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Abstract We give explicit formulas for ruin probabilities in a multidimensional General-
ized Gambler’s ruin problem. The generalization is best interpreted as a game of one player
against d other players, allowing arbitrary winning and losing probabilities (including ties)
depending on the current fortune with particular player. It includes many previous other gen-
eralizations as special cases. Instead of usually utilized first-step-like analysis we involve
dualities between Markov chains. We give general procedure for solving ruin-like prob-
lems utilizing Siegmund duality in Markov chains for partially ordered state spaces studied
recently in context of Mobius monotonicity.
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1 Introduction

Gambler’s ruin problem has been playing important role in applied mathematics. There
are applications in some casino games, e.g. craps (Isaac 1995), blackjack (Snell 2009),
physics (El-Shehawey 2000; Yamamoto 2013), hydrology (Tsai et al. 2014), biology and
epidemic models (Harik et al. 1999), finance (Scott 1981; Rolski et al. 2009; Asmussen
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and Albrecher 2010), just to mention few. There are many variations of the problem, newer
ones are formulated after older ones are solved. For example, the following variations were
proposed: infinite amount of money, three or more players (Kmet and Petkovsek 2002;
Rocha and Stern 2004), the attrition variation (applies, e.g., to World Series or Stanley Cup
finals Kaigh 1979), some cases of winning probabilities being dependent on the current
fortune (El-Shehawey 2009; Lefebvre 2008).

The problem is as relevant today as it was in 17th century. According to (Edwards 1983)
Pascal was the first who posed a problem in 1656 in a letter to Fermat. The most common
form comes from Huygens who restated the problem as follows (rephrased):

“Let two men play with three dice, the first player scoring a point whenever 11 is
thrown, whereas the second whenever 14 is thrown. Each player starts with 12 points.
Successful roll adds one point to the player and subtracts one from the other player.
The loser of the game is the first to reach zero points. What is the probability of victory
for each player?”

Huygens gave a solution of above problem. (Bernoulli 1713) generalized and replaced
Huygens’ numerical results by formulas, i.e., he considered general initial capital i, general
total amount of money N and general winning probabilities p € (0, 1). Since then the
problem became very popular and different proofs were obtained. Pascal gave his solution
to Cercavi without mentioning the method. According to Edwards (1983) Fermat probably
used the combinatorial argument (as in ”Problem of points*), most methods which appeared
later used some kind of first-step-like analysis which led to solving some recursions.

It is known that the absorption probability of given chain can be related to the stationary
distribution of some other ergodic chain. The relation is given via so-called Siegmund dual-
ity, the notion introduced in (Siegmund 1976). It was studied in financial context, where the
probability that a dual risk process starting at level / is ruined equals the probability that the
stationary queue length exceeds level &, see (Asmussen and Albrecher 2010; Asmussen and
Sigman 2009). Already in (Lindley 1952) such duality between some random walks on inte-
gers was shown. For this duality reader is also referred to (Theodore Cox and Rosler 1984;
Diaconis and Fill 1990; Dette et al. 1997) or (Huillet 2010), just to mention few. All above
papers have one thing in common: they study Siegmund duality defined for linear ordering
of the state space (and most of them birth and death chains only). In this case (Siegmund
1976) states that the process has such dual if and only if it is stochastically monotone (w.r.t.
total ordering). It is a little bit surprising that it was not exploited in the context of one-
dimensional Gambler’s ruin problem. The solutions of the classical problem and its various
one-dimensional generalizations are special cases of Theorem 1 and can be relatively easy
calculated using usual stochastic monotonicity. On the other hand multidimensional case is
quite different. For partial nonlinear ordering the stochastic monotonicity does not imply
the existence of Siegmund dual, see (Liggett 2004). Finding such duals was successful for
some specific chains and/or orderings. For example, in financial context, in (Blaszczyszyn
and Sigman 1999) authors considered R?-valued Markov processes (their Siegmund dual
was set-valued). Recently, (Huillet 2014) considered dualities for Markov chains on parti-
tions and sets. In (Lorek 2016) we show that Siegmund dual exists if and only if chain is
Mobius monotone, the connections with Strong Stationary Duality (consult Diaconis and
Fill 1990) are also given therein. Let us mention at this point that for non-linear ordering
Mobius and stochastic monotonicities are, in general, different. In particular, we can have
a chain which is not stochastically monotone, but which is Mobius monotone, thus we are
able to construct its Siegmund dual.
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In this paper, based on results from (Lorek 2016), we give the solution to the multidimen-
sional Generalized Gambler’s ruin problem. The paper is organized as follows. In Section 2
we describe our Generalized Gambler’s ruin problem, state its solution (Theorem 1) and
point out other results as some special cases. In Section 3 we recall notion of Siegmund
duality and antiduality for chains on partially ordered state spaces and give a general recipe
for calculating ruin-like probabilities (summarized in Theorem 2). Section 4 includes some
toy example (Cat Eats Mouse Eats Cheese), where the case of negative antidual matrix is
presented. Finally, Section 5 contains proof of Theorem 1.

2 Generalized Gambler’s Ruin Problem and main Result

In the one-dimensional Gambler’s ruin problem two players start a game with total amount
of, say, N dollars and initial values k and N —k. At each step they flip the coin (not necessary
unbiased) to decide who wins a dollar. The game is over when one of them goes bankrupt.

We will consider the following generalization. There is one player (referred as “we”)
playing with d > 1 other players. Our initial assets are (i, ...,iq) with0 <i; < N;, j =
I,...,d (N; > 1is atotal amount of assets with player j) and assets of consecutive players
are (N1—iy, ..., Ng—ig). Then, with probability p;(i;) we win one dollar with player j and
with probability ¢ (i ;) we lose it. With the remaining probability 1 — ZZ:] (pe (i) +q;Gr))
we do nothing (i.e., ties are also possible). Once we win completely with player j (i.e.,
ij = Nj) we do not play with him/her anymore. We lose the whole game if we lose with
at least one player, i.e., when i; = 0 forsome j =1, ..., d. Note that if initially for some
J we have i; = 0 then we already lost (the winning probability is 0), thus we can restrict
initial assetsto 1 <i; < N;,j=1,...,d.

Ford = 1 and p1(j) = p, q1(j) = ¢, Nt = N we have the classical Gambler’s
ruin problem on the state space {0, ..., N}. Many one-dimensional generalizations of this
game were considered, e.g., (Lefebvre 2008) studied the case of some specific sequences of
p1(J), q1(j), later this was extended to any p1(j), q1(j) in (EI-Shehawey 2009). Variations
of classical problem with ties allowed, i.e., p1(j) = p1,91(j) = q1, p1 + q1 < 1 were
considered in, e.g., (Lengyel 2009a; 2009b) (the latter one considers so called conditional
version of the problem). Some of the articles studied both, the ruin probability and duration
of the game, whereas most papers studied only duration of the game. Some generalizations
to a higher a dimension d > 1 were studied in (Rocha and Stern 2004; Kmet and Petkovsek
2002).

We will describe the game more formally as a Markov chain Z’ with two absorbing states.
The state space is B = {(i1,...,ig) : 1 < ij < Nj, 1< j=<d}U{-o0} (where —oo means
we lose). For convenience denote p;j(N;) = ¢q;j(N;j) =0=p;0) =¢;0),j=1,...,d.
Assume that forall i; € {1,...,N; —1},j =1,...,d we have p;(i;) > 0,q;(i;) >0
and Zzzl(pk(ik) + qx(ix)) < 1. With some abuse of notation, we will sometimes write

(if, ..., i) = —oo. The transitions of the described chain are following:
piG;) ifi}:ij-l-l,i]/(:ik,k;éj,
q;(ij) if i}:ij—l,i}(:ik,k;éj,
Py ((itsonvia), oo i) =42 ji,=1 45 (D) if (@], ig) = —oo,
1= (i) +ai i) if i =i 1 < j <d,
1 if (i, ..o ig) =], ..., i) =—o0.

ey
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The chain, as required, has two absorbing states: (N, ..., Ng) (we win) and —oo (we lose).
We will give formulas for the probabilities of winning starting at arbitrary state, i.e., for

o1, ... ia)) = Pty Ny < T—oolZy = (i1, - iq)),

where 7 := inf{n > 0 : Z;, = e}. Our main result is following.

Theorem 1 Consider the Generalized Gambler’s ruin problem described above. Then, the
probability of winning starting at (i1, ..., i) is given by

d ii n

1—[ Xj: 1]—[ (q i ))

(( )) Jj=1 \n;=1 r=1 pj(r) (2)
p((1, ..., 0q) = .
d N; nj—1
(% 11 (25)

-
j=1 \nj=1 r=1 pj(r)

Theorem 1 generalizes some previous one-dimensional cases. For example:

— (i) Assume we have won with all the players except player j. Then, the probability of
winning is

ST (20)

pj(r)

PUNY, - Njo1,ij Nigt, o Na)) = 1; 1 ’
il‘[(‘]}(”)
pjr)

n=1r=1

This way formula (4.1) from (El-Shehawey 2009) is recovered (with some slight
modification in notation, since authors considered a various versions of reflecting
barriers).

— (ii) In addition to (i), let pj(r) = p,q;(r) = q,r = 1,..., N;. Then we recover
winning probability in the the classical Gambler’s ruin problem (with possible ties):

()" =)
» — "y ifp#q.

_ 1
Po((N1,...Nj_1,ij, Njyq, ... Nd))_”/vil: 1_(%)
J n—
q .
Z (;) A otherwise.
n=1 Nj
— (iii) (Homogeneity case). Assume that for all j = 1,...,d we have p;(r) =

pj,qj(r)=gqj,r=1,..., N;j. Define
1 if pj =gqj,
S; =
0 otherwise.

Then we have

d 1— ?)l"’ ;i
PG, - ia)) =H — G |Si =Sy
j=1 4 J

@ Springer



Methodol Comput Appl Probab

which is a multidimensional generalization of the classical Gambler’s ruin problem. Of
q; )
pj(ij)

course we obtain the same probabilities if only ratios are constant, e.g., for the

following spatially nonhomogeneous case
_ P
2pi; + 1

() — iy — 4
P/(lj)— QJ(l]) 2,0l'j-|—1’

which is thus a multidimensional generalization of cases considered in (El-Shehawey
2009) and in (Lefebvre 2008). In the latter article only symmetric case corresponding

to pj = g; = 1/2 was considered.

3 Tools: Siegmund Duality and Antiduality

We shortly recall notion of Siegmund duality, its applications to studying absorption prob-
abilities and result concerning existence of Siegmund dual from (Lorek 2016). Let X
be a discrete-time Markov chain with transition matrix Px and finite state space E =
{e1,..., ey} partially ordered by < with unique minimal element e; and unique max-
imal element ej;. Assume it is ergodic with the stationary distribution 7. For A € E
define Px(e, A) := Y o4 Px(e,€) and similarly 7(A) = > .., 7w (e). Define also
e :={¢ cE:e=<éel}, (e} :={e cE:e <e}andd(e, e) = 1(e, e). We say that
Markov chain Z with transition matrix Pz is the Siegmund dual of X if

V(e ej €E)V(n > 0) Py(ei, {e;}") =Pyle;, {ei}T). 3

Note that we can find a matrix fulfilling (3) which is substochastic, since we may have for
some ¢; that Ze[ Pz(ej,e;) < 1. In a similar way as Siegmund (1976) did (he consid-
ered linear ordering only), we add then one extra absorbing state, say —oo (called a coffin
state). Denote the resulting matrix by Pz and define Pz (e;, —00) =1 — Ze,- Pz (ej, ),
Pz(—00,€;) = 6(—00, ¢;) and Pz (e, e2) = Pz(e, e2) otherwise. Note that Eq. 3 implies
that ey is an absorbing state, thus Z’ has two absorbing states. Taking limits as n — oo on
both sides of Eq. 3 we have

7 (lej}1) = lim P}(ej. (ei)!) = P(te, < Te |25 = ¢)). “

where te = inf{n : Z, = e}. This way the stationary distribution of ergodic chain is related
to the absorption probabilities of its Siegmund dual.

For partial ordering < define matrix C(e, ¢') = 1(e < €’). Such matrix is always invert-
ible, and its inverse C~! is often denoted by u (what we use throughout the paper) and
called the Mobius function of ordering <. Note that Eq. 3 for n = 1 can be written as

PxC = CPL. Q)

The main result of (Lorek 2016) is that for given partial ordering < the Siegmund dual chain
exists if and only if X is Mobius monotone (see also Lorek and Szekli 2012 for more details
on this monotonicity). In such a case, the Siegmund dual on B = E U {—o0} has transitions
outside coffin state given by

Pz = (C'PxO)f ©)

(the nonnegativity of which is the definition of Mdbius monotonicity of X). The natural
application is in studying stationary distribution of a chain X (e.g., its asymptotics): calcu-
late Siegmund dual and then its probability of being eventually absorbed in ej;. However,
we can reverse the process starting with a chain Z’ with two absorbing states (we win or we
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lose). Assume its state space is E' = {—oo} U {ey, ..., e)y} with absorbing states —oo and
ey. Denote E := {e(, ..., ey}
The procedure is then the following:

1) remove state —oo obtaining substochastic matrix Pz;

2) introduce some partial ordering < expressed by matrix C such that ey is a unique
maximal element;

3) calculate transitions of Siegmund antidual chain X from Eq. 5 calculating Px =
CP;C’I;

4) if the resulting matrix Px has a stationary measure m such that V(e € E)
lim,, 00 P’ (e, -) = 7(-) then we can calculate absorption probabilities of Z' from the
relation (4) (if Py is a stochastic matrix, then 7 is the stationary distribution of the
chain related to this matrix).

The details are in the following theorem.

Theorem 2 Let Z' be a Markov chain with transition matrix Pz on E = {—oo} U
{e1, ..., ey} =: {—oo} UE with two absorbing states —oc and eyy. Consider substochas-
tic kernel Pz which is the matrix Pz with row and column corresponding to —oo removed.
Fix some partial ordering < on E expressed by matrix C such that ey is a unique maximal
state. Calculate

Px = CPLC!. 0
The resulting Px has the property that ¥(e € E) ZezeE Pyx (e, e2) = 1. Assume that there
exists invariant measure 7 fulfilling:

V(e: € E) lim Py (es, ) = m(e), > we) =1.

ecE

Then we have p(€') == P(te,, < T—0olZ), =€) = m({€&'}V) (i.e., relation (4) holds).

Remark 1 If resulting Px in Eq. 7 is a stochastic matrix of ergodic chain, say X, then 7 is
its stationary distribution. Moreover, it is Mobius monotone with respect to <.

Remark 2 1f the resulting Py has negative entries it does not have a real probabilistic inter-
pretation. However, e.g., in area of quantum mechanics, such “distributions”, called negative
quasi-probabilities are quite common and natural in this context. This notion was already
introduced in (Wigner 1932), where author writes:

“[...] cannot be really interpreted as the simultaneous probability for coordinates and
momenta, as is clear from the fact, that it may take negative values. But of course
this must not hinder the use of it in calculations as an auxiliary function which obeys
many relations we would expect from such a probability.”

For some recent connections of negative quasi-probability and quantum computations see
(Veitch et al. 2012).

Proof of Theorem 2 The main sketch of the proof was essentially given before the theorem.
The only thing which may be not clear is that for all e we have ), Px (e, ¢’) = 1. Let us
calculate

ZPx(e, e) = Z (CP%C”) (e,e) = Z Z (CP%) (e, e2)C ! (ez, €).
e e e €
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We have
(CPL) (e.e2) = >~ Cle.ex)PL (e, €2) = 3 Cle. e3P (e, €3)
e3 €3

Y Pzl e3) =Pz(es, {e}),

e;>e

thus

D Px(e,e) = ) > Pzler, {e}u(er, €) =) pler, €)Y Pzle, {e}h)
e e

e € e
2 Ps(en. te}h) = 1.
In (%) we used the fact, that for any partial order with unique maximal element ey, the
Mobius function fulfills V(e € E) Ze/_ C e, e;) = 1(e = ey). To see this consider

column of C~! corresponding to state ey after applying first elementary column operation
of Gauss-Jordan elimination. (|

4 Toy example: Cat Eats Mouse Eats Cheese

Before proceeding to the proof of the main result on Generalized Gambler’s ruin problem
(i.e., Theorem 1) we give a 5-state example. The reason for this is that we wanted to present
an example having the resulting matrix Px with negative entries. The example is taken from
(Bremaud 1999) (Example 3.2 Cat Eats Mouse Eats Cheese, where the answer is easily
calculated using first-step analysis):

“A merry mouse moves in a maze. If it is at time » in a room with k adjacent rooms,
it will be at time n + 1 in one of the k adjacent rooms, choosing one at random, each
with probability % A fat lazy cat remains all the time in a given room, and a piece
of cheese waits for the mouse in another room (see Fig. 1). The cat is not completely
lazy: If the mouse enters the room inhabited by the cat, the cat will eat it. What is the
probability that the mouse ever gets to eat the cheese when starting from room 1, the
cat and the cheese being in rooms 3 and 5, respectively?”

CAT

MOUSE CHEESE

Fig. 1 Maze, mouse, and murder
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Essentially we have E' = {3} U {1, 2, 4, 5} and

05050 0ilp 1111 °
30300 L 22 // \\
1000 0101
P, =|00100 |,Pz=|2 L l.c= = 2 4
,0,0,
37373 0001 0001
00001 1

where P is the original Cat Eats Mouse Eats Cheese matrix, Pz is the matrix with state 3
removed (E = {1, 2, 4, 5}) and C represents the ordering with Hasse diagram presented on
the right side (with 5 being a maximal state). We are to calculate

p(j) = P(ts <wlZy=j),j =1,2,4,5.

Calculating Py from Eq. 7 and its stationary measure gives

1 15

l-3-3%

1 1 17

_ 1% —% % 2 115
Py=CPjc'=|7 % °° ,(n(l),n(z),n(4),n(5))=(7,—7,7,7)

272 766

12

0 0 12

From Eq. 4 we have (p(1), p(2), p(4), p(5)) = (%, %, %, 1).

5 Proof of Theorem 1

From matrix P given in Eq. 1 we remove state —oo obtaining the following substochastic
matrixon E ={1,2,..., N} x--- x{1,2,..., Ng}

pj(ij) if i =ij+ 1, =ik, k # J,
Pz(G1, .. i), (i1, .- ig) =1 4;G)) if i =i — 10 = ik k #

1= Y () + e ) if i =ij, 1 < j < d.
Consider the coordinate-wise ordering: (i1, ...,ia) = (i},....ip) iff i; < %, j =

1,...,d. Thestate ey := (N, ..., Ng) is aunique maximal one. Directly from Proposition
5 in (Rota 1964) we find the corresponding Mobius function

. o ' (—DXi=1" p € {0, 1}, ij+rj <Nj, j=1,....d
u(@,oovia), Gr+ri, ..o ia+rg)) =
0 otherwise.

We have: Py ((i1. ..., iq), (i, ....i})) = CPLCT (1, ... ig), (i}, ..., i)

= 3 (@@, i, @ PGP, i G i,
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e Case (i},...,i)) = (i1, ..., iq) —s;. Then we have Px ((i1, ..., ia), (i{, ..., i})) =

= > r(G i, G i) = PGP G i)

..... i< eia)—s)
= ity eesia) =85, Gl eeyia) = $PPZ (G -y ig) — 5,41, - i)}

+ 3 w(15 i) i =) P2 (i) G i)

2
APV i) s
.. i;z))#(il,...,id)—s/‘

= 1-Pz((1seeia) =), (i1, i) + 0= qj(ij — 1).

o Case(if,...,i)) = (i1, ...,iq) +s;. We have Px ((i1, ..., ig), (i}, ..., i) =

= > 1@, D), i) s)OPZ(GD ) G i)

(2 i) =G ia)+s)
= w1y eeesid) + ), Gty ey ig) T8PPI, .oy ig) 55, G0, - i)}

+ wts ey ia)s 1y ey ia) 8P, - ig), {G1s oo i)}

+ Z WGty eevia) = p + 8, (its e via) +$)PZ(G1 -y ia) = sp + 85, (G-}
'#/

+ Z 1 (G, - sia) = $e, Gty o) +8)P2(G1, - ig) = $e, (G, i)}
V#J

= (=D"Pz(lr, - via) + i, G i) H (D PL(Gr i) (G i) D

+ 3 [0 PG i) s s (G i)
’r]#-f
D7 P2 i) =85 (i) )]

= 1- > qrar)—(l—qu(ir))Jr D (=14 D) pelin) = q;Gp).
r=1

r=l1,...d r=1,...d
r#j r#j

o Case (if,...,i)) = (i1, ..., iq). We have Px (i1, ..., iq), (i1, ..., 1)) =

= 3 1 (12 i@) i) Pz (i) G i0))

(2 oi =G seensia)
= wli,eviq) G ia)PZ (G i), (G i)Y
+ Z (it s ia) = s, (1o 1P (G, i) G i)

= 1 Pz«u,...,id),{(tl,...,id>}T)+ Z (D' Pz (1. i) A, i)} )

r=I1,...d

= 1= > ql)— Y plr—-DH=1- Z (prlir — 1) + qr(ir)).

r=1,....d r=1,..d r=1,.,
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These were the only nonzero entries of Py. Summarizing we have

q;(ij) if i =i;+ 1,0 =ix, k # J,
Px((it, . ia), (], ip)) = { PiG; =D 0 =iy = i = ik # .
= Y (el = D)+ qun) if i =151 < j <d.

Assume that for all (iy, ..., iz) we have Px ((i1, ..., iq), (i1,...,i4)) = 0. Then, these are
the transitions of a closed network with d independent servers: being at state (iy, ..., i)
the arrival to server j is g;(i;) and the departure is p;(i; — 1). Its stationary distribution is

following

d ij—1
l_[ i—[ (‘1 j(r ))
, _ it \ g NP

7((i1, .05 id)) = y . 3

L g
J
1_[ l_[ <Pj('")>

Jj=1 \n;=1 r=1

However, if some entry of Py is negative, then of course the matrix does not repre-
sent any Markov chain, but with = given in Eq. 8 we still have that tPxy = 7 and
limy, s 00 P% ((i1, ..., i), -) = w(-) forevery (i1, ...,iq) € E.

Thus, because of Theorem 2 equality (4) holds in any case and we obtain (2) what
finishes the proof.
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