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ANTIDUALITY AND MÖBIUS MONOTONICITY: GENERALIZED COUPON
COLLECTOR PROBLEM ∗

Paweł Lorek1

Abstract. For a given absorbing Markov chain X∗ on finite state space, the chain X is a sharp
antidual of X∗ if Fastest Strong Stationary time of X is equal, in distribution, to the absorption time
of X∗. In this paper we show a systematic way of finding such antidual based on some partial ordering
of the state space. We use the theory of Strong Stationary Duality developed recently for Möbius
monotone Markov chains. We give several sharp antidual chains for Markov chain corresponding
to Generalized Coupon Collector Problem. As a consequence - utilizing known results on limiting
distribution of absorption time - we indicate separation cutoff (with its window size) in several chains.
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1. Introduction

Strong Stationary Times (SST) are a probabilistic tool for bounding the rate of convergence to stationarity
for Markov chains. Aldous and Diaconis [1], [2] gave several examples of chains where SST were found ad hoc.
Later in [4] the authors introduced a more systematic way of finding SSTs. For a given general ergodic chain
they showed that one can construct a so-called Strong Stationary Dual (SSD) chain, a chain whose absorption
time is equal in distribution to some SST of the original chain. Moreover, they proved that there always exists
sharp SSD, in the sense that its corresponding SST is stochastically the smallest, in which case it is called the
Fastest Strong Stationary Time (FSST).

Their construction for general chains is purely theoretical (it involves the knowledge of the distribution of
the chain at each step). However, they give a detailed recipe on how to construct such SSD assuming that the
time reversed chain is stochastically monotone w.r.t. linear ordering. In particular, they consider birth and
death chain, for which SST has the same distribution as absorption time in a dual chain, which turns out to be
an absorbing birth and death chain. They also show that assuming that time reversed chain is stochastically
monotone one can always construct set-valued SSD (see their Section 3.4 “greedy construction of a set-valued
dual”). However, in this paper we actually start with some absorbing chain (which is SSD of some other one),
calculating antidual chain in set-valued settings would be much more complicated. Recently, in [21] authors
provided the recipe for constructiong SSD on the same state space for chains, whose time reversal is Möbius
monotone w.r.t to some partial ordering of the state space. This significantly enlarges the class of chains for
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which SSD can be found. In many chains there is usually some natural underlying ordering of the state space
which is only partial. Moreover, the method yields the sharp SSD which is crucial for our applications.

Studying the rate of convergence of a chain to its stationary distribution, one is often interested in so-called
mixing time (i.e., the time until the chain is “close” to its stationary distribution). However, sometimes we can
say much more than just a mixing time by showing that so-called cutoff phenomenon occurs. Roughly speaking,
this phenomenon describes a sharp transition in the convergence of the chain to its stationary distribution over
a negligible period of time (cutoff window). There are two most commonly studied phenomena: separation
cutoff and total variation cutoff, which differ in a distance used to measure the convergence (separation vs.
total variation distance).

The total variation cutoff was first shown for the random transposition card shuffling in [6]. The name comes
from [1], where authors showed that top-to-random card shuffling exhibits total variation cutoff. Separation
cutoff has recently been studied in few contexts. For example: In [5] authors gave if and only if conditions for
existence of separation cutoff for birth and death chains; necessary and sufficient condition for skip-free chains
was given in [22]; some other specific chains were considered in [3]; in [10] author gives a formula for separation
distance for Tsetlin library chain specifying weights for which there is and there is no separation cutoff.

Although many chains are believed to exhibit cutoff, proving that one occurs is often extremely challenging
task. That is why there are relatively few examples for which cutoff has been rigorously proven, and even
fewer with given window size. As mentioned before, FSST is equal in distribution to absorption time of the
sharp SSD chain. Thus, there is a close relation between sharp SSD and separation cutoff. Roughly speaking,
this cutoff can be studied by studying the limiting distribution of absorption time of the SSD. This can be
extremely difficult task. However, since examples of chains with proven separation cutoff are always welcome,
we can reverse the procedure: starting with some already absorbing chain we can try to find an ergodic sharp
antidual chain (or even a class of such antidual chains). (Such approach was considered in [12] in context
of birth and death chains only). Using this approach we will indicate separation cutoff time and window size
in several examples of chains utilizing (nontrivial) results for the limiting distribution of the absorption time
in some generalizations of the classical Coupon Collector Problem. That is why we need a recipe for sharp
antidual chains, what will be given based on results from [21]. Most of the examples that follow deal with some
product-type chains. It is however worth noting that taking a product of chains where each chain exhibits a
cutoff does not have to yield a chain (on product space) exhibiting a cutoff. Such example was recently given
in [17].

The absorption time of many absorbing chains is distributed as a mixture of sums of geometric random
variables with parameters being the eigenvalues of transition matrix. E.g, absorption time of discrete time
birth and death chain starting at minimal state with maximal one being absorbing is distributed as a sum of
geometric random variables with such parameters, provided the chain is stochastically monotone. The result is
usually attributed to Karlin and McGregor [15] or Keilson [16]. Fill [12] gave a first stochastic proof of this result
using also the theory of SSD, later it was extended to skip-free Markov chains in Fill [11]. Miclo [23] showed
that for large class of absorbing chains on finite state space, the absorption time is distributed as mixture of
sums of geometric random variables. A natural question arises: Given a mixture of sums of geometric random
variables and some distribution π can we find an ergodic chain whose stationary distribution is π and whose
FSST is equal in distribution to this mixture?. Or, a special case of the question, Given some distribution π
can be construct an ergodic chain whose stationary distribution is π having deterministic FSST? We provide
positive answers to both questions (some assumptions on distributions are needed). In particular, we present
two ergodic chains on completely different state spaces having the same FSST.

The main goals of the paper are: i) we give a systematic way (based on partial ordering of the state space and
Möbius monotonicity) for finding a class of sharp antidual chains; ii) we present nontrivial antidual chains related
to some generalizations of Coupon Collector Problem and, as a consequence, we show cutoff phenomena in some
cases; iii) we present a construction of a chain with prescribed FSST and prescribed stationary distribution.
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There is yet another potential application which served as a motivation for the paper (however, not exploited
here): Given a probability distribution π on E, how to simulate a sample from this distribution? Markov
Chain Monte Carlo methods come with the answer: construct a chain with stationary distribution π and run
it long enough. The most common algorithms for such constructions are Metropolis-Hastings algorithm and
Gibbs sampler. Unfortunately, none says anything about the rate of convergence (each example must be studied
separately). This paper suggests an alternative approach: given π on E find some absorbing chain on E and then
calculate sharp antidual chain having this π as stationary distribution. Knowing, e.g., expectation and variance
of absorption time, one can quite precisely determine the number of steps needed for simulation. Moreover,
having a sharp SSD actually can allow for a perfect simulation from distribution π. One can construct an
appropriate coupling of the absorbing chain and its antidual, so that stopping antidual chain when its SSD
is absorbed yields an unbiased sample from π. The reader is referred for details to [4] (Section 2.4) or [13]
(Section 1.1). We want to emphasize that utilizing this was not the purpose of this paper, and the stationary
distributions which appear in most of the examples are of product form, which means we can easily simulate
them coordinate by coordinate.

The paper is organized as follows. In Section 2 we introduce preliminaries on Strong Stationary Duality and
separation cutoff. In Section 3 we recall the notion of Möbius monotonicity and give a matrix-form proof of
the result from [21]. In Section 4 we present our main results. Firstly, in Section 4.1 in Theorem 4.1 we give
a systematic way for finding a class of sharp antidual chains. Secondly, in Section 4.2 we introduce in details
the chain corresponding to the Generalized Coupon Collector Problem and present sharp antidual chains in
Theorems 4.4 and 4.6. Then, in Section 4.3, we proceed with presenting separation cutoff results for some
cases. In Section 4.4 we present our results concerning construction of ergodic chain with prescribed stationary
distribution and with prescribed FSST. Section 5 includes main proofs. Section 5.1 contains proofs of Theorems
4.4 and 4.6, whereas Section 5.2 contains the proof of Theorem 4.16.

2. Preliminaries

2.1. Strong Stationary Duality

Consider ergodic Markov chain X ∼ (ν,P) on finite state space E = {e1, . . . , eM} with initial distribution ν,
stationary distribution π and transition matrix P. Let E∗ = {e∗1, . . . , e∗N} be a state space of absorbing Markov
chain X∗ ∼ (ν∗,P∗), whose unique absorbing state is denoted by e∗N . Define Λ, a matrix of size N ×M , to be
a link if it is a stochastic matrix with the property: Λ(e∗N , e) = π(e) for all e ∈ E. We say that X∗ is a Strong
Stationary Dual (SSD) of X with link Λ if

ν = ν∗Λ and ΛP = P∗Λ. (1)

Diaconis and Fill [4] prove that then, the absorption time T ∗ of X∗ is so called Strong Stationary Time (SST)
for X. This is such a random variable T that XT has distribution π and T is independent from XT . The main
application is in studying the rate of convergence of an ergodic chain to its stationary distribution, since for
such random variable we always have: dTV (νPk, π) ≤ sep(νPk, π) := maxe∈E

(
1− νPk(e)/π(e)

)
≤ P (T > k),

where dTV stands for total variation distance, and sep stands for separation ”distance“. The corresponding T ∗
is sharp if sep(νPk, π) = P (T ∗ > k). In such the case, T ∗ is called the Fastest Strong Stationary Time for X,
which we denote by TFSST . For more details on this duality consult [4]. Moreover, duality relation (1) allows
for stochastic constructions, see, e.g., [12], where stochastic proof for passage time distribution for birth and
death chain was given.

Note that once we fix E∗ and link Λ, and if there exists right-inverse of Λ, i.e., Λ−1 we can simply calculate
from (1):

P∗ = ΛPΛ−1 and ν∗ = νΛ−1.

If the resulting P∗ is a stochastic matrix and ν∗ is a probability distribution, then (it will always correspond
to absorbing chain) we have found a SSD. However, we can start with some already absorbing chain P∗, then
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find some E and some probability distribution π on E, and a link Λ, so that

P = Λ−1P∗Λ and ν = ν∗Λ.

If the resulting P is a stochastic matrix, then X ∼ (ν,P) is an ergodic chain with stationary distribution π,
and T ∗ (time to absorption of X∗) is a SST for X. In such the case, X is called antidual of X∗. Moreover, if
we somehow know, that for some class of links relation (1) implies that T ∗ is sharp (see Corollary 3.6), then we
can possibly find many different antiduals, which all have the same Fastest Strong Stationary Time T ∗, which
has a phase-type distribution. In such the case X is called sharp antidual of X∗.

2.2. Separation cutoff

The forthcoming Theorem 4.1 indeed gives a recipe on how to construct a sharp antidual chain X with
specified stationary distribution π given absorbing chain X∗, both on the same state space. It means, that we
have

sep(νPk, π) = P (TFSST > k) = P (T ∗ > k). (2)
Thus, studying the distribution of TFSST is equivalent to study the distribution of T ∗. Furthermore, the so-
called separation cutoff can be studied by studying the properties of T ∗. In what follows, we introduce the
notion of separation cutoff. Since the dfntn involves increasing state space, we add a subscript (d) to transition
matrices, distributions, state space and absorption time. Suppose we have a sequence of ergodic Markov chains
X(d) ∼ (ν(d),P(d)) indexed by d = 1, 2, . . . Denote by π(d) the stationary distribution of X(d). We say that this
sequence exhibits a separation cutoff at time td with a window size wd = o(td) if

lim
c→∞

lim sup
d→∞

sep(ν(d)P
td+cwd
(d) , π(d)) = 0,

lim
c→∞

lim inf
d→∞

sep(ν(d)P
td−cwd
(d) , π(d)) = 1.

(3)

If the convergence to stationarity is measured in total variation distance, we say about total variation cutoff.

3. Möbius monotonicity and duality

In general, there is no recipe on how to find SSD, i.e., a triplet E∗,P∗,Λ. In [4] authors give a recipe for dual
on the same state space E∗ = E provided that time reversed chain

←−
X is stochastically monotone with respect

to total ordering. In [21] we give an extension of this result to state spaces which are only partially ordered by
�. Then, provided time reversed chain

←−
X is Möbius monotone (plus some conditions on initial distribution),

we give a formula for sharp SSD on the same state space E∗ = E.
The Möbius monotonicity seems to be a natural one for extension of main result from [4] to partially ordered

state spaces. In [19] we show that it is equivalent to the existence of Siegmund dual of a chain with given
partial ordering. For linearly ordered state space, stochastic monotonicity of a chain is required for existence
of Siegmund dual (see [27]), and stochastic monotonicity of time reversal is required for existence of SSD with
link being a truncated stationary distribution (see [4]). Both results fail for non-linear orderings, since both
require Möbius monotonicity, which, in general, is different than the stochastic one. The monotonicities are
equivalent for linear ordering. For more relations between these (and not only) monotonicities consult [20], and
for applications Siegmund duality to some generalizatoins of gambler’s ruin problem consult [18].

We will introduce this monotonicity by trying to solve (1) with some given link Λ.
For function f : E→ R, by lower-case bold symbol f we denote the row vector f = (f(e1), . . . , f(eM )).
The idea is to find a SSD P∗ on the same state space E∗ = E with link, whose row corresponding to e is a

stationary distribution of X truncated to {e}↓ := {e′ : e′ � e}, i.e.,

Λ(ei, ej) =
π(ej)∑

e′:e′�ei π(e′)
1(ej � ei). (4)



TITLE WILL BE SET BY THE PUBLISHER 5

Note that ∀(e ∈ E) we have Λ(eM , e) = π(e), as required. For a given ordering let C(ei, ej) = 1(ei � ej). For
the partial ordering we require only that the state which is absorbing for X∗, denoted throughout the paper by
eM , is the unique maximal one (i.e., C(eM , ej) = 1(ej = eM )). We always identify ordering � with matrix C,
keeping in mind, that enumeration of states in C and P must be the same. Then, the link can be written in
matrix form:

Λ = (diag(πC))−1CTdiag(π),

where diag(g) is a diagonal matrix with entries g(e1), . . . , g(eM ). The states can always be rearranged in such
a way that C(ei, ej) = 1 implies i ≤ j, what means that C, and thus Λ, are invertible. Often, µ ≡ C−1 is called
a Möbius function of partial order �. Solving (1) for P∗ yields (recall that the transitions of time reversed
chains are given by

←−
P = (diag(π))−1PT (diag(π)))

P∗ = ΛPΛ−1 = (diag(πC))−1CTdiag(π)Pdiag(π)−1(C−1)T (diag(πC))

= (diag(πC)(C−1
←−
PC)(diag(πC))−1)T ,

which is a stochastic matrix if and only if (C−1
←−
PC) ≥ 0 (each entry nonnegative), in other words, we say that

←−
P is Möbius monotone. This way we proved the main part of Theorem 2 of [21]. We include it here, since
this is a little bit different (matrix-form) proof. We will restate the thrm for completeness, introducing formal
dfntns of monotonicities first.
Definition 3.1. X is Möbius monotone if C−1PC ≥ 0 (each entry nonnegative). In terms of transition
probabilities, it means that

∀(ei, ej ∈ E)
∑
e�ei

µ(ei, e)P(e, {ej}↓) ≥ 0,

where P(e, {ej}↓) =
∑

e′:e′�ej P(e, e′).

Recall that for Möbius function we always have µ(ei, e) = 0 whenever e � ei.

Definition 3.2. A function f : E→ R is Möbius monotone if f(CT )−1 ≥ 0 (each entry nonnegative). It means
that

∀(ei ∈ E)
∑

e:e�ei

µ(ei, e)f(e) ≥ 0.

Remark 3.3. In Lorek, Szekli [21] this Möbius monotonicity (of both, function and chain) was called ↓-Möbius
monotonicity (see Definitions 2.1 and 2.2 therein).

Definition 3.4. X is ↑-Möbius monotone if (CT )−1PCT ≥ 0 (each entry nonnegative).
Theorem 3.5 (Theorem 2 of [21]). Let X ∼ (ν,P) be an ergodic Markov chain on a finite state space E =
{e1, . . . , eM}, partially ordered by �, with a unique maximal state eM , and with stationary distribution π.
Assume that

(i) g(e) = ν(e)
π(e) is Möbius monotone,

(ii) time reversed chain
←−
X is Möbius monotone.

Then, there exists a Strong Stationary Dual chain X∗ ∼ (ν∗,P∗) on E∗ = E with the following link

Λ = (diag(πC))−1CTdiag(π). (5)

Let H(e) =
∑

e′�e π(e′). SSD chain is uniquely determined by

ν∗ = νΛ−1 i.e., ν∗(ei) = H(ei)
∑

e:e�ei

µ(ei, e)g(e),

P∗ = ΛPΛ−1, i.e., P∗(ei, ej) =
H(ej)

H(ei)

∑
e:e�ej

µ(ej , e)
←−
P(e, {ei}↓).
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The following Corollary will play a crucial role:

Corollary 3.6. The SSD constructed in Theorem 3.5 is sharp.

Proof. The link given in (5) is lower-triangular, thus, by Remark 2.39 in [4], the resulting SSD is sharp. �

4. Main results

4.1. General procedure for sharp anti-dual chains

The main contribution is a systematic way of finding sharp antidual (on the same state space E = E∗) chain
of some given already absorbing chain X∗ ∼ (ν∗,P∗) with unique absorbing state eM . The idea is clear from
the previous section: introduce some partial ordering and some distribution π on E. Then solve ΛP = P∗Λ for
P with link given in (5). If the resulting matrix is nonnegative, it will be a stochastic matrix of ergodic Markov
chain X with stationary distribution π. Moreover, changing π and/or ordering usually will yield a different
sharp antidual. It means we can have a class of chains, all having the same Fastest Strong Stationary Time
TFFST .

Fix some partial ordering � on E∗ (expressed by C) having unique maximal state eM and some distribution
π on E. For given P∗ define

P̂∗ = diag(πC)P∗(diag(πC))−1.

With slight abuse of notation we will assume that P̂∗ is ↑-Möbius monotone meaning that (CT )−1P̂∗CT ≥ 0.
Definition 3.4 was stated for Markov chain X with transition matrix P, note however that P̂∗ does not have to
be a stochastic matrix.

Theorem 4.1. Let X∗ ∼ (ν∗,P∗) be an absorbing Markov chain on E∗ = {e1, . . . , eM} with unique absorbing
state eM . Let C be the class of all partial orderings on E∗ with eM being unique maximal state. Consider the
class of pairs of distributions and partial orderings:

P(P∗) =
{

(π,C) : C ∈ C, P̂∗ is ↑-Möbius monotone
}
.

Then, for any (π,C) ∈ P(P∗) the chain X ∼ (ν,P) with the link Λ defined in (5) and with

ν = ν∗Λ, P = (diag(π))−1(CT )−1P̂∗CTdiag(π)

is a sharp antidual for P∗, i.e., P∗ is a sharp SSD for P. Equivalently, P = Λ−1P∗Λ, where, for given π and
C, the link is defined in (5).

Proof. Since ν∗ is a distribution on E and Λ is a stochastic matrix, ν is a distribution on E. By assumption
that P̂∗ is ↑-Möbius monotone, the matrix P is nonnegative. We will show that π is its stationary distribution.
Let η = (0, . . . , 0, 1). Last row of Λ is equal to π what can be expressed as ηΛ = π, thus η = πΛ−1. We have

πP = πΛ−1P∗Λ = ηP∗Λ = ηΛ = π.

Now we will show that P(1, . . . , 1)T = (1, . . . , 1)T . We have

P(1, . . . , 1)T = (diagπ)−1(CT )−1P̂∗CTdiag(π)(1, . . . , 1)T

= (diagπ)−1(CT )−1P̂∗CTπT = (diagπ)T (CT )−1P̂∗(πC)T

= (diagπ)−1(CT )−1diag(πC)P∗(diag(πC))−1(πC)T

= (diagπ)−1(CT )−1diag(πC)P∗(1, . . . , 1)T

= (diagπ)−1(CT )−1diag(πC)(1, . . . , 1)T = (1, . . . , 1)T
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Thus, P is a stochastic matrix and thus X ∼ (ν,P) is a Markov chain with stationary distribution π. Since (1)
holds, X∗ is a SSD for X. The chain X∗ is constructed as in Theorem 3.5, by Corollary 3.6 it is sharp. �

Remark 4.2. If, in addition, within ordering � we have a unique minimal state, say e1, and X∗ starts from
this state (i.e., ν∗ = δe1

), then the antidual chain also starts from this state, i.e. ν = δe1
. This is the case in all

examples that follow.

Remark 4.3. The condition that P̂∗ is (π,C)-Möbius monotone is equivalent to nonnegativity of resulting
antidual P. In examples, it is often more convenient to calculate Λ and Λ−1 directly.

4.2. Antidual chains for Generalized Coupon Collector Problem

Consider d different types of coupons. These are sampled independently with replacement. Sampled types are
recorded. For 1 ≤ k ≤ d let pk > 0 be the probability that the coupon of type k is sampled, with

∑d
k=1 pk ≤ 1.

With remnant probability, i.e., with probability 1−
∑d
k=1 pk no new type is sampled. We start with no coupons

of any type. Let T ∗ be the number of steps it takes to collect Nj coupons of type j, j = 1, . . . , d for some
fixed integers N1, . . . , Nd. The distribution of T ∗ is the time to absorption in the state (N1, . . . , Nd) of the
chain X∗ ∼ (ν∗,P∗) on the state space E∗ = {(i1, . . . , id) : 0 ≤ ij ≤ Nj , 1 ≤ j ≤ d} with initial distribution
ν∗ = δ(0,...,0) and the following transition matrix:

P∗((i1, . . . , id), (i
′
1, . . . , i

′
d)) =


pj if i′j = ij + 1, i′k = ik, k 6= j,

1−
∑

k=1,...,d
ik 6=Nk

pk if i′j = ij , 1 ≤ j ≤ d. (6)

We refer to P∗ as to Generalized Coupon Collector chain. The case Nj = 1, j = 1, . . . , d and pk = 1/d is the
classic Coupon Collector Problem, which has a long history, see for example [9]. The term generalized is not
unique. It is used when sequence {pk} is general but N1 = . . . = Nd = 1 (e.g., [24]) or when pk = 1/d but we
are to collect more coupons of each type (see, e.g., [25], [7]). Although the chain P∗ given in (6) includes both
mentioned generalizations, we consider two antidual chains for two different cases separately:

a) for general Nj ≥ 1 and pj , j = 1, . . . , d with uniform stationary distribution of antidual chain;
b) for general pj but Nj = 1, j = 1, . . . , d with more general stationary distribution of antidual chain

(including uniform one as special case).

The proofs are postponed to Section 5.1.

For convenience denote i = (i1, . . . , id) and i(k) = (i
(k)
1 , . . . , i

(k)
d ). Define sk := (0, . . . , 1, . . . , 0) (with 1 on

position k).

Case: general Nj ≥ 1 and pj , j = 1, . . . , d and uniform stationary distribution of antidual

Theorem 4.4. Let X∗ ∼ (ν∗,P∗) be a Generalized Coupon Collector chain with matrix given in (6) with fixed
integers Nj ≥ 1, j = 1, . . . , d. Moreover, assume that

d∑
j=1

(
2Nj + 1

Nj + 1

)
pj ≤ 1. (7)

Then the chain X ∼ (ν,P) with ν = δ(0,...,0) and with transition matrix
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P(i(1), i(2)) =



i
(1)
k + 1

i
(1)
k + 2

pk if i(2) = i(1) + sk,

(
1(i

(1)
k < Nk)

(i
(1)
k + 1)(i

(1)
k + 2)

+
1(i

(1)
k = Nk)

Nk + 1

)
pk if i(2) = i(1) −m · sk

with 1 ≤ m ≤ ik,

1−
∑

j:i
(1)
j <Nj

(
1− 1

(i
(1)
j + 1)(i

(1)
j + 2)

)
pj −

∑
j:i

(1)
j =Nj

Nj
Nj + 1

pj if i(2) = i(1)

(8)

is an ergodic Markov chain with uniform distribution on E = E∗ which is a sharp antidual for P∗.

Remark 4.5. The condition (7) is sufficient but not necessary. In particular, for N1 = . . . = Nj = 1 it is
enough to have

∑d
j=1 pj ≤ 1.

Roughly speaking, the antidual has the following transitions. Being in state (i1, . . . , id) it can increase each
coordinate by one (if feasible), it can stay in this state or it can change one of the coordinates to anything smaller.
I.e., in one step it can only go to states (i1, . . . , ij +1, ij+1, . . . , id), (i1, . . . , ij−m, ij+1, . . . , id), 1 ≤ m ≤ ij , or it
can stay in (i1, . . . , id). Changing some coordinate depends only on the value of this coordinate, and decreasing
coordinate, say from ij to ij −m is constant for all 1 ≤ m < ij (the probability depends only on ij and the
formula itself is different on the border, i.e., when ij = Nj , than on all other states).

Case: general pj and Nj = 1, j = 1, . . . , d and non-uniform distribution of antidual.

Theorem 4.6. Let X∗ ∼ (ν∗,P∗) be a Generalized Coupon Collector chain with matrix given in (6). Assume
that N1 = . . . = Nd = 1. Let ak ∈ (0, 1) for k = 1, . . . , d. Then, the chain X ∼ (ν,P) on the same state space
E = E∗ = {0, 1}d with initial distribution ν = ν∗ = δ(0,...,0) and transition matrix:

P(i(1), i(2)) =



akpk if i(2) = i(1) + sk,

1−
∑

j:i
(1)
j =0

ajpj −
∑

j:i
(1)
j =1

(1− aj)pj if i(2) = i(1),

(1− ak)pk if i(2) = i(1) − sk,

(9)

is an ergodic Markov chain which is sharp antidual for P∗. The stationary distribution is following:

π(e) =

d∏
j=1

[aj1(ij = 1) + (1− aj)1(ij = 0)]. (10)

Taking the following concrete sequences of ak: ak = b
a+b or ak = 1

2 , j = 1, . . . , d we obtain the following
special cases:

Corollary 4.7. The chains X(i) ∼ (ν,Pi), i = 1, 2 with common initial distribution ν = δ(0,...,0) and transition
matrices
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P1(i(1), i(2)) =



1

2
pk if i(2) = i(1) + sk,

1− 1

2

d∑
j=1

pj if i(2) = i(1),

1

2
pk if i(2) = i(1) − sk.

P2(i(1), i(2)) =



b

a+ b
pk if i(2) = i(1) + sk,

1− b

a+ b

∑
j:i

(1)
j =0

pr −
a

a+ b

∑
j:i

(1)
j =1

pr if i(2) = i(1),

a

a+ b
pk if i(2) = i(1) − sk.

and with the respective stationary distributions

π1(i) =
1

2d
, π2(i) =

ad−|i|b|i|

(a+ b)d

are sharp antidual chains for P∗ given in (6), where |i| =
∑d
j=1 ij, called the level of i.

Remark 4.8. The antidual X ∼ (ν,P) has transitions consistent with partial ordering, i.e., at each step it can
stay or it can either change one coordinate from 0 to 1 or vice-versa. This is not the case for any distribution
π (eg., for some π it can happen that two coordinates change at a time).

Remark 4.9. In [21] we considered chain on E = {0, 1}d with transition matrix P3 given by

P3(i(1), i(2)) =


αk if i(2) = i(1) + sk,

1−
∑

j:i
(1)
j =0

αj −
∑

j:i
(1)
j =1

βj if i(2) = i(1),

βk if i(2) = i(1) − sk.

The chain is reversible with product form stationary distribution:

π3(i) =
∏
j:ij=0

βj
αj + βj

∏
j:ij=1

αj
αj + βj

. (11)

We showed that the chain is Möbius monotone if and only if
∑d
j=1(αj+βj) ≤ 1. As partial ordering, coordinate-

wise was used. Then we obtained the following dual chain:

P∗(i(1), i(2)) =


αk + βk if i(2) = i(1) + sk,

1−
∑

j:i
(1)
j =0

(αj + βj) if i(2) = i(1),

what is our absorbing dual (6) we started with, with pj = αj + βj and Nj = 1, j = 1, . . . , d. Note that P3 is a
special case of P given in (9) with aj =

αj
αj+βj

.
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Corollary 4.10. The matrices P given in (8) and in (9) have eigenvalues of the form:

λA = 1−
∑
k∈A

pk, for A ⊆ {1, . . . , d}

(the multiplicity of which depends on the case).

Proof. We can order the states of X∗ in such a way that P∗ given in (6) is upper triangular, thus eigenvalues
are the entries on the diagonal. If the link Λ is invertible (which is the case), then the transition matrices P
and P∗ of SSD have the same set of eigenvalues, what is a direct consequence of relation (1). �

Remark 4.11. Fix d and Nj = N, j = 1, . . . , d. One can ask the following question: For what sequence {pk} is
the associated TFSST stochastically the smallest? Conjecture 2 in [7] suggests that this is in the case of equal
probabilities pk = 1/d.

4.3. Results on separation cutoff

Since obtained antidual chains are sharp (i.e., (2) holds), we can present a series of results on separation
cutoff utilizing existing results on limiting distribution of T ∗.

We start with the simplest chain corresponding to the classical Coupon Collector Problem.

Corollary 4.12. Consider a sequence of Markov chains X(d) indexed by d = 1, 2, . . . on E(d) = {0, 1}d with
initial distribution ν(d) = δ(0,...,0) and transition matrix P(d) given in (9) with pk = 1

d and any ak ∈ (0, 1) for
k = 1, . . . , d. The stationary distribution π(d) is given in (10). The sequence exhibits a separation cutoff at time
d log d with window size d.

Proof. Denote the FSST of the chain by T ∗d . It is known that ET ∗d = d
∑d
i=1

1
i ≈ d log d. Moreover, 1

d (T ∗d −
d log d) converges in distribution (as d→∞) to a standard Gumbel random variable Z (with c.d.f P (Z ≤ c) =

e−e
−c
), see [14].

Taking td = d log d and wd = d we have

sep(ν(d)P
d log d+cd
d , πd) = P (T ∗d > d log d+ cd) = 1− P

(
1
d (T ∗d − d log d) ≤ c

)
,

sep(ν(d)P
d log d−cd
d , πd) = P (T ∗d > d log d− cd) = 1− P

(
1
d (T ∗d − d log d)) ≤ −c

)
.

Taking the limits as d→∞ we have

lim sup
d→∞

sep(ν(d)P
d log d+cd
d , πd) = 1− e−e−c ,

lim inf
d→∞

sep(ν(d)P
d log d−cd
d , πd) = 1− e−ec .

Taking the limit as c→∞ finishes the proof. �

Results on limiting distribution of T ∗d from [24] let us indicate separation cutoffs for cases with non-constant
probabilities pk. For example we can have the following Corollary.

Corollary 4.13. Consider piecewise constant probability density function on [0, 1]:

f(y) = λj , nj−1 < x ≤ nj , 1 ≤ j ≤ k,

where λ1, . . . , λk > 0 and 0 = n0 < n1 < · · ·nk = 1. Without loss of generality assume that λ1 < λ2 < . . . < λk.
Consider a sequence of Markov chains X(d) indexed by d = 1, 2, . . . on E(d) = {0, 1}d with initial distribution
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ν(d) = δ(0,...,0) and transition matrix P(d) given in (9) with

pk =

∫ k/d

(k−1)/d
f(y)dy, k = 1, . . . , d

and any ak ∈ (0, 1) for k = 1, . . . , d. The stationary distribution π(d) is given in (10). The sequence exhibits a
separation cutoff at time td = d

λ1
(log d− log(n1)) with window size wd = d

λ1
.

Proof. We have
sep(ν(d)P

td+cd
d , πd) = P

(
T ∗d >

d
λ1

(log d− log(n1)) + c dλ1

)
= 1− P

(
1
d (T ∗d − 1

λ1
d log d) ≤ log(n1)

λ1
+ c

λ

)
.

Lemma 3.1 in [24] implies that 1
d (T ∗d − 1

λ1
d log d) converges in distribution to random variable Z with c.d.f

P (Z ≤ c) = e−n1e
−λ1c . Thus, we have

lim sup
d→∞

sep(ν(d)P
td+cd
d , πd) = 1− e−n1e

−λ1
(

log(n1)
λ1

+ c
λ

)
= 1− e−e

−c
.

Similarly
sep(ν(d)P

td−cd
d , πd) = 1− P

(
1
d (T ∗d − 1

λ1
d log d) ≤ log(n1)

λ1
− c

λ

)
and

lim inf
d→∞

sep(ν(d)P
td−cd
d , πd) = 1− e−n1e

−λ1
(

log(n1)
λ1

− c
λ

)
= 1− e−e

c

.

Taking limits as c→∞ finishes the proof. �

Next corollaries utilize results on time until some set of coupons is collected.

Corollary 4.14. Consider a sequence of Markov chains X(d) indexed by d = 1, 2, . . . on E(d) = {0, 1, . . . , N}d
with initial distribution ν(d) = δ(0,...,0) and transition matrix P(d) given in (8) with pk = 1

d and N1 = . . . =
Nd = N ≥ 2 (so that (7) holds). The stationary distribution π(d) is uniform. The sequence of chains exhibits a
separation cutoff at time d log d+(N−1)d log log d−d[γ− log(N−1)!] with window size d, where γ = 0.57721 . . .
is the Euler-Mascheroni constant.

Proof. In [8] authors derived limiting distribution of T ∗d showing that

1

d
(T ∗d − d log d− (N − 1)d log log d+ d[γ − log(N − 1)!])

converges in distribution to a standard Gumbel random variable. Similar calculations as in Corollary 4.12 finish
the proof. �

Recently authors in [7] extended the result of [8] obtaining the limiting distribution of T ∗d for N1 = . . . =
Nd = N and for quite general choices of probabilities pk. Let us indicate here one example (which actually
includes result of Corollary 4.14 as a special case).

Corollary 4.15. Consider a sequence of Markov chains X(d) indexed by d = 1, 2, . . . on E(d) = {0, 1, . . . , N}d
with initial distribution ν(d) = δ(0,...,0) and transition matrix P(d) given in (8) with

pk =
1

(log k)p
1

Kd
, Kd =

d∑
k=1

1

(log k)p
, p ∈ (0, 1), k = 1, . . . , d
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and N1 = . . . = Nd = N ≥ 2 (so that (7) holds). The stationary distribution π(d) is uniform. The sequence of
chains exhibits a separation cutoff at time d log d+ (N − 1)d log log d− d[γ + p− log(p+ 1)− log(N − 1)!] with
window size d.

Proof. In [7] authors prove that

1

d
(T ∗d − d log d− (N − 1)d log log d+ d[γ + p− ln(p+ 1)− log(N − 1)!])

converges in distribution to a standard Gumbel random variable. Again, similar calculations as in Corollary
4.12 finish the proof. �

4.4. Constructing ergodic chain with prespecified FSST and arbitrary stationary distri-
bution

Let us ask the following question (which was one of the main motivations for the paper):

How to construct a Markov chain on a state space of size M with arbitrary stationary distribution
π whose FSST T is deterministic, P (T = M − 1) = 1?

The recipe is clear from previous sections: Start with some absorbing chain X∗ for which P (T ∗ = M−1) = 1,
where T ∗ is absorption time. Probably the simplest one is the following: take E = {1, . . . ,M} with transitions
P∗0(k, k+1) = 1 for k < N and P∗0(N,N) = 1 and start it at state 1. Then of course we have desired absorption
time and thus the antidual would have desired stationary distribution and FSST.

The above example will be a special case of a more general result. Many absorbing chains have absorption
time T ∗ distributed as a mixture of sums of independent geometric random variables with parameters being
the eigenvalues. E.g., for stochastically monotone discrete time birth and death chain starting at 1 with
d > 1 being absorbing state, time to absorption is distributed as a sum of geometric random variables with
parameters being the eigenvalues. This result follows from Karlin and McGregor [15] or Keilson [16]. Fill [12]
gave a first stochastic proof of this result (using dualities). This was extended to skip-free Markov chains in
Fill [11]. Miclo [23] showed that for any absorbing chain on E = {e1, . . . , eM} with positive eigenvalues and
some reversibility condition (involving substochastic kernel corresponding to transition matrix with row and
column corresponding to absorbing state removed) there exists a measure a = (a1, . . . , aM ) such that the time
do absorption T ∗ has distribution

T ∗ ∼
M−1∑
i=1

aiG(λi, λi+1, . . . , λM−1),

where λi are the eigenvalues of transition matrix sorted in nonincreasing order and G(p1, . . . , pk) denotes the
distribution of

∑k
j=1Xj , where Xj ∼ Geo(pj).

For convenience denote H(k) :=
∑k
j=1 π(j). Our result is following.
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Theorem 4.16. Let E = {1, . . . ,M} and pk ∈ (0, 1], k = 1, . . . ,M − 1. Let ak, π(k), k = 1, . . . ,M be two
probability distributions on E such that ak ≥ 0, π(k) > 0 for all k ∈ E. Define the matrix

P(k, s) =



π(1) + π(2)(1− p2)

π(1) + π(2)
if k = s = 1,

p2π(2)

π(1) + π(2)
if k = 1, s = 2,

π(s)

π(k)

[
pk−1

(
1− H(k − 1)

H(k)

)
− pk

(
1− H(k)

H(k + 1)

)]
if 1 < k < M, s < k,

(1− pk)
1

H(k)
+ pk

H(k)

H(k + 1)
− pk−1

H(k − 1)

H(k)
if 1 < k < M, s = k,

pk
H(k)

H(k + 1)

π(k + 1)

π(k)
if 1 < k < M, s = k + 1,

pM−1π(s) if k = M, s ≤M − 1,

1− pM−1 + pM−1π(M) if k = M, s = M.

Assume that π and sequence {pk}k=1,...,M are such that that matrix P is nonnegative. Then Markov chain X
with transition matrix P with initial distribution ν = (ν(1), . . . , ν(M)) given by

ν(k) = π(k)

M∑
i=k

ai
H(i)

has FSST T distributed as
M−1∑
i=1

aiG(pi, pi+1, . . . , pM−1) (12)

and π is its stationary distribution. Moreover, {1− p1, . . . , 1− pM−1, 1} are the eigenvalues of P.

Note that X is a skip-free chain: for given k the only nonzero entries of P are P(k, s) for s ≤ k + 1. The
proof of the Theorem is postponed to Section 5.2.
We can relatively easy have some corollaries being interesting special cases of Theorem 4.16. Applying the
Theorem with pk = 1, k = 1, . . . ,M − 1, pM = 0 and a1 = 1, ak = 0, k = 2, . . . ,M we obtain the following
Corollary.

Corollary 4.17. Consider a distribution π on E = {1, . . . ,M} such that π(k) > 0 for all k ∈ E. The Markov
chain X on E with transition matrix

P0(k, r) =



π(r)

π(1) + π(2)
for r = 1, 2, k = 1,

π(r)

π(k)

[
H(k)

H(k + 1)
− H(k − 1)

H(k)

]
for 1 < k < N, r ≤ k,

π(k + 1)

π(k)

H(k)

H(k + 1)
for 1 < k < N, r = k + 1,

π(r) for r ≤ k = N.

is ergodic with stationary distribution π. Assume the initial distribution is ν = δ1 (i.e., P (X0 = 1) = 1). Then
the chain has deterministic Fastest Strong Stationary Time T such that P (T = M − 1) = 1.
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1 2 3 4 5 . . k k + 1 . . M

1
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1
2

1
k(k+1)

1
k(k+1)

k
k+1

1
k

1
k

Figure 1. ChainX on E = {1, . . . ,M} with uniform stationary distribution with deterministic
FSST T : P (T = M) = 1

Note that for this chain we have

sep(νPk, π) = P (T > k) =

{
1 if k ≤M − 2,
0 if k ≥M − 1.

Thus this is an extreme example for separation cutoff: For any k ≤ M − 2 the chain is completely not mixed
(the separation distance between stationary distribution and distribution at step k is 1) and the chain mixes
completely exactly at step k = M − 1 (the distance is 0).
Simplifying the chain further by taking additionally uniform distribution π(k) = 1

M in Corollary 4.17 we obtain

P0(k, r) =



1

2
for r = 1, 2, k = 1,

1

k(k + 1)
for 1 < k < N, r ≤ k,

k

k + 1
for 1 < k < N, r = k + 1,

1

k
for r ≤ k = N.

The chain is sketched in Fig. 1

Two Markov chains on essentially different state spaces with the same FSST
So far in this Section we considered chains on totally ordered state space E = {1, . . . ,M}. We can also consider
another state spaces. We will consider chain on E(2) = {0, 1}d. We will not present full generality one can
have, instead we will present two chains, one on E(1) = {1, . . . , d} and the other on E(2) both with uniform
distributions and the same FSST distributed as

∑d−1
k=1Xk, where Xk ∼ Geo(k · p) for some fixed p ≤ 1

d . Note
that in particular the sizes of the state spaces are completely different, 2d versus d
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Corollary 4.18. Fix some integer d > 1 and 0 < p ≤ 1
d . Let X

(1) be a Markov chain on E(1) = {1, . . . , d} with
initial distribution ν(1) = (1, 0, . . . , 0) and transitions

P(1)(k, s) =



1− (2− d)p if k = s = 1,

(d− 2)p if k = 1, s = 2,

d+ 1

k(k + 1)
if 1 < k < M, s < k,

(1− (d− k)p)
M

k
+ (d− k)p

k

k + 1
− (d− k + 1)

k − 1

k
if 1 < k < M, s = k,

(d− k)p
k

k + 1
if 1 < k < M, s = k + 1,

p

d
if k = M, s ≤M − 1,

p

d
+ (1− p) if k = M, s = M.

Let X(2) be a Markov chain on E(2) = {0, 1}d with initial distribution ν(2)((0, . . . , 0)) = ν(2)((1, 0, . . . , 0)) = 1/2
and with transitions

P(2)(i, i′) =


1
2p if i′′ = i± sk,

1− 1
2dp if i′ = i.

(Recall that |i| =
∑d
j=1 ij and was called a level of i).

Then, the FSSTs T (1) and T (2) of both chains have the same distribution:

T (1) (d)
= T (2) =

d−1∑
k=1

Xk, where Xk ∼ Geo(k · p).

Both chains have uniform stationary distribution on respective state spaces.

Proof. We will show that chains X(1) and X(2) are sharp antidual chains of different chains X∗(1) and X∗(2),
whose absorption times are equal to the statement.

• Chain X(1)

This is a special case of the chain given in Theorem 4.16 with pk = (d− k)p and uniform stationary
distribution π. Taking a1 = 1, ak = 0, k = 2, . . . ,M we have that the initial distribution v = (1, 0, . . . , 0)

and that FSST T (1) is distributed as
∑d−1
k=1Xk, Xk ∼ Geo(pk) with pk = (d− k)p. The distribution of

T (1) is equal to
∑d−1
k=1 Yk with Yk ∼ Geo(k · p)

• Chain X(2)

This is a special case of chain P1 given in Corollary 4.7 with pk = p. Thus, its sharp dual chain is
given in (6). Recall this is the case Nj = 1, j = 1, . . . , d, let us explicitly write the transitions of this P∗
using notation from this Section:

P∗(i, i′) =

 p if i′ = i + sk,

1− (d− |i|)p if i′ = i

Roughly speaking, this is the following random walk on hypercube {0, 1}d. Being at some state i =
(i1, . . . , id), ik ∈ {0, 1} either we change one coordinate from 0 to 1 with probability p or with the
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remaining probability we do nothing. State (1, . . . , 1) is an absorbing state. Since the probability of
changing 0 into 1 does not depend on actual state, the time to increase the current level depends only
on the level. Being at any state on level |i| = l time to reach next level has distribution Geo((d − l)p)
(since there are (d − l) of zeros, each of which can be changed into 1 with probability p). Thus, if the
chain starts somewhere on level 1, say ν∗((1, 0, . . . , 0)) = 1 then absorption time is equal in distribution
to
∑d−1
k=1Xk, where Xk ∼ Geo(k · p). What remains to show is that ν = ν∗Λ yields ν(2)((0, . . . , 0)) =

ν(2)((1, 0, . . . , 0)) = 1/2. All the proofs of Theorems 4.4 and 4.6 are based on coordinate-wise ordering,
i.e.

i � i′ if ij ≤ i′j , j = 1, . . . , d.

Recall the link Λ (it is given in (4))

Λ(i, i′) =
π(i′)∑

i0:i0�i π(i0)
1(i′ � i).

We have

ν(0, . . . , 0) =
∑
i

ν∗(i)Λ(i, (0, . . . , 0)) = Λ((1, 0, . . . , 0), (0, . . . , 0))

= =
π((0, . . . , 0))

π((0, . . . , 0)) + π((1, 0, . . . , 0))
=

1

2
,

ν(1, 0, . . . , 0) =
∑
i

ν∗(i)Λ(i, (1, 0, . . . , 0)) = Λ((1, 0, . . . , 0), (1, 0, . . . , 0))

= =
π((1, 0, . . . , 0))

π((0, . . . , 0)) + π((1, 0, . . . , 0))
=

1

2
,

what finishes the proof.
�

5. Proofs

5.1. Proofs of Theorems 4.4 and 4.6

In both proofs we use the coordinate-wise ordering

i � i′ iff ij ≤ i′j , j = 1, . . . , d.

In this ordering imin = (0, . . . , 0) is a unique minimal and imax = (N1, . . . , Nd) is a unique maximal one.

Proof of Theorem 4.4. For ordering under consideration, directly from Proposition 5 in Rota [26], we find the
corresponding Möbius function

µ((i1, . . . , id), (i1 + r1, . . . , id + rd)) =

 (−1)
∑d
k=1 rk rj ∈ {0, 1}, ij + rj ≤ Nj , k = 1, . . . , d

0 otherwise.

Let

ρ(i) =

d∏
j=1

(ij + 1).

We will apply Theorem 4.1 with above ordering and uniform distribution π on E∗, i.e., π(i) = 1
ρ(imax)

. Since
X∗ starts at minimal state, so does - by Remark 4.2 - the antidual chain.
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The link Λ(i, i′) is a uniform distribution truncated to {i′ � i}, from (??) we have Λ = (diag(πC))−1CTdiag(π),
thus

Λ(i, i′) =
C(i′, i) 1

ρ(imax)∑
i(2)

1

ρ(imax)
C(i(2), i)

=
1(i′ � i)

ρ(i)
.

The inverse is given by Λ−1 = (diag(π))−1(C−1)Tdiag(πC), thus

Λ−1(i(1), i(2)) =
1

ρ(imax)
C−1(i(2), i(1))

ρ(i(2))

ρ(imax)
= ρ(i(2))C−1(i(2), i(1)).

Instead of calculating P̂∗, we will calculate Λ−1 and then directly antidual from P = Λ−1P∗Λ (the conditions
on (π,C)-Möbius monotonicity will be read from resulting antidual, see Remark 4.3). We have to calculate

P(i(1), i(2)) = (Λ−1P∗Λ)(i(1), i(2)) =
∑
i

Λ−1(i(1), i)(P∗Λ)(i, i(2)).

Because of the form of Λ−1, we need only to consider states which differ from i(1) at most by 1 on each coordinate.

P(i(1), i(2)) =
∑

r=(r1,...,rd)∈{0,1}d: i(1)−r∈E∗
Λ−1(i(1), i(1) − r)(P∗Λ)(i(1) − r, i(2))

=
∑

r=(r1,...,rd)∈{0,1}d: i(1)−r∈E∗
(−1)|r|ρ(i(1) − r)(P∗Λ)(i(1) − r, i(2))

We need to calculate

(P∗Λ)(i(1) − r, i(2)) =
∑
i

P∗(i(1) − r, i)Λ(i, i(2)) =
∑
i

P∗(i(1) − r, i)
1(i(2) � i)

ρ(i)

Note that for given i(1) − r ∈ E∗ the only nonzero entries of P∗(i(1) − r, i) are for i = i(1) − r or i = i(1) − r+ sj
(if i ∈ E∗), where sj = (0, . . . , 0, 1, 0, . . . , 0) (with 1 at position j). Thus, we have

(P∗Λ)(i(1) − r, i(2)) =

P∗(i(1) − r, i(1) − r)
1(i(2) � i(1) − r)

ρ(i(1) − r)
+

∑
j:i

(1)
j −rj<Nj

P∗(i(1) − r, i(1) − r + sj)
1(i(2) � i(1) − r + sj)

ρ(i(1) − r + sj)

=

1−
∑

j:i
(1)
j −rj<Nj

pj

 1(i(2) � i(1) − r)

ρ(i(1) − r)
+

∑
j:i

(1)
j −rj<Nj

1(i(2) � i(1) − r + sj)

ρ(i(1) − r + sj)
pj

We have
P(i(1), i(2)) =

∑
r=(r1,...,rd)∈{0,1}d: i(1)−r∈E∗

(−1)|r|ρ(i(1) − r)

×


1−

∑
j:i

(1)
j −rj<Nj

pj

 1(i(2) � i(1) − r)

ρ(i(1) − r)
+

∑
j:i

(1)
j −rj<Nj

1(i(2) � i(1) − r + sj)

ρ(i(1) − r + sj)
pj

 (13)

We will consider cases:
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• Let i(2) = i(1) + sk. Then note that for any r ∈ {0, 1}d all indicators 1(i(2) � i(1) − r) are equal to 0.
Considering indicators 1(i(2) � i(1) − r + sj) the only nonzero is for j = k and r = (0, . . . , 0). Then we
have

P(i(1), i(1) + sk) = (−1)0ρ(i(1))
pk

ρ(i(1) + sk)
=
i
(1)
k + 1

i
(1)
k + 2

pk

• Let i(2) = i(1) −m · sk with 1 ≤ m ≤ ik. Then, both indicators are nonzero only when r = (0, . . . , 0) or
when r = sk.

P(i(1), i(1) −m · sk) =

= ρ(i(1)) ×


1−

∑
j:i

(1)
j −0<Nj

pj

 1

ρ(i(1))
1(i(1) −m · sk � i(1))

+
∑

j:i
(1)
j −0<Nj

pj
ρ(i(1) + sj)

1(i(1) −m · sk � i(1) + sj)


−ρ(i(1) − sk) ×


1−

∑
j:i

(1)
j −1(j=k)<Nj

pj

 1

ρ(i(1) − sk)
1(i(1) −m · sk � i(1) − sk)+

∑
j:i

(1)
j −1(j=k)<Nj

pj
ρ(i(1) − sk + sj)

1(i(1) −m · sk � i(1) − sk + sj)



=

1−
∑

j:i
(1)
j −0<Nj

pj

+
∑

j:i
(1)
j −0<Nj

ρ(i(1))

ρ(i(1) + sj)
pj

−

1−
∑

j:i
(1)
j −1(j=k)<Nj

pj

− ∑
j:i

(1)
j −1(j=k)<Nj

ρ(i(1) − sk)

ρ(i(1) − sk + sj)
pj

= pk − 1(i
(1)
k < Nk)pk +

∑
j:i

(1)
j

<Nj

j 6=k

(
ρ(i(1))

ρ(i(1) + sj)
− ρ(i(1) − sk)

ρ(i(1) − sk + sj)

)
pj

+
ρ(i(1))

ρ(i(1) + sk)
pk1(i

(1)
k < Nk)− ρ(i(1) − sk)

ρ(i(1))
pk

=

[
1− ρ(i(1) − sk)

ρ(i(1))
− 1(i

(1)
k < Nk)

(
1− ρ(i(1))

ρ(i(1) + sk)

)]
pk

=

[
1

i
(1)
k + 1

− 1(i
(1)
k < Nk)

(
1

i
(1)
k + 2

)]
pk.
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Finally, we have

P(i(1), i(1) −m · sk) =


1

(i
(1)
k + 1)(i

(1)
k + 2)

pk if i(1)k < Nk,

1

Nk + 1
pk if i(1)k = Nk.

• Let i(2) = i(1). Then, the indicator 1(i(2) � i(1) − r) is nonzero only when r = (0, . . . , 0), whereas the
indicator 1(i(2) � i(1) − r + sj) is nonzero when r = (0, . . . , 0) and any j = 1, . . . , d or when r = sj . We
have

P(i(1), i(1)) = (−1)0ρ(i(1))


1−

∑
j:i

(1)
j −0<Nj

pj

 1

ρ(i(1))
+

∑
j:i

(1)
j −0<Nj

pj
ρ(i(1) + sj)


−

∑
k:i

(1)
k −1≥0

ρ(i(1) − sk)

 ∑
j:i

(1)
j −1(j=k)<Nj

pj
ρ(i(1) − sk + sj)

1(i(1) � i(1) − sk + sj)



= 1−
∑

j:i
(1)
j <Nj

pj +
∑

j:i
(1)
j <Nj

ρ(i(1))

ρ(i(1)) + sj)
pj −

∑
k:i

(1)
k ≥1

ρ(i(1) − sk)

ρ(i(1))
pk

= 1−
∑

j:i
(1)
j <Nj

(
1−

i
(1)
j + 1

i
(1)
j + 2

)
pj −

d∑
k=1

i
(1)
k

i
(1)
k + 1

pk

= 1−
∑

j:i
(1)
j <Nj

(
1

i
(1)
j + 2

)
pj −

∑
j:i

(1)
j <Nj

i
(1)
j

i
(1)
j + 1

pj −
∑

j:i
(1)
j =Nj

i
(1)
j

i
(1)
j + 1

pj

= 1−
∑

j:i
(1)
j <Nj

(
1− 1

(i
(1)
j + 1)(i

(1)
j + 2)

)
pj −

∑
j:i

(1)
j =Nj

Nj
Nj + 1

pj .

The assumption (7) implies that P(i(1), i(1)) ≥ 0. All other transitions have probability 0. For example, let
i(2) = i(1) + m · sk with 2 ≤ m ≤ Nk − ik. Then both indicators in (13) are equal to 0. Similarly, if two or
more coordinates of i(2) are strictly larger then appropriate coordinates of i(1), the indicators are also equal to
0. However, instead of considering all other cases, it is enough to show that all already calculated transitions
sum up to 1 (see proof of Theorem 4.1). We have (with convention

∑0
m=1 f(m) ≡ 0)

∑
i(2)∈E∗

P(i(1), i(2)) =
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P(i(1), i(1)) +
∑

j:i
(1)
j <Nj

P(i(1), i(1) + sj) +

d∑
j=1

i
(1)
j∑

m=1

P((i(1), i(1) −m · sj)

= 1−
∑

j:i
(1)
j <Nj

(
1− 1

(i
(1)
j + 1)(i

(1)
j + 2)

)
pj −

∑
j:i

(1)
j =Nj

Nj
Nj + 1

pj

+
∑

j:i
(1)
j <Nj

i(1) + 1

i(1) + 2
pj +

∑
j:i

(1)
j <Nj

i
(1)
j∑

m=1

P((i(1), i(1) −m · sj) +
∑

j:i
(1)
j =Nj

i
(1)
j∑

m=1

P((i(1), i(1) −m · sj)

= 1−
∑

j:i
(1)
j <Nj

(
1− 1

(i
(1)
j + 1)(i

(1)
j + 2)

− i(1) + 1

i(1) + 2

)
pj −

∑
j:i

(1)
j =Nj

Nj
Nj + 1

pj

+
∑

j:i
(1)
j <Nj

i
(1)
j

(i
(1)
j + 1)(i

(1)
j + 2)

+
∑

j:i
(1)
j =Nj

Nj
Nj + 1

pj

= 1−
∑

j:i
(1)
j <Nj

(
1− 1

(i
(1)
j + 1)(i

(1)
j + 2)

− i(1) + 1

i(1) + 2
−

i
(1)
j

(i
(1)
j + 1)(i

(1)
j + 2)

)
pj = 1

�

Proof of Theorem 4.6. We start with general distribution π on E. Note that (0, . . . , 0) is a minimal state, and
X∗ starts at this state ν∗ = δ(0,...,0), thus - by Remark 4.2 - this is also the initial distribution of antidual chain,
i.e., ν = ν∗, regardless the stationary distribution π.

Let us start with P̂∗. For convenience, define

f(i, k) =

∑
i′�i π(i′)∑

i′′�i+sk
π(i′′)

for i : ik = 0.

We have

P̂∗(i(2), i(1)) =
(πC)(i(2))

(πC)(i(1))
P∗(i(2), i(1)) =


f(i(2), k)pk if i(1) = i(2) + sk,

1−
∑

j:i
(2)
j =0

pj if i(1) = i(2).

Note that P̂∗ is not a stochastic matrix, since we have∑
i

P̂∗(i(2), i) =
∑

j:i
(2)
j =0

f(i(2), j)pj + 1−
∑

j:i
(2)
j =0

pj = 1−
∑

j:i
(2)
j =0

(
1− f(i(2), j)

)
pj . (14)

Now, calculating antidual from Theorem 4.1, we have

P(i(1), i(2)) =
π(i(2))

π(i(1))
((CT )−1P̂∗CT )(i(1), i(2)) =

π(i(2))

π(i(1))
(C(P̂∗)TC−1)(i(2), i(1))

=
π(i(2))

π(i(1))

∑
i�i(1)

P̂∗(i, {i(2)}↑)(−1)|i
(1)−i|, (15)
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where we have used the fact, that for this ordering the Möbius function fulfillsC−1(i, i(1)) = (−1)|i
(1)−i|1(i � i(1))

(see, e.g., Corollary on p. 345 of [26]).
We proceed with (15) by considering cases:

• Case 1: i(2) = i(1) + sk for some k : i
(1)
k = 0.

Then, the sum in (15) is following
∑

i�i(1) P̂
∗(i, {i(1) + sk}↑)(−1)|i

(1)−i|, the only non-zero term is for
i = i(1), thus

P(i(1), i(1) + sk) =
π(i(1) + sk)

π(i(1))
P̂∗(i(1), {i(1) + sk}↑) =

π(i(1) + sk)

π(i(1))
f(i(1), k)pk. (16)

• Case 2: i(2) = i(1) + sk1 + . . . skM for some k1, . . . , kM : i
(1)
k1

= . . . = i
(1)
kM

= 0 and M ≥ 2.

Then, for any i � i(1) we have that P̂∗(i, {i(1)+sk1+. . . skM }↑) = 0, thusP(i(1), i(1)+sk1+. . . skM ) = 0.
• Case 3: i(2) = i(1). Then we have

P(i(1), i(1)) =
∑
i�i(1)

P̂∗(i, {i(1)}↑)(−1)|i
(1)−i|

= P̂∗(i(1), {i(1)}↑)−
∑

j:i
(1)
j =1

P̂∗(i(1) − sj , {i(1)}↑).

First term is equal to
∑

i P̂
∗(i(1), i), in the latter, the only possibility is to change j-th coordinate of

i(1) − sj to one:

P(i(1), i(1)) = 1−
∑

j:i
(1)
j =0

pj(1− f(i(1), j))−
∑

j:i
(1)
j =1

f(i(1) − sj , j)pj . (17)

• Case 4: i(2) = i(1) − sk for some k : i
(1)
k = 1. Consider the sum from (15)∑

i�i(1)
P̂∗(i, {i(1) − sk}↑)(−1)|i

(1)−i| = P̂∗(i(1), {i(1) − sk}↑)

+P̂∗(i(1) − sk, {i(1) − sk}↑)(−1) +
∑

j:i
(1)
j =0

P̂∗(i(1) − sj , {i(1) − sk}↑)(−1)

+
∑

j:i
(1)
j

=1

j 6=k

P̂∗(i(1) − sj − sk, {i(1) − sk}↑)(−1)2 =: S1 − S2 − S3 + S4.

S1 is for i = i(1), S2 and S3 are for all i � i(1) which are on level |i(1)| − 1, and S4 for states on level
|i| − 2.

Concerning S1 and S2. All the “transitions” (recall, P̂∗ is not a stochastic matrix) are only upward
w.r.t. �, thus, by (14) we have

S1 = 1−
∑

j:i
(1)
j =0

pj(1− f(i(1), j)),

S2 = 1−
∑

j:i
(1)
j =0

pj(1− f(i(1) − sk, j))− pk(1− f(i(1) − sk, k)).
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Concerning S3: Note that the only possibility is to change j-th coordinate of i(1) − sj :

S3 :=
∑

j:i
(1)
j

=1

j 6=k

P̂∗(i(1) − sj , i
(1)) =

∑
j:i

(1)
j

=1

j 6=k

f(i(1) − sj , j)pj .

Concerning S4: Similarly, here we can only change j-th coordinate:

S4 :=
∑

j:i
(1)
j

=1

j 6=k

P̂∗(i(1) − sj − sk, i
(1) − sk) =

∑
j:i

(1)
j

=1

j 6=k

f(i(1) − sj − sk, j).

Summarizing, S1 + S2 + S3 + S4 = pk(1− f(i(1) − sk, k))

−
∑

j:i
(1)
j =0

pj

(
f(i(1), j)− f(i(1) − sk, j)

)
−

∑
j:i

(1)
j

=1

j 6=k

pj

(
f(i(1) − sj − sk, j)− f(i(1) − sj , j)

)
,

thus

P(i(1), i(1) − sk) =
π(i(1) − sk)

π(i(1))

(
pk(1− f(i(1) − sk, k))

+
∑

j:i
(1)
j =0

(
f(i(1), j)− f(i(1) − sk, j)

)
+

∑
j:i

(1)
j

=1

j 6=k

(
f(i(1) − sj − sk, j)− f(i(1) − sj , j)

)
. (18)

For general stationary distribution there are more cases to consider than the four considered above. However,
for the specific stationary distribution under consideration, these are all the cases.

For our stationary distribution π given in (10) we have

π(i(1) + sk)

π(i(1))
=

ak
1− ak

,
π(i(1) − sk)

π(i(1))
=

1− ak
ak

,

f(i, k) =

∑
i′�i

d∏
j=1

[aj1(ij = 1) + (1− aj)1(i′j = 0)]

∑
i′′�i+sk

d∏
j=1

[aj1(i′′j = 1) + (1− aj)1(i′′j = 0)]

.

Denote

ξ(i, k) =

d∏
j=1
j 6=k

[aj1(ij = 1) + (1− aj)1(ij = 0)].

The sum in denominator of f(i, k) can be split into two sums: for i′′ : i′′k = 0 and i′′ : i′′k = 1. We have

f(i, k) =

∑
i′�i

ξ(i′, k)(1− ak)∑
i′′�i+sk

i′′
k
=0

ξ(i′′, k)(1− ak) +
∑

i′′�i+sk
i′′
k
=1

ξ(i′′, k)ak
= 1− ak.

From (16), (17) and (18) we obtain transitions given by matrix P given in (9). �
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5.2. Proof of Theorem 4.16

Let X∗ be an absorbing chain on E = {1, . . . ,M} with transition matrix:

P∗(k, s) =

 pk if s = k + 1,

1− pk if s = k,

where, for convenience, we set pM = 0. Let ν∗ = (a1, . . . , aM ) be its initial distribution. This is a pure birth
chain, thus its absorption time T ∗ is distributed as (12). We will show that P is its sharp antidual chain.
We consider total ordering �:=≤. Then the link given in (4) reads

Λ(k, s) =
π(s)1(s ≤ k)

H(k)
.

The inverse Λ−1 can be easily derived:

Λ−1(k, s) =
H(k)

π(k)
1(s = k)− H(k − 1)

π(k)
1(s = k − 1) =


H(K)

π(k)
if s = k,

−H(k − 1)

π(k)
if s = k − 1.

Let us calculate

P∗Λ(k, s) =
∑
r

P∗(k, r)Λ(r, s)

= 1(k < M) (P∗(k, k + 1)Λ(k + 1, s)) + 1(k = M) (P∗(M,M)Λ(M, s))

= 1(k < M)
π(s)1(s ≤ k + 1)

H(k + 1)
+ 1(k = M)π(s).

Calculating transitions of antidual chain:

P(k, r) = Λ−1P∗0Λ(k, r) =
∑
s

Λ−1(k, s)P∗0Λ(s, r)

=
H(k)

π(k)
P∗0Λ(k, r)− 1(k > 1)

H(k − 1)

π(k)
P∗0Λ(k − 1, r)

Consider separately the cases

• k = 1. Then P(1, s) = H(1)
π(1) P

∗Λ(1, s) = P∗Λ(1, s). This is nonzero only if s = 1 or s = 2.

P(1, 1) = (1− p1)
π(1)

H(1)
+ p1

π(1)

H(2)
=

(1− p1)(π(1) + π(2)) + p1π(1)

π(1) + π(2)
=
π(1) + π(2)(1− p2)

π(1) + π(2)
,

P(1, 2) = p1
π(2)

H(2)
=

p1π(2)

π(1) + π(2)
.
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• k = M . We have

P∗Λ(M, s) = π(s)

P∗Λ(M − 1, s) = (1− pM−1)
π(s)1(s ≤M − 1)

H(M − 1)
+ 1(M − 1 < M)

π(s)1(s ≤M)

H(M)
pM−1

= (1− pM−1)
π(s)1(s ≤M − 1)

H(M − 1)
+ π(s)pM−1.

Thus

P(M, s) =
H(M)

π(M)
P∗Λ(M, s)− 1(M > 1)

H(M − 1)

π(M)
P∗Λ(M − 1, s)

=
H(M)

π(M)
π(s)− H(M − 1)

π(M)

(
(1− pM−1)

π(s)1(s ≤M − 1)

H(M − 1)
+ π(s)pM−1

)
=

π(s)

π(M)
− π(s)

π(M)
(1− pM−1)1(s ≤M − 1)− π(s)

π(M)
H(M − 1)pM−1

=
π(s)

π(M)
[1− πM−1 + (1− pM−1)1(s ≤M − 1) + π(M)pM−1]

=

{
pM−1π(s) if s ≤M − 1,
1− pM−1 + pM−1π(M) if s = M.

• 1 < k < M . We have

P∗Λ(k − 1, s) = (1− pk−1)
π(s)1(s ≤ k − 1)

H(k − 1)
+ pk−1

π(s)1(s ≤ k)

H(k)
.

Thus

P(k, s) =
H(k)

π(k)
P∗Λ(k, s)− H(k − 1)

π(k)
P∗Λ(k − 1, s)

=
H(k)

π(k)

[
(1− pk)

π(s)1(s ≤ k)

H(k)
+ pk

π(s)1(s ≤ k + 1)

H(k + 1)
)

]
− H(k − 1)

π(k)

[
(1− pk−1)

π(s)1(s ≤ k − 1)

H(k − 1)
+ pk−1

π(s)1(s ≤ k)

H(k)

]
.

Consider three subcases:
� s = k + 1. Then we have

P(k, k + 1) = pk
H(k)

H(k + 1)

π(k + 1)

π(k)
.

� s = k. Then we have

P(k, k) =
H(k)

π(k)

[
(1− pk)

π(k)

H(k)
+ pk

π(k)

H(k + 1)

]
− H(k − 1)

π(k)

[
pk−1

π(k)

H(k)

]
= (1− pk)

1

H(k)
+ pk

H(k)

H(k + 1)
− pk−1

H(k − 1)

H(k)
.
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� s < k. Then we have

P(k, s) =
H(k)

π(k)

[
(1− pk)

π(s)

H(k)
+ pk

π(s)

H(k + 1)

]
− H(k − 1)

π(k)

[
(1− pk−1)

π(s)

H(k − 1)
+ pk−1

π(s)

H(k)

]
= (1− pk)

π(s)

π(k)
+ pk

π(s)

π(k)

H(k)

H(k + 1)
− (1− pk−1)

π(s)

π(k)
− pk−1

π(s)

π(k)

H(k − 1)

H(k)

=
π(s)

π(k)

[
pk−1

(
1− H(k − 1)

H(k)

)
− pk

(
1− H(k)

H(k + 1)

)]
.

This way we considered all the cases. The only thing left to calculate is the initial distribution of antidual chain.
Using relation (1) we have

ν(k) =

M∑
i=1

ν∗(i)Λ(i, k) = π(k)

M∑
i=1

ai1(k ≤ i)
H(i)

= π(k)

M∑
i=k

ai
H(i)

.

The matrix P∗ is upper-triangular, thus {1 − p1, . . . , 1 − pM−1, 1} are its eigenvalues. Because of the relation
(1) these are also the eigenvalues of P.
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