is far from being
simple, see for example [6],[29], [28], [42], [24],[41], [33], [43], [9], [7], for some results on bounds
on the gap, and [15], [23], [34] for strong stationary times and duals approach to finite state birth
and death processes.
Jackson network processes can be seen as a generalization of birth and death processes, and one can
expect that bounds for the spectral gap of a network should be related to some bounds on spectral
gaps for some related birth and death processes. In fact Jackson network processes are much more
complicated than birth and death processes because they are built upon an additional Markov
chain which guides the routing inside the network. Reversibility for Jackson networks depends
upon reversibility of the routing matrix. It is known that the simplest Jackson networks with con-
stant service rates are stochastically monotone (under coordinate-wise ordering) but in general the
stochastic monotonicity depends on the properties of the corresponding state dependent service
rates, see e.g. [11] for many monotonicity properties of Jackson networks. Unfortunately, for un-
reliable Jackson networks no reasonable stochastic monotonicity is present, see e.g. [10], therefore
known methods to find computable bounds on the spectral gap, using the stochastic monotonicity
property, are not applicable for networks (also because all known results on computable bounds
with a use of stochastic monotonicity require totally ordered state spaces). A plausible expectation
is that the speed of convergence to stationarity of a network should correspond to a bottleneck
node of the network. Some partial results in this direction can be found for networks with state
independent service rates in [1] (for finite capacity networks), [5], and [18] (for tandems). For
networks with state independent rates also Lyapunov drift functions were studied in [19], [25], and
recently in connection with LDP theory [26], where some bounds on the speed of convergence are
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given. Positive lower bounds for the spectral gap of Jackson networks with state dependent ser-
vice rates were obtained via some related birth and death processes in [27], by using conductance
bounds from [31].
A related comparison result for spectral gaps for networks is given in [13], Proposition 3.6, where
a direct comparison involving the spectral gaps for some related birth and death processes is
given, using an additional assumption on the routing. In this paper we give some bounds on
the spectral gap for networks with state dependent service rates using Cheeger type constants
using [31], similarly as in [27], but related to some other birth and death processes than those
defined in [27]. We consider in addition the possibility of having unreliable nodes. Unreliable
Jackson networks are networks, where in some subsets of the set of nodes the service stations can
be broken and then repaired during the time evolution of the system. The breakdown and repair
events can be of a rather general nature, but driven by a Markov process. In the time intervals
when nodes are broken, there are several rules for re-routing. For full details of such networks see
Sauer and Daduna [40], and Sauer [39]. We assume for unreliable networks reversibility, however
this assumption can be skipped if the nodes are reliable. In a few examples we compare our bounds
with bounds obtainable from the results of [13], and [26]. Jackson networks possess two remarkable
properties crucial for our analysis, namely the stationary distribution has a product form (also for
unreliable networks) and exponential ergodicity for them is directly related to the strong light-
tailness of the stationary distribution. It is worth mentioning that admitting service rates which are
state dependent in the model implies that each discrete distribution with the support {0, 1, 2, . . .}
can appear as the stationary distribution for a node in the network. We will characterize light-
tailness of the stationary distribution by the corresponding discrete hazard rate functions. The
stationary distribution can be also characterized by the corresponding so called equilibrium rates
which turn out to be equal to individual, state dependent traffic intensity functions for the nodes
of a network. Roughly speaking, the speed of convergence for a network will depend on a joint
effect of how heavy the tails of the marginals of the stationary distribution are, together with how
fast each single node operates.
The paper is organized as follows. In the next section we introduce unreliable networks by giving
the respective generator. In section 3 we give a result relating the existence of the spectral gap
of unreliable networks with the tail properties of its stationary distribution. In section 4 we use
equilibrium rates to reformulate our results from section 3. In section 5 we give the proofs of the
results from section 3. Finally, in section 6 we give some examples of bounds on the spectral gap
for networks.

2 Description of the network process

The classical Jackson network consists of m numbered servers, denoted by M := {1, . . . ,m}.
Station j ∈ M is a single server queue with infinite waiting room under FCFS (First Come First
Served) discipline. All the customers in the network are indistinguishable. There is an external
Poisson arrival stream with intensity λ and arriving customers are sent to node j with probability
r0j ,

∑m
j=1 r0j = r ≤ 1. Customers arriving at node j from the outside or from other nodes request

a service which is at node j provided with intensity µj(n) (µj(0) := 0), where n is the number of
customers at node j including the one being served. All service times and arrival processes are
assumed to be independent.
A customer departing from node i immediately proceeds to node j with probability rij ≥ 0 or
departs from the network with probability ri0. The routing is independent of the past of the
system given the momentary node where the customer is. We assume that the stochastic matrix
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R := (rij , i, j ∈M ∪ {0}) is irreducible.
Let Zj(t) be the number of customers present at node j, at time t ≥ 0. Then

Z(t) = (Z1(t), . . . , Zm(t))

is the joint queue length vector at time instant t ≥ 0 and Z := (Z(t), t ≥ 0) is the joint queue
length process with the state space E = Z

m
+ .

The unique stationary distribution for Z exists if and only if the unique solution of the traffic

equation

λi = λr0i +

m
∑

j=1

λjrji, i = 1, . . . ,m (2)

satisfies

Ci := 1 +

∞
∑

n=1

λni
∏n
y=1 µi(y)

<∞, 1 ≤ i ≤ m.

The parameters of a Jackson network are: the arrival intensity λ, the routing matrix R (with
the corresponding traffic arrival intensities vector λλλ = (λ1, . . . , λm)), the vector of service rates
µµµ = (µ1(·), . . . , µm(·)) and the number of servers m. Our standing assumption for all considered
networks is that for all j, µ

j
:= infn≥1 µj(n) > 0. We denote the overall minimal service intensity

by µ = minj µj .

Assume now that the servers at the nodes in the Jackson network are unreliable, i.e., the nodes
may break down. The breakdown event may occur in different ways. Nodes may break down
as an isolated event or in groups simultaneously, and the repair of the nodes may end for each
node individually or in groups as well. It is not required that those nodes which stopped service
simultaneously return to service at the same time instant. To describe the system’s evolution we
have to enlarge the state space for the network process as it will be described below. Denote by
M0 := {0, 1, . . . ,m} the set of nodes enlarged by adding the outside node.
Let D ⊆M be the set of servers out of order, i.e. in down status.

• if I ⊆ M \ D, I 6= ∅ is a subset of nodes in up status, then all servers in I break down
simultaneously with intensity αDD∪I(ni : i ∈M),

• if H ⊆ D,H 6= ∅, then all servers from H return from repair simultaneously with intensity
βD
D\H(ni : i ∈M).

• The routing is changed according to so-called Repetitive Service - Random Destina-

tion Blocking (RS-RD BLOCKING) rule: For D - set of servers under repair routing
probabilities are restricted to nodes from M0 \D as follows:

rDij =

{

rij, i, j ∈M0 \D, i 6= j,
rii +

∑

k∈D rik, i ∈M0 \D, i = j.

The external arrival rates are

λrD0j = λr0j for nodes j ∈M \D,

and zero, otherwise.
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Let RD = (rDij )i,j∈M0\D be the modified routing. Note that R∅ = R.
We assume for the intensities of breakdowns and repairs ∅ 6= I ⊆M \D and ∅ 6= H ⊆ D that

αDD∪I(ni : i ∈M) := ψ(D∪I)
ψ(D) ,

βD
D\H(ni : i ∈M) := φ(D)

φ(D\H) ,

where ψ and φ are arbitrary positive functions, defined for all subsets of the set of nodes, and
ψ(∅) = φ(∅) = 1. That means that breakdown and repair intensities depend on the sets of servers
but are independent of the particular numbers of customers present in these servers.
In order to describe unreliable Jackson networks we need to attach to the state space Z

m
+ of the

corresponding standard network process an additional component which includes information on
the availability of the system. We consider new state space

n = (D,n1, n2, . . . , nm) ∈ P(M) × Z
m
+ =: E,

where P(M) denotes the powerset of M . The first (zero) coordinate in n we call the availability
coordinate.
The set D is the set of servers in down status. At node i ∈ D there are ni customers waiting for
server to be repaired. Denote possible transitions by

Tijn := (D,n1, . . . , ni − 1, . . . , nj + 1, . . . , nm),
T0jn := (D,n1, . . . , nj + 1, . . . , nm),
Ti0n := (D,n1, . . . , ni − 1, . . . , nm),
THn := (D \H,n1, . . . , nm),
T In := (D ∪ I, n1, . . . , nm).

(3)

Definition 2.1. The Markov process X = (X(t), t ≥ 0) defined by the infinitesimal generator

Qf(n) =

m
∑

j=1

[f(T0jn)− f(n)]λrD
0j +

m
∑

i=1

m
∑

j=1

[f(Tijn)− f(n)]µi(ni)r
D
ij+

∑

∅6=I⊆M\D

[f(T I
n)− f(n)]

ψ(D ∪ I)
ψ(D)

+
∑

∅6=H⊆D

[f(THn)− f(n)]
φ(D)

φ(D \H)
+

m
∑

j=1

[f(Tj0n)− f(n)]µj(nj)r
D
j0

(4)

is called unreliable Jackson network.

We denote the corresponding transition intensities (written in a matrix form) by [q(n,n′)]
n,n′∈E .

Similarly to the classical case the invariant distribution for this Markov process can be written in
a product form.

Theorem 2.1 (Sauer and Daduna [40]). Let X be unreliable Jackson network following the RS-
RD-BLOCKING. If the routing matrix R is reversible, i.e.:

λjrji = λirij , i, j ∈M,

then the stationary distribution of process X is given by
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π(n) = π(D,n1, . . . , nm) =
1

C

ψ(D)

φ(D)

m
∏

i=1

πi(ni), (5)

where

πi(ni) =
1

Ci

λni

i
∏ni

k=1 µi(k)
, Ci = 1 +

∞
∑

n=1

λni
∏n
y=1 µi(y)

(6)

and C is the normalization constant used for the availability coordinate. Constants Ci, i = 1, . . . ,m
are all finite if and only if the network is ergodic.

Note that in this generality, the vector of the number of customers alone, without the availability
coordinate, does not form a Markov process. It would be a Markov process if we would reduce
the model to keep the availability coordinate process constant equal empty set, that is if nothing
breaks down all the time. In this case this Markov process is identical with the classical Jackson
network and the reversibility assumption on routing is not needed then in order to obtain the
classical product formula.

2.1 Equilibrium rate and hazard rate for stationary distribution

For a non-negative random variable X ∈ Z+, with probability function p(k) = P (X = k), such
that for any k ∈ Z+, P (X = k) > 0, the total hazard function Hp is defined for all x ≥ 0 by

Hp(x) = − log F̄ (x).

Further, the discrete hazard function we define for natural arguments by

hp(k) =
p(k)

F̄ (k − 1)
, k ≥ 0, (7)

where F̄ (k) = P (X > k). Note that for such a variable, for natural arguments k ≥ 0

Hp(k) = − log

k
∏

j=0

(1− hp(j)) . (8)

and for arbitrary x ≥ 0 we have

Hp(x) = − log

⌊x⌋
∏

j=0

(1− hp(j)) =

⌊x⌋
∑

j=0

log

(

1

1− hp(j)

)

, (9)

where ⌊x⌋ denotes the integer part of x.
We say that a discrete distribution (p(k), k = 0, 1, . . .) (or a discrete random variableX) is strongly
light-tailed if there exists ǫ > 0 such that infk≥0 hp(k) > ǫ.
The following lemma and example explain how the strong light-tailness and the usual light-tailness
are related. Recall the usual light-tailness. An arbitrary distribution function F with its support
contained in [0,∞) is light-tailed if

∫∞
0 esxdF (x) <∞ for some s > 0.

Lemma 2.1. Consider a random variable X ∈ Z+, with probability function p(k) = P (X = k),
such that for any k ∈ Z+, P (X = k) > 0, and p is strongly light-tailed. Then it is light-tailed in
the usual sense.
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Proof. It is known (see e.g. Rolski et al. [38], Th. 2.3.1) that

lim inf
x→∞

−1

x
log(F̄ (x)) > 0

implies that F is light-tailed. Note that

Hp(x)

x
≥ Hp(⌊x⌋)

⌊x⌋+ 1
,

for all x ≥ 0, therefore

inf
n

Hp(n)

n+ 1
> 0 ⇒ lim inf

x→∞

Hp(x)

x
> 0. (10)

From the exponential light-tailness we have for all j, log( 1
1−hp(j)

) > log( 1
1−ǫ), and hence from (9)

Hp(n)

n+ 1
> log

(

1

1− ǫ

)

> 0,

which from (10) implies that F is light-tailed.
�

We give now a simple example in order to see that for discrete distributions strong light-tailness
is a strictly stronger notion than the usual light-tailness. (This example shows at the same time
that there exists a birth and death process having its rate of convergence to stationarity not
exponentially fast, but having its stationary distribution light-tailed).

Example 1. Let us take as p the distribution which corresponds to the hazard function hp given
by hp(1) = 1/2,

hp(k) =

{

1/k if k = 2n + 1, n ≥ 1,
1/2 if k = 2n, n ≥ 0.

This distribution is not strongly light-tailed since infk hp(k) = 0. However, for each natural n,

limn→∞
Hp(2n+1)

2n+2 = limn→∞
Hp(2n)
2n+1 = log(2)/2 > 0, and from (10) we obtain that p is light-tailed.

For a non-negative random variable X ∈ Z+, with probability function p(k) = P (X = k), such
that for any k ∈ {0, 1, 2, . . .}, P (X = k) > 0, we define the equilibrium rate function for natural
arguments by

ep(k) =

{

p(k+1)
p(k) if k ≥ 0,

0 if k < 0.

Since under our assumptions the equilibrium rate function (ep(k), k ≥ 0) uniquely determines the
probability function (p(k), k ≥ 0), it is therefore possible to express strong light-tailness in terms
of equilibrium rates. The following formulas connect hazard and equilibrium rate functions

ep(k) =
hp(k + 1)(1 − hp(k))

hp(k)
, k ≥ 0 (11)

and

hp(k) =
1

1 +
∑∞

j=k ep(k) · · · ep(j)
, k ≥ 0. (12)

It is worth mentioning that each discrete distribution with the support Z+ can appear as the
stationary distribution for a birth and death process with constant birth rates and variable death
rates. Strong light-tailness of πi can be expressed in terms of the corresponding equilibrium rates,
which in turn are equal to the corresponding birth/death ratios. A precise formulation for a single
birth and death process we give in the following lemma.
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Lemma 2.2. Consider {p(k)}k≥0 an arbitrary probability function on Z+, such that p(k) > 0, k ≥
0, with the corresponding equilibrium rate ep(k), k ≥ 0. Then for each birth and death process Z

with fixed λ(k) ≡ λ > 0, k ≥ 0, and death rates defined by

λ

µ(k + 1)
= ep(k), k ≥ 0,

the stationary distribution of Z is equal to p(k), k ≥ 0,

Proof. For the stationary distribution π̌ of the birth death process Z we have

π̌(i)/π̌(0) =
λi

µ(1) · · · µ(n) =
λi

λi p(0)
p(1)

p(1)
p(2) · · ·

p(i−1)
p(i)

= p(i)/p(0), i ≥ 1.

Thus we have p = π̌. �

Neither hp(k) nor ep(k) have to be convergent as k → ∞. However, from (11), (12) we obtain a
connection between these limits if they exist and are finite.

Lemma 2.3. Consider {p(k)}k≥0, an arbitrary probability function on Z+, such that p(k) > 0, k ≥
0, with the corresponding equilibrium rate ep(k), k ≥ 0. Then
hp = limk→∞ hp(k) exists and hp ∈ (0, 1) if and only if ep = limk→∞ ep(k) exists and ep ∈ (0, 1).
In this case

hp = 1− ep.

Example 2.1. Recall that the negative binomial distribution is defined by

p(k) =

(

r + k − 1

k

)

(1− p)kpr, r > 0, k = 0, 1, . . . , p ∈ (0, 1)

The corresponding equilibrium rate is given by

ep(k) = (1− p)(k + r)/(k + 1), k = 0, 1, . . . .

The corresponding limit at infinity fulfills ep = (1− p), and for the corresponding limit at infinity
of the hazard rate we get hp = p > 0, which means that this distribution is strongly light-tailed.

Example 2.2. For the Poisson distribution

p(k) = e−λλk/k!, λ > 0, k = 0, 1, . . . ,

and

ep(k) =
λ

k + 1
.

For the corresponding limits at infinity we have here ep = 0, and hp = 1, the Poisson distribution
is strongly light-tailed.

It is worth mentioning that the negative binomial and Poisson distributions fit into the so called
Panjer recurrence scheme, more precisely, we say that p(k) fulfills Panjer’s recurrence if for some
a, b ∈ R

p(k + 1) =

(

a+
b

k + 1

)

p(k), k = 0, 1, . . . ,
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which is equivalent to saying that the corresponding equilibrium rate has a hyperbolic form

ep(k) = a+
b

k + 1
.

For the negative binomial distribution a := 1 − p, and b := (r − 1)(1 − p). In both cases the
equilibrium rate function is monotone. Distributions with non-increasing equilibrium rates are
equivalently called PF2 densities, for more details in connection with queueing networks see [12].

Example 2.3. A discrete analog of the Pareto distribution can be defined by

p(k) = C
1

(k + 1)α
, α > 1, k = 0, 1, . . . ,

where C is the normalization constant. Then

ep(k) =

(

k + 1

k + 2

)α

.

For the corresponding limits at infinity we have here ep = 1, and hp = 0, this distribution is
heavy-tailed.

In the context of unreliable queueing networks it is natural to define the ratio λi
µi(k+1) , being a

function of k variable, as the traffic intensity function for the i-th station. From lemma 2.2 it
follows that for ergodic networks the traffic intensity function at the i-th station is equal to the
equilibrium rate of the marginal πi distribution of the network’s stationary distribution π. If
we assume that the service intensity at node i is non-decreasing as a function of the number
of customers at this node, then πi has a PF2 density, and it is strongly light-tailed. Another
possibility is that the traffic intensity function is increasing to 1 at a selected node i, and the
network is ergodic but having at the node i a heavy-tailed distribution πi. It will be showed in the
next section that in such a case the network process will not converge to stationarity geometrically
fast. Also, if at a fixed station i the traffic intensity function is not monotone and corresponds to
a light-tailed distribution which is not strongly light-tailed as in example 1, then such a network
also will not converge to stationarity geometrically fast.

3 Existence of spectral gap and light tailed distributions

Theorem 3.1.

(i) Let X be ergodic unreliable Jackson network process following the RS-RD- BLOCKING, with
the infinitesimal generator Q. Suppose that Q is bounded and the minimal service intensity µ > 0.
If the routing matrix R is reversible then Gap(Q) > 0 if and only if all distributions πi, i = 1, . . . ,m
are strongly light-tailed.
(ii) Let Z be ergodic classical Jackson network process with the corresponding infinitesimal gener-
ator Q(Z). Suppose that Q(Z) is bounded and the minimal service intensity µ > 0.
Then Gap(Q(Z)) > 0 if and only if all distributions πi, i = 1, . . . ,m are strongly light-tailed.

The proof of this theorem will be given in section 5.
We formulated the results on the positivity of the spectral gap and on the convergence to stationar-
ity in terms of the discrete hazard functions of the stationary distribution. For queueing networks
it would be however more reasonable to formulate the assumptions in terms of the parameters of
the network.
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The existence of the spectral gap of an unreliable network can be formulated in terms of the
corresponding arrival and service rates (as a consequence of Theorem 3.1 and Lemma 2.2) as
follows

Corollary 3.1. Let X be an ergodic unreliable Jackson network process following the RS-RD-
BLOCKING, with the infinitesimal generator Q. Suppose that Q is bounded and the minimal
service intensity µ > 0. If the routing matrix R is reversible then Gap(Q) > 0 if and only if for
each i = 1, . . . ,m,

inf
k

1

1 +
∑∞

j=k+1
λ
j−k
i

µi(k+1)···µi(j)

> 0.

In particular for ergodic networks, if for all i = 1, . . . ,m, the limits for the traffic intensity functions
limk→∞ λi/µi(k) < 1 exist then Gap(Q) > 0.

For the classical Jackson networks the assumption on reversibility can be skipped.

3.1 Speed of convergence to stationarity

As a consequence of Theorem 3.1 and Mu-Fa Chen’s [8], Theorem 1.9. and Theorem 8.8 we obtain

Corollary 3.2. Let X be an ergodic, unreliable Jackson network following the RS-RD-BLOCKING,
with generator Q, given by (4), and the corresponding transition semigroup (Pt). Suppose the rout-
ing matrix R is reversible.
If πi is strongly light-tailed, for each i = 1, . . . ,m, then equivalently

(i) for all f ∈ L2(E, π)

||Ptf − π(f)||2 ≤ e−Gap(Q)t||f − π(f)||2, t > 0,

and

(ii) for each e ∈ E there exists C(e) > 0 such that

||δePt − π||tv ≤ C(e)e−Gap(Q)t, t > 0,

where || · ||tv denotes the total variation norm.

Remark. For the classical Jackson networks, the reversibility assumption on the routing matrix
R can be relaxed in order to obtain the implication (i) ⇒ (ii).

4 Bounds on the spectral gap

In this section we recall some bounds on the spectral gaps of birth and death processes. For a
more complete description see [8], (chapter 5), [9], [42], [43], and references therein.
Let us recall Theorem 3.7 of Liggett [32]. For convenience we give formulation of it simplified to
the case of state independent birth rates.

Theorem 4.1 (Liggett [32]). Assume that Z is an ergodic birth and death process on Z+, with
state independent birth rates λ > 0, and possibly state dependent death rates µ(n) > 0, and for all
i ≥ 0, and for some c, d > 0, we have

∑

j>i

π(j) ≤ cπ(i)λ and
∑

j>i

π(j) ≤ dπ(i).
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Then for the corresponding generator Q(Z),

Gap(Q(Z)) ≥ (
√
d+ 1−

√
d)2

c
≥ 1

2c(1 + 2d)
. (13)

In the case of constant birth rates, from the Corollary 3.8 of Liggett [32], we have that a necessary
and sufficient condition for Gap(Q(Z)) to be positive is that the stationary distribution is such
that

inf
i≥0

π(i)
∑

j≥i π(j)
> 0,

which is by definition the strong light-tailness. Therefore from Corollary 3.8 of Liggett [32] we
have

Lemma 4.1. Assume that Z is an ergodic birth and death process on Z+, with state independent
birth rates λ > 0, and possibly state dependent death rates µ(n) > 0. Then Gap(Q(Z)) > 0 if and
only if the stationary distribution π is strongly light tailed. Moreover, if for some ǫ > 0 we have

inf
n≥0

hπ(n) ≥ ǫ,

then

Gap(Q(Z)) ≥ λ(1−
√
1− ǫ)2

1− ǫ
≥ λǫ2

2(1− ǫ)(2− ǫ)
. (14)

Proof. From
∑

j>i π(j) ≤ cπ(i)λ we have
∑

j≥i π(j) ≤ cπ(i)λ+π(i), so for the lower bound on the
hazard function we have ǫ = 1/(1 + cλ), therefore c = (1− ǫ)/(λǫ). Similarly we get d = (1− ǫ)/ǫ,
and using (13) we obtain (14).
A lower bound on the spectral gap can be given directly in terms of the birth and death rates, for
example (see [42])

Lemma 4.2. Assume that Z is an ergodic birth and death process on Z+, with state independent
birth rates λ > 0, and possibly state dependent death rates µ(n) > 0. Then

Gap(Q(Z)) ≥ inf
n≥0

[

λ+ µ(n+ 1)−
√

λµ(n)−
√

λµ(n+ 1)
]

.

Combining the above bounds for birth and death processes and the bounds obtained in the proof
of Theorem 3.1 (see (34)) we have from (14)

Proposition 4.1.

(i) Let X be an ergodic, unreliable Jackson network following the RS-RD-BLOCKING, with gen-
erator Q, given by (4). Suppose the routing matrix R is reversible.
If πi is strongly light-tailed, for each i = 1, . . . ,m, and

inf
n≥0

hπi(n) ≥ ǫi > 0,

then

Gap(Q) ≥ 1

8|Q|









qmin

q̌max

Gap(Q̌0) ∧ min
1≤i≤m

λi(1−
√
1− ǫi)

2

1− ǫi
1 + d̄ b̄(2m+ 1)









2

(15)

11



and
Gap(Q) ≥ 1

8|Q|






qmin

q̌max

Gap(Q̌0) ∧ min
1≤i≤m

inf
n≥0

[

λi + µi(n+ 1)−
√

λiµi(n)−
√

λiµi(n+ 1)
]

1 + d̄ b̄(2m+ 1)







2

,

where d̄, b̄, |Q|, qmin, q̌max are defined by (31), (30), (24), (27), (28), respectively.

(ii) Let Z be ergodic classical Jackson network process with the corresponding infinitesimal genera-
tor Q(Z). Suppose that Q(Z) is bounded and the minimal service intensity µ > 0. If πi is strongly
light-tailed, for each i = 1, . . . ,m, and

inf
n≥0

hπi(n) ≥ ǫi > 0,

then

Gap(Q(Z)) ≥ 1

8|Q(Z)|









qmin

q̌max

min
1≤i≤m

λi(1−
√
1− ǫi)

2

1− ǫi
1 + b̄2m









2

(16)

and
Gap(Q) ≥ 1

8|Q(Z)|






qmin

q̌max

min
1≤i≤m

inf
n≥0

[

λi + µi(n+ 1)−
√

λiµi(n)−
√

λiµi(n+ 1)
]

1 + b̄2m







2

.

In all above given bounds the factor 1 + d̄ b̄(2m+ 1) can be reduced to 1 if in the network ri0 > 0
and r0i > 0 for all i = 1, . . . ,m. The bounds obtained in the above proposition are valid for a
quite general class of networks but it is reasonable to search for alternative bounds and alternative
methods under some additional structural assumptions. We recall two cases for classical Jackson
networks, the first one with state dependent service rates but fulfilling a partial balance requirement
for the routing matrix (see [13], Proposition 4.4), the second one for classical Jackson networks
with state independent service rates (see [26]).

Proposition 4.2. Let Z be ergodic classical Jackson network process with the corresponding in-
finitesimal generator Q(Z). Suppose that Q(Z) is bounded and the minimal service intensity µ > 0.
Assume that the routing matrix R has strict positive departure probabilities ri0 > 0 and that λr0i > 0
for i = 1, . . . ,m.
Assume further a partial balance condition

λj

m
∑

i=1

rji =
m
∑

i=1

λirij , ∀j = 1, . . . ,m. (17)

Then
Gap(Q(Z)) ≥ min

1≤i≤m
Gap(Q̃i),

where, for i = 1, . . . ,m, Q̃i denotes the generator of the birth and death process with the birth rate
λr0i and the state dependent death rate µi(ni)ri0.

12



Corollary 4.1. Under the assumptions of Proposition 4.2, if in addition πi is strongly light-tailed,
for each i = 1, . . . ,m, and

inf
n≥0

hπi(n) ≥ ǫi > 0,

then

Gap(Q(Z)) ≥ min
1≤i≤m

λr0i(1−
√
1− ǫi)

2

1− ǫi
(18)

and

Gap(Q(Z)) ≥ min
1≤i≤m

inf
n≥0

[

λr0i + µi(n+ 1)ri0 −
√

λr0iµi(n)ri0 −
√

λr0iµi(n+ 1)ri0

]

.

The next proposition is a reformulation of Corollary 3.4, and Proposition 3.6 in [26].

Proposition 4.3. Let Z be ergodic classical Jackson network process with the corresponding in-
finitesimal generator Q(Z). Assume that the service intensities are state independent.
(i) If the routing is completely symmetrical, i.e. rij = p < 1/(m− 1) for all i 6= j, i, j = 1, . . . ,m,
and for some i0 ∈ {1, . . . ,m} we have

min
1≤i≤m

(
√
µi −

√

λi) =
√
µi0 −

√

λi0 (19)

and

min
1≤i≤m

(

µi√
µi0

− λi
√

λi0

)

=
√
µi0 −

√

λi0 , (20)

then

Gap(Q(Z)) =

(

1− (m− 1)p2

1− (m− 2)p

)

min
1≤i≤m

(
√
µi −

√

λi)
2.

(ii) If m = 3, and

R =









0 r01 r02 r03
1− (p+ q) 0 p q
1− (p+ q) q 0 p
1− (p+ q) p q 0









, (21)

where p, q ∈ (0, 1), p+ q < 1, then

Gap(Q(Z)) ≥ 1− p3 − q3 − 3pq

1− pq
sup
t>0

min
1≤i≤m

t

(

µi
1 + t

− λi

)

and

Gap(Q(Z)) =
1− p3 − q3 − 3pq

1− pq
min

1≤i≤m
(
√
µi −

√

λi)
2

provided λi/µi = λj/µj , i, j ∈M or there exists i0 such that µi ≥ µi0 and λi ≤ λi0 , for all i.

5 Proof of Theorem 3.1

We give the proof of Theorem 3.1 using the following theorem.
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Theorem 5.1 (Liggett [32], Th. 2.6). Suppose that a pure jump Markov process X, with generator
Q̌ and stationary distribution π evolves on the product state space E = E0 × E1 × · · ·Em, m ≥ 1,
having coordinates which are independent Markov processes such that i−th coordinate has generator
Q̌i, denumerable state space Ei and invariant probability measure πi. Then π is the product measure
of πi’s and

Gap(Q̌) = min
0≤i≤m

Gap(Q̌i).

Proof of Theorem 3.1 (i). We assume that the availability coordinate process is not degenerate
with φ and ψ positive. Let Q̌ be the generator associated with (m + 1)-dimensional process
(Yt, Žt)t≥0, where Žt is the vector of m independent birth and death processes with generators
Q̌i, i = 1, . . . ,m, given by

Q̌if(n) = [f(n+ 1)− f(n)]λi + [f(n)− f(n− 1)]µi(n), n ∈ N, (22)

and Yt is the process on state space P(M) with infinitesimal generator denoted by Q̌0 and the
stationary distribution:

π0(I) =
1

C

ψ(I)

φ(I)
, C :=





∑

I⊆M

ψ(I)

φ(I)



 .

We write [q̌(n,n′)]n,n′∈E for the corresponding transition intensities.
The stationary distribution of the process with generator Q̌i is πi, which is given in the product
formula (6) for networks.
Consider the following Cheeger’s constants for A ⊂ E

κ(A) :=

∑

n∈A π(n)q(n, A
c)

π(A)π(Ac)
, κ := inf

A:π(A)∈(0,1)
κ(A),

κ̌(A) :=

∑

n∈A π(n)q̌(n, A
c)

π(A)π(Ac)
, κ̌ := inf

A:π(A)∈(0,1)
κ̌(A),

where π is given by (5).
We will show that there exist 0 < v1, v2 <∞ such that uniformly for all A ⊂ E

v2
∑

n∈A

π(n)q̌(n, Ac) ≥
∑

n∈A

π(n)q(n, Ac) ≥ v1
∑

n∈A

π(n)q̌(n, Ac). (23)

Then with 0 < v1, v2 < ∞ as in (23), we use Theorem 2.1 in Lawler and Sokal [31], and since the
process with the generator Q̌ is reversible, we have that Gap(Q̌) ≤ κ̌. Further, uniformly in A,
κ̌(A) ≤ (v1)

−1κ(A), hence κ̌ ≤ (v1)
−1κ. Under our assumptions we will have Gap(Q̌) > 0 which

in turn, using Theorem 2.3 in Lawler and Sokal [31] (which assures that κ2/(8|Q|) ≤ Gap(Q)) will
imply that Gap(Q) > 0. Here

|Q| = π − ess sup
n
q(n, {n}c). (24)

Similarly, it is possible to argue that Gap(Q) > 0 implies that Gap(Q̌) > 0.
In order to complete the proof we turn now to show the validity of (23) which is equivalent to

inf
A⊂E

π(A)∈(0,1)

{
∑

n∈A π(n)q(n, A
c)

∑

n∈A π(n)q̌(n, A
c)

}

≥ v1 > 0 (25)
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and

sup
A⊂E

π(A)∈(0,1)

{
∑

n∈A π(n)q(n, A
c)

∑

n∈A π(n)q̌(n, A
c)

}

≤ v2 <∞. (26)

For a fixed A, such that π(A) ∈ (0, 1), we define

∂A = {n ∈ A : q(n, Ac) > 0}, ∂Ǎ = {n ∈ A : q̌(n, Ac) > 0}.

Let
qmin = inf

A:π(A)∈(0,1)
inf

n∈∂A
{q(n, Ac)} , qmax = sup

A:π(A)∈(0,1)
sup
n∈∂A

{q(n, Ac)} . (27)

From our assumptions the generators are bounded and µ > 0, therefore qmin > 0, and qmax <∞.
For

q̌min = inf
A:π(A)∈(0,1)

inf
n∈∂Ǎ

{q̌(n, Ac)} , q̌max = sup
A:π(A)∈(0,1)

sup
n∈∂Ǎ

{q̌(n, Ac)} , (28)

we also have q̌min > 0 and q̌max <∞.
For each A such that π(A) ∈ (0, 1), we have

∑

n∈A π(n)q(n, A
c)

∑

n∈A π(n)q̌(n, A
c)

=

∑

n∈∂A π(n)q(n, A
c)

∑

n∈∂Ǎ π(n)q̌(n, A
c)
,

so we obtain

qmax

q̌min
·
∑

n∈∂A π(n)
∑

n∈∂Ǎ π(n)
≥
∑

n∈∂A π(n)q(n, A
c)

∑

n∈∂Ǎ π(n)q̌(n, A
c)

≥ qmin

q̌max
·
∑

n∈∂A π(n)
∑

n∈∂Ǎ π(n)
.

We shall continue our argument in the case of the lower bound (25). The existence of this lower
bound ensures that if Gap(Q̌) > 0, then Gap(Q) > 0. Note that from Theorem 5.1, and Lemma
4.1, the inequality Gap(Q̌) > 0 is equivalent to the condition that πi is strongly light-tailed, for
each i = 1, . . . ,m. The proof for the upper bound is similar and we skip it. In order to show (25)
it is enough to check that

0 < inf
A:π(A)∈(0,1)

ζ(A) where ζ(A) :=

∑

n∈∂A π(n)
∑

n∈∂Ǎ π(n)
. (29)

If the network is such that for all i = 1, . . . ,m, r0i > 0 and ri0 > 0 then ∂Ǎ ⊆ ∂A. In that case

infA:π(A)∈(0,1) ζ(A) ≥ 1, and we can take v1 =
qmin

q̌max . Otherwise, we have to analyse ∂Ǎ, and ∂A in
more detail.
Note that, if A is such that {D : n = (D,n1, . . . , nm) ∈ A} 6= P(M) then ∂Ǎ = ∂A, and ζ(A) = 1,
so we have still to consider A such that {D : n = (D,n1, . . . , nm) ∈ A} = P(M).
Let us examine the difference between π(n) and π(n′) when n

′ and n differ exactly on one coor-
dinate by at most 1 and when n and n

′ have two different sets of broken nodes D, and D′.
Recall from (5) that for n = (D,n1, . . . , nm) ∈ P(M)× Z

m
+ we have:

π(n) = π(D,n1, . . . , nm) =
1

C

ψ(D)

φ(D)

m
∏

i=1

πi(ni), where πi(ni) :=
1

Ci

λni

i
∏ni

y=1 µi(y)
.

For ni ≥ 1,

πi(ni + 1) =
1

Ci

λni+1
i

∏ni+1
y=1 µi(y)

= πi(ni)
λi

µi(ni + 1)
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and

πi(ni − 1) =
1

Ci

λni−1
i

∏ni−1
y=1 µi(y)

= πi(ni)
µi(ni)

λi
,

thus, using µ
i
:= infn µi(n) > 0 and µ̄i := supn µi(n) <∞, we have bounds

λi
µ̄i
πi(ni) ≤ πi(ni + 1) ≤ πi(ni)

λi
µ
i

,

µ
i

λi
πi(ni) ≤ πi(ni − 1) ≤ πi(ni)

µ̄i
λi
.

Define

b̄ = max
1≤i≤m

(

µ̄i
λi

)

, b = min
1≤i≤m

(

λi
µ̄i

)

, (30)

d̄ = max
D1 6=D2

ψ(D2)φ(D1)

φ(D2)ψ(D1)
and d = min

D1 6=D2

ψ(D2)φ(D1)

φ(D2)ψ(D1)
(31)

Then if n and n
′ differ by at most 1 on each coordinate i = 1, . . . ,m, and have sets D, D′ on the

availability coordinate then
bπi(ni) ≤ πi(n

′
i) ≤ b̄πi(ni) (32)

and
dbπ(n) ≤ π(n′) ≤ d̄ b̄π(n). (33)

We rewrite ζ(A) as

ζ(A) =

∑

n∈∂A∩∂Ǎ π(n) +
∑

n∈∂A\∂Ǎ π(n)
∑

n∈∂Ǎ∩∂A π(n) +
∑

n∈∂Ǎ\∂A π(n)
.

We argue under the assumption that {D : n = (D,n1, . . . , nm) ∈ A} = P(M). Let us consider
n ∈ ∂Ǎ\∂A. Then there exists some n′ ∈ Ac such that original process with the intensity q cannot
move there in one step, but the process with q̌ can. The state n′ must be of the form n

′ = T0i0n or
n
′ = Tj00n (arrival or departure) since we assume now that {D : n = (D,n1, . . . , nm) ∈ A} = P(M)

(changes on the availability coordinate have to be inside A). We shall analyse the case of arrival
since in the case of departure we can argue analogously. The key observation in this argument is the
following: if n′ = T0i0n, but the arrival intensity to node i0 is equal to zero for the network process
or this arrival movement is blocked by D then the node i0 must be reachable by an unblocking
movement D → ∅ and then T0i0 transition, or by an unblocking movement D → ∅ and then an
arrival to some station different than i0, and a migration movement or a series of consecutive
migration movements. There are possibly multiple paths, but we can search for the minimal ones
(which can be multiple with the same length). Intuitively speaking we search for the shortest
connection to a source node (i.e. a node which admits arrivals from the outside) from i0 node (in
the case of departure movement n′ = Tj00n we search for the shortest connection to a sink node).
Consider all shortest paths of movements that connect n with n

′ in the network. Denote such a
path by n = n0, . . . ,nk = n

′ (k ≤ m). Note that each such a path is shorter than m + 1 since
we can take as the first transition the one which puts D to ∅ on the availability coordinate, and
the worst case for the other transitions is when the station i0 is the last station in a m− series
network. Moreover each state on the path differs from n by at most 1 on only one non-availability
coordinate (because on non-availability coordinates an arrival changes one coordinate by plus 1,
and consecutive transitions change coordinates in such a way that after a transition the resulting
state has exactly one coordinate changed by plus 1). Further, there exists a state nj on this path
such that the network process leaves A, and either nj ∈ ∂Ǎ ∩ ∂A or nj ∈ ∂A \ ∂Ǎ. Since nj
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differs from n by at most 1 on exactly one coordinate, from (33) we have π(n) ≤ d̄b̄π(nj). If we
take two points on the border ∂Ǎ \ ∂A for which the coordinate-wise distance is big enough than
the corresponding border points on ∂A defined above must be different, because nj always differs
from n by at most 1 on a single coordinate. More precisely, let n ∈ ∂Ǎ \ ∂A and m ∈ ∂Ǎ \ ∂A are
such that they are different by more than two on each coordinate then the corresponding points
nj and mj′ , elements of ∂A, are distinct. In order to give a very rough bound on

∑

∂Ǎ\∂A π(n)
we observe that for a fixed nj point there are not more than 2m + 1 points that are different by
at most one on a single coordinate from nj , and nj can potentially be on a transition (unblocking
and migration) path described above for these points. Therefore we have

∑

∂Ǎ\∂A

π(n) ≤ d̄ b̄(2m+ 1)





∑

n∈∂Ǎ∩∂A

π(n) +
∑

n∈∂A\∂Ǎ

π(n)





and

ζ(A) ≥
∑

n∈∂Ǎ∩∂A π(n)+
∑

n∈∂A\∂Ǎ π(n)
∑

n∈∂Ǎ∩∂A π(n)+d̄ b̄(2m+1)(
∑

n∈∂Ǎ∩∂A π(n)+
∑

n∈∂A\∂Ǎ π(n))

≥
∑

n∈∂Ǎ∩∂A π(n)+
∑

n∈∂A\∂Ǎ π(n)

(1+d̄ b̄(2m+1))(
∑

n∈∂Ǎ∩∂A π(n)+
∑

n∈∂A\∂Ǎ π(n))
= 1

1+d̄ b̄(2m+1)
.

Summing up we obtain

∑

n∈∂A π(n)q(n, A
c)

∑

n∈∂Ǎ π(n)q̌(n, A
c)

≥ qmin

q̌max
·
∑

n∈∂A π(n)
∑

n∈∂Ǎ π(n)
≥ qmin

q̌max
· 1

1 + d̄ b̄(2m+ 1)

and

κ̌
qmin

q̌max
· 1

1 + d̄ b̄(2m+ 1)
≤ κ,

which implies (using Theorem 2.3 in Lawler and Sokal [31])

Gap(Q) ≥
(

κ̌
qmin

q̌max
· 1

1 + d̄ b̄(2m+ 1)

)2

/(8|Q|),

Gap(Q) ≥
(

qmin

q̌max
· Gap(Q̌)

1 + d̄ b̄(2m+ 1)

)2

/(8|Q|)

and finally

Gap(Q) ≥
(

qmin

q̌max
· min0≤i≤mGap(Q̌i)

1 + d̄ b̄(2m+ 1)

)2

/(8|Q|). (34)

Proof of (ii). Note that we cannot specify parameters of an ergodic unreliable Jackson network
process X to obtain the classical ergodic Jackson network process Z as a special case. However,
it is possible to repeat all steps in the proof of (i) for Z (skipping the availability coordinate, and
reducing 2m+ 1 to 2m) to get

Gap(Q(Z)) ≥
(

qmin

q̌max
· min1≤i≤mGap(Q̌i)

1 + b̄2m

)2

/(8|Q(Z)|). (35)
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6 Numerical examples

We shall give two examples from [26] in order to be able to compare possible bounds with the
exact values of the spectral gaps known for these cases.

Example 6.1. Let Z be the classical Jackson network with m = 3 stations with the arrival intensity
λ and the routing matrix R given in (21), and with r01 = r02 = r03 = 1/3, where p, q ∈ (0, 1), p+q <
1. Then λ1 = λ2 = λ3 = λ/(3(1− (p+ q)) is the solution to the traffic equation. Moreover, assume
that service intensities are constant and are given by µi = cλi, i = 1, 2, 3, where c > 1. The
network is ergodic with stationary distribution being the product of πi, i = 1, 2, 3, where πi(k) =
(1 − 1

c
)(1
c
)k, i = 1, 2, 3, k = 0, 1, . . .. The conditions of Proposition 4.3 (ii) are fulfilled and we

have:

Gap(Q(Z)) =
1− p3 − q3 − 3pq

1− pq
λ1
(√
c− 1

)2
=
p2 + p− pq + q2 + q + 1

1− pq

λ

3
(
√
c− 1)2.

We will compare the above exact expression with the bounds given in Proposition 4.2 and Proposi-
tion 4.1.

Let us start with Proposition 4.2. The partial balance condition (17) holds, and all birth and death
processes Q̃i, i = 1, 2, 3 are the same. Denote the arrival intensity of Q̃i process by λ̃i, and its
service rate by µ̃i. We have λ̃i = λr0i = λ/3 and µ̃i = µiri0 = cλ/3. The spectral gap of Q̃i is
given by

Gap(Q̃i) =

(

√

µ̃i −
√

λ̃i

)2

=
λ

3
(
√
c− 1)2,

therefore the resulting bound is

Gap(Q(Z)) ≥ λ

3
(
√
c− 1)2.

It is worth mentioning that this bound does not depend on p, q. Moreover it is the best bound we
can expect because

inf
p,q∈(0,1)
p+q<1

Gap(Q(Z)) =
λ

3
(
√
c− 1)2.

On the other hand,
sup

p,q∈(0,1)
p+q<1

Gap(Q(Z)) = λ(
√
c− 1)2,

which means that the bound from Proposition 4.2 is at most 3 times worse than the actual spectral
gap.

Now, let us turn to Proposition 4.1. Each distribution πi is geometric with the corresponding
hazard functions hπi(n) = 1− 1

c
. We have ri0 > 0 and r0i > 0 for i = 1, 2, 3., thus we can reduce

1 + d̄ b̄(2m+ 1) to 1 in this proposition. We need yet to calculate:

|Q| = λr01 + λr02 + λr03 + µ1 + µ2 + µ3 = λ+ 3c λ
3(1−(p+q) = λ

(

1 + c
1−(p+q)

)

qmin = min
(

λ
3 , µ(1− (p+ q)), µip, µiq

)

= λ
3 min

(

1, cp
1−(p+q) ,

cq
1−(p+q)

)

q̌max = 3λ1 + 3µ1 = 3(1 + c)λ1 = λ(1+c)
1−(p+q)

For the resulting bound with λ = 1, c ranging from 2 to 9 and for p, q close to 0, the ratio of the
spectral gap and (16) in the best case is of order 10−5. In this example the bound (16) is very
rough.
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Example 6.2. Let Z be the classical completely symmetrical Jackson network with m stations,
the routing matrix R given by rij = p < 1/(m − 1) for all i 6= j, r0i = 1/m, i, j = 1, . . . ,m, and
the arrival intensity λ. Note, that we have ri0 = 1 − (m − 1)p for i = 1, . . . ,m. The solution
of the traffic equation is given by λi =

1
m

λ
1−(m−1)p for all i = 1, . . . ,m. Moreover, assume that

µi = cλi, c > 1. Then the assumptions of Proposition 4.3 (i) are fulfilled and

Gap(Q(Z)) =

(

1− (m− 1)p2

1− (m− 2)p

)

λi(
√
c− 1)2 =

=
1

m

1 + p

1− p(m− 2)
(
√
c− 1)2λ.

Note that for p ∈ (0, 1/(m − 1)) we have

1

m
(
√
c− 1)2λ ≤ Gap(Q(Z)) ≤ (

√
c− 1)2λ

Let us compare the value of the spectral gap with the bound obtained in Proposition 4.2. Again,
the partial balance condition (17) holds, and all birth and death processes Q̃i, i = 1, . . . ,m are the
same. The intensities are λ̃i = λr0i = λ/m, and µ̃i = µiri0 = cλ/m. We have from Proposition
4.2

Gap(Q̃i) =

(

√

µ̃i −
√

λ̃i

)2

=
λ

m
(
√
c− 1)2,

therefore

Gap(Q(Z)) ≥ λ

m
(
√
c− 1)2.

The obtained bound is the best we can have as a bound which is independent from p. Moreover this
bound is at most m times worse than the actual value of the spectral gap.

Regarding the bound from Proposition 4.1, again each πi, i = 1, . . . ,m is geometric with the hazard
function hπi(n) = 1− 1

c
. We can reduce 1 + d̄ b̄(2m+ 1) to 1. We need to calculate the following

|Q| = λ
(

1 + c
1−(m−1)p

)

qmin = min
(

λ
m
, µi(1− (m− 1)p), µip

)

= λ
m
min

(

1, cp
1−(m−1)p

)

q̌max = mλ1 +mµ1 =
λ(1+c)

1−(m−1)p

It is immediate now to write down the formula of the bound, but we skip it. The resulting values
with λ = 1, c ranging from 2 to 9 and for p close to 0, compared to the spectral gap, in the best
case, are of order 10−5, so the bound (16) is again very rough.

Final remarks. Although the bounds obtained from our Proposition 4.1 gave very rough results
it is worth stressing that it is possible to compute them for a large class of networks with variable
service rates and unreliable nodes. The results possible to obtain via Proposition 4.3 are limited to
very special cases of classical networks with constant service intensities. For the non-symmetric case
the gap is only given for m = 3 stations. The bounds from Proposition 4.2 are limited to reliable
networks and require a kind of partial balance (17) (which is fulfilled for example for reversible
networks) but they are applicable to networks with variable service intensities. The quality of
them seems to be quite good (in both examples at most m times worse than actual spectral gap).
It is not true in general that the gap for a network is equal to the gap of a bottleneck station in
this network. It still remains a lot of research to do in order to provide good computable bounds
for networks.
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