
On testing pseudorandom generators via statistical tests based on arcsine
lawI

Paweł Loreka, Grzegorz Łośb, Filip Zagórskic, Karol Gotfrydc

aMathematical Institute, University of Wrocław, pl. Grunwaldzki 2/4, 50-384, Wrocław, Poland
bInstitute of Computer Science, University of Wrocław, Joliot-Curie 15, 50-383, Wrocław, Poland

cDepartment of Computer Science, Faculty of Fundamental Problems of Technology, Wrocław University of Science and
Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland

Abstract

NIST SP800-22 Test Suite is a set of commonly used tools for testing the quality of pseudo random generators.
Wang and Nicol [Computers & Security 53, 44–64 (2015)] pointed out that it is relatively easy to construct
some generators whose output is “far” from uniform distribution, but which pass NIST tests. Authors
proposed some statistical tests which are based on Law of Iterated Logarithm (LIL) which work very good
for such generators (i.e.,, they do not pass the test). In this paper we propose a test which is based on
Arcsine Law (ASIN). The quality of ASIN is comparable to LIL, however we point out some generators
which are obviously flawed and what is detected by ASIN but not by LIL.

Keywords: Arcsine law, Random walks, Pseudo random number generator, Statistical testing

1. Introduction

Random numbers are key ingredients in various applications, e.g., in cryptography (e.g., for generating a
secret/public key) or in simulations (e.g., in Monte Carlo methods), just to mention a few. No algorithm can
produce truly random numbers. Pseudo random number generators (PRNGs) are used instead. These are
deterministic algorithms which produce numbers which we expect to resemble truly random ones in some
sense. In order to evaluate whether a given PRNG is sound and can be applied for purposes where strong
pseudorandomness is required, various tests are applied to its output. The main goal of these tests is to
check if the sequence of numbers U = (U1, U2, . . . , Un) (or bits, depending on the actual implementation)
produced by a PRNG has similar properties as a sequence of elements generated independently and uniformly
at random. Due to popularity and significance of the problem, a variety of testing procedures have been
developed in recent years. Such statistical tests are generally aimed at detecting various deviations in
generated sequences what allows for revealing flawed PRNGs producing predictable output. These techniques
can be divided into several groups according to the approach used for verifying the quality of generators.

The first class of procedures encompasses classical tools from statistics like Kolmogorov-Smirnov test or
Pearson’s chi-squared test which are used for comparing theoretical and empirical distributions of appropriate
statistics calculated for PRNG’s output. It is also possible to adapt tests of normality like Anderson-Darling
or Shapiro-Wilk tests for appropriately transformed pseudorandom sequences.

Another category of testing methods relies on the properties of sequences of independent and identically
distributed random variables. Based on the original sequence U returned by the examined PRNG we are
able to obtain realizations of other random variables with known theoretical distributions. Some examples of
probabilistic laws used in practice in this kind of tests can be found e.g., in [1]. They include such procedures

IWork supported by NCN Research Grant DEC-2013/10/E/ST1/00359
Email addresses: Pawel.Lorek@math.uni.wroc.pl (Paweł Lorek), grzegorz314@gmail.com (Grzegorz Łoś),

Filip.Zagorski@pwr.edu.pl (Filip Zagórski), Karol.Gotfryd@pwr.edu.pl (Karol Gotfryd)

Preprint submitted to Journal of Computational and Applied Mathematics July 15, 2018

like gap test, permutation test and coupon collector’s test, just to name a few (see [1] for more detailed
treatment). These methods have also the advantage that they implicitly test independence of generator’s
output.

The main issue with such methods is that a single statistical test looks only at some specific property
that holds for sequences of truly random numbers. If a PRNG passes given test, it only implies that
generated sequences have this particular property. Hence, for practical purposes bundles of diverse tests are
created. Such a test bundle consists of a series of individual procedures based on various stochastic laws
from probability theory. A PRNG is then considered as good if the pseudorandom sequences it produces
pass all tests in a given bundle. Some examples of such test suites are Marsaglia’s Diehard Battery of Tests
of Randomness from 1995, Dieharder developed by Brown et al. (cf. [2]), TestU01 implemented by L’Ecuyer
and Simard (see [3, 4]) and NIST Test Suite [5]. The last one, designed by National Institute of Standard and
Technology is currently considered as one of the state-of the art test bundles and thus widely used for practical
purposes. For that reason we shall briefly summarize its most important features. Comprehensive description
of all its testing procedures together with additional technical and implementation details can be found in
[6]. NIST Test Suite SP800-22 [5] comprises of 15 specific tests for determining whether pseudorandom
sequences passed as the input can be treated as good. NIST SP800-22 includes such methods like monobit
test for checking what the proportion of zeros and ones in tested sequence is, runs test taking into account
the lengths of subsequences consisting of runs of identical bits and serial test for checking for given k what the
frequencies of occurrences of all k-bit overlapping patterns are. The procedures in NITS SP800-22 proceed
as follows. In each case the null hypothesis is that the tested sequence is a realization of truly random bit
sequence. For each test m sequences are generated using tested PRNG. Then for each sequence the test is
carried out with selected significance level α (by default α = 0.01) resulting in outputting the corresponding
p-value. The tested sequence is considered to be random if p ≥ α. A PRNG is then accepted as sound if
the fraction of all input sequences passing the test is about 1− α. The results can be further inspected by
e.g., analyzing the distribution of obtained p-values, as suggested by NIST (cf. [6, 7]).

Although this approach seems to be reliable, it has, however, some inherent limitations. Namely, the key
issue is that NIST tests focus merely on characteristics of single binary strings returned by tested PRNG
rather that treating them as a whole. This problem can be explained by the following example. Suppose that
we have some generator G1 which is considered as good by the NIST Test Suite and let us consider another50

PRNG, G2 such that every hundredth sequence it produces will be some fixed or highly biased bit string
(e.g., with number of 1s highly exceeding number of 0s), and in all the remaining cases it returns the output
of G1. G2 will be likely recognized by NIST SP800-22 as strong PRNG despite its obvious flaws (its output
is easily distinguishable from that of truly random generator). This drawback are formalized and carefully
discussed by Wang and Nicol [8] in Section 3. They also reported that some PRNGs used in practice, which
are known to be weak, like Debian Linux (CVE-2008-0166) PRNG based on OpenSSL 0.9.8c-1 or standard
C linear congruential generator, pass the tests from NIST SP800-22 using testing parameters recommended
by NIST. As we shall see, the method we propose is capable of detecting such flawed generators.

A very interesting approach for testing PRNGs was presented in [9]. The concept of their tests is based on
the properties of random walk on Zn with 0 being an absorbing state (also known as gambler ruin problem),
more precisely, on the time till absorption. The authors propose three different variants of the test. The
general idea of the basic procedure is the following. For fixed p ∈ (0, 1) and x ∈ Zn, the output U = (Ui) of
a PRNG is treated as numbers from unit interval and used to define a random walk starting in x such that if
Ui < p and the process is in state s, then it moves to (s+ 1) mod n, otherwise to (s− 1) mod n. The aim
of this test is to compare theoretical and empirical distributions of time to absorption in 0 when starting
in x. Based on the values of testing statistics, the PRNG is then either accepted or rejected. The authors
reported some “hidden defects” in the widely used Mersenne Twister generator. However, one has to be very
careful dealing with randomness: it seems like re-seeding PRNG with a fixed seed was an error which led to
wrong conclusions. The criticism was raised by Ekkehard and Grønvik [10], authors also show that tests of
Kim et al. [9] performed properly do not reveal any defects in Mersenne Twister PRNG. Recently, authors
in [11] proposed another gambler ruin based procedure for testing PRNGs. Authors exploited formulas for
winning probabilities for arbitrary sequences p(i), q(i), (i.e., winning and losing probabilities depend on the
current fortune) which are the parameters of the algorithm.

2

In recent years a novel kind of testing techniques has been introduced for more careful verification of
generators. The core idea of this class of methods is based on observation that the binary sequence (Bi)
produced by a PRNG, after being properly rescaled, can be interpreted as a one-dimensional random walk
(Si)i∈N with Sn =

∑n
i=1Xi, whereXi = 2Bi−1. For random walks defined by truly random binary sequences

a wide range of statistics has been considered over the years and a variety of corresponding stochastic laws
has been derived (see e.g. [12]) . For a good PRNG we may expect that its output behaves as Sn. Hence,
the following idea comes to mind: choose some probabilistic law that holds for truly random bit sequences
and compare the theoretical distribution of the corresponding statistics with the empirical distribution
calculated for m sequences produced by examined PRNG in m independent experiments. This comparison
can be done e.g., by computing the p-value of the appropriate test statistics under the null hypothesis that
the sequence generated by PRNG is truly random. Another concept named statistical distance based testing
was suggested in [8], which relies on calculating statistical distances like e.g., total variation or separation
distance (cf. formulas (5) and (6), respectively) between the theoretical and the empirical distribution for
considered characteristics and rejecting PRNG if the distances are above some threshold. Such approach
was adopted in [8], where the authors derive their test statistics from Law of Iterated Logarithm for random
walks. The procedure we propose uses similar methodology and is based on Arcsine Law. In the following
Section 2 we will recall the aforementioned stochastic laws for random walks, whereas the testing methods
will be described in Section 3. Through the paper we will denote by [n] the set {1, . . . , n}.

Pseudo random generators. The intuition behind pseudo random number generator is clear. However, let
us give a strict definition roughly following Asmussen and Glynn [13].

Definition 1.1. Pseudo random number generator (PRNG) is a 5-tuple < E, V, s0, f, g >, where E is a
finite state space, V is a set of values returned by generator, s0 ∈ E is a so-called seed, i.e., initial state in
the sequence (si)

∞
i=0, function f : E → E describes transition between consecutive states sn = f(sn−1) and

g : E → V maps generator’s state into the output.

Usually V = (0, 1) or V = {0, 1, . . . ,M} for some M ∈ N, the latter one is used throughout the paper.
Finiteness of state space E implies that for each generator there exists d such that sk+d = sd. Such minimal
d is called a period of a PRNG. Good PRNG should have long period, optimally equal to |E|.100

Recall that LCG (linear congruential generator) is a generator which updates its states according to formula
sn = (asn−1 + c) mod M , thus it is defined by three integers: a modulus M , a multiplier a, and an additive
constant c. It is shortly denoted as LCG(M,a, c). In case c = 0, the generator is called MCG (multiplicative
congruential generator), shortly denoted as MCG(M,a). For a detailed description of commonly used
PRNGs see surveys [14], [15], [16] or a book [17].

It is clear that both the input and the output of a random number generator can be viewed as a finite
sequence of bits. For a PRNG to be considered as sound, the outputted sequences should have some
particular property, namely each returned bit has to be generated independently with equal probability of
being 0 and 1. We say that the sequence of bits is truly random if it is a realization of a Bernoulli process
with success probability p = 1

2 .
Given a PRNG G outputting integers from the set M̄ = {0, 1, . . . ,M−1}, we may obtain a pseudorandom

binary sequence with any given length using the following simple procedure. Namely, while the bit sequence s
is not sufficiently long, generate the next pseudorandom number a and concatenate its binary representation
(on dlog2Me bits) with the current content of s. In the ideal model with G being truly random number
generator, such algorithm produces truly random bit sequences provided that M is a power of 2. Indeed,
for M = 2k there is one to one correspondence between k-bit sequences and the set M̄ . Hence, when each
number is generated independently with uniform distribution on M̄ , then each combination of k bits is
equally likely and therefore each bit of the outputted sequence is independent and equal to 0 or 1 with
probability 1

2 .
However, this is not true forM 6= 2k. It is easy to observe that in such a case the generator is more likely

to outputs 0s and generated bits are no longer independent. To overcome this issue one may simply discard
the most significant bits. This still results in non-uniform distribution, though the deviations are relatively

3

small. Another approach is to take d first bits from binary representation of a
M for some fixed d instead of

simply outputting bits of a. Such method has the advantage that it can be easily adopted for the underlying
generator returning numbers from the unit interval, what is common for many PRNG implementations.

2. Stochastic laws for random walks

Let (Bi)i≥0 be a Bernoulli process with parameter p ∈ (0, 1), i.e., the sequence of independent random
variables with identical distribution P (B1 = 1) = 1 − P (B1 = 0) = p. A good PRNG should behave as a
generator of Bernoulli process with p = 1/2 (what we assume from now on). It will be more convenient to
consider

Xi = 2Bi − 1, S0 = 0, Sn =

n∑
i=1

Xi.

The sequence Xi is {−1,+1}-valued, the process (Si)i∈N is called a random walk.
Of course |Sn| ≤ n. However, large values of |Sn| have small probability and in practice the values

of Sn are in a much narrower interval than [−n, n]. Weak and Strong Law of Large Numbers imply that
Sn

n

P→ 0, and even Sn

n

a.s.→ 0, where P→ denotes convergence in probability and a.s.→ denotes almost sure
convergence. Thus, the deviations of S from 0 grow much slower than linearly. On the other hand Central
Limit Theorem states that Sn

n

D→ N (0, 1) (where D→ denotes convergence in distribution), what is in some
sense a lower bound on fluctuations of Sn – they will leave interval [−

√
n,
√
n] since we have lim supn→∞

Sn√
n

=

∞ (implied by 0-1 Kolmogorov’s Law). It turns out that the fluctuations can be estimated more exactly:

Theorem 2.1 ([18], cf. also Chapter VIII.5 in [12]). For a random walk Sn we have

P
(

lim inf
n→∞

Sn√
2n log log n

= −1

)
= 1,

P
(

lim sup
n→∞

Sn√
2n log log n

= +1

)
= 1.

Thus, to normalize Sn: dividing by n is too strong and dividing by
√
n is too weak, the fluctuations of

Sn from 0 grow proportionally to
√

2n log log n.

−1e+05

−5e+04

0e+00

5e+04

1e+05

0e+00 3e+08 6e+08 9e+08

Step

S
ta

te

Figure 1: 500 trajectories of random walks of length 230. Blue plot: ±
√
n, red plot: ±

√
2n log logn

In Figure 1 500 trajectories of random walks of length 230 are depicted, the darker the image the higher
the density of trajectories. We can see that ±

√
2n log log n roughly corresponds to the fluctuations of

4

Sn. However, few trajectories after around billion steps are still outside [−
√

2n log log n,
√

2n log log n].
The Law of Iterated Logarithm tells us that for appropriately large n the trajectories will not leave
[−
√

2n log log n,
√

2n log log n] with probability 1. The conclusion is that n must be much larger.
One could think that the following is a good test for randomness: Fix some number, say 100 and classify

PRNG as “good” if a difference between number of ones and zeros never exceeds 100. The large difference
could suggest that zeros and ones have different probabilities of occurring. However, LIL shows us that this
reasoning is wrong, we should expect some fluctuations, the absence of which means that PRNG does not
produce bits which can be considered random. This property of random walks was used by the authors in
[8] for designing a novel method of testing random number generators (the output of any PRNG can be
considered as a binary sequence, thus it defines some one-dimensional random walk). We shall shortly recall
the details of their technique in Section 3.2.

There is yet one more interesting property. Define Sliln = Sn√
2n log logn

. LIL implies that Sliln does not150

converge pointwise to any constant. However, it converges to 0 in probability. Thus, let us fix some small
ε > 0. For almost all n with arbitrary high probability p < 1 the process Sliln will not leave (−ε, ε). On
the other hand it tells us that the process will be outside this interval infinitely many times. This apparent
contradiction shows how unreliable our intuition can be on phenomena taking place at infinity.

2.1. Arcsine Law
The observations described in previous section imply that averaging everything Sn will spend half of

its time above the 0-axis and half of its time below. However, the typical situation is counter-intuitive (at
first glance): typically the random walk will either spend most of its time above or most of its time below
0-axis. This is expressed in the Theorem 2.2 below (see e.g. [12]). Before we formulate the theorem, let us
first introduce some notations. Let 1(expr) is equal to 1 if expr is true, and 0 otherwise. For a sequence
X1, X2, . . . let

Dk = 1 (Sk > 0 ∨ Sk−1 > 0) , k = 1, 2, . . . (1)

Dk is equal to 1 if number of ones exceeds number of zeros either at step k or at step k− 1, and 0 otherwise
(in case of ties, i.e., Sk = 0, we look at the previous step letting Dk = Dk−1). In other words, Dk = 1
corresponds to the situation when the line segment of the trajectory of random walk between steps k − 1
and k is above the 0-axis.

Theorem 2.2 (Arcsine Law for random walk). Define Ln =
∑n
k=1Dk. For x ∈ (0, 1) we have

P (Ln ≤ x · n) −−−−→
n→∞

1

π

∫ x

0

dt√
t(1− t)

=
2

π
arcsin

√
x .

P (Ln ≤ x · n) is the chance that the random walk was above 0-axis for at most x fraction of time.
The limiting distribution is called arcsine distribution, it has density f(t) = 1

π

√
t(1− t) and cdf F (t) =

2
π arcsin

√
t. The shape of pdf f(t) clearly indicates that the fractions of time spent above and below 0-axis

are more likely to be unequal than close to each other.

3. Testing PRNGs based on Arcsine Law

In this Section we will show how to exploit the theoretical properties of random walks discussed in
preceding sections to design a practical routine for testing PRNGs. We briefly describe the approach based
on Arcsine Law we employ in experiments presented in Section 4. For the sake of completeness we will also
recall some basic facts about the method of evaluating PRNGs presented in [8]. Finally, we will perform the
analysis of approximation errors that occur in our testing procedure.

5

3.1. Arcsine Law based testing
The general idea of tests is clear: take a sequence of bits generated by PRNG (treat them as −1 and

+1) and compare empirical distributions with distributions for truly random numbers (which are known).
More exactly: we will compare it to Arcsine Law given in Theorem 2.2. Let us define

Sasinn =
1

n

n∑
k=1

Dk.

Sasinn is a fraction of time instants at which ones prevail zeros. From Arcsine Law (Theorem 2.2) we can
conclude that for large n we have

P
(
Sasinn ∈ (a, b)

)
≈ 1

π

∫ b

a

dt√
t(1− t)

=
2

π
arcsin(

√
b)− 2

π
arcsin(

√
a). (2)

(we will be more specific on “≈” in Section 3.3). To test PRNG we generate m sequences of length n. We
obtain thus m realizations of a variable Sasinn , the j-th replication is denoted by Sasinn,j . We fix some partition
of a real line and count the number of realizations of Sasinn which are in a given interval. In our tests we
will use (s+ 2) element partition Pasins = {P asin0 , P asin1 , . . . , P asins+1 }, where

P asin0 =

(
−∞,− 1

2s

)
,

P asini =

[
2i− 3

2s
,

2i− 1

2s

)
, 1 ≤ i ≤ s,

P asins+1 =

[
1− 1

2s
,∞
)
.

Now we define two measures on Pasins , for 0 ≤ i ≤ s+ 1:

µasinn

(
P asini

)
= P

(
Sasinn ∈ P asini

)
, (3)

νasinn

(
P asini

)
=
|{j : Sasinn,j ∈ P asini , 1 ≤ j ≤ m}|

m
. (4)

Measure µasinn corresponds to the theoretical distribution and can be calculated (approximated) using (2),
whereas νasinn represents empirical distribution obtained from tests. We will measure the distance between
these measures either using total variation or separation distance defined for partition P as follows:

dtvP (µ, ν) =
1

2

∑
A∈P
|µ(A)− ν(A)|, (5)

dsepP (µ, ν) = max
A∈P

(
1− µ(A)

ν(A)

)
. (6)

Another approach is based on hypothesis testing. Using statistical terminology Sasinn,j will be called observa-
tions. Null hypothesis is that observations have distribution µasinn , i.e., that PRNG produces random bits.
Define

Oi = |{j : Sasinn,j ∈ P asini , 1 ≤ j ≤ m}|, 0 ≤ i ≤ s+ 1,

the number of observations within P asini interval. Let Ei denote expected number of observations within
this interval, i.e., Ei = m · P

(
Sasinn ∈ P asini

)
(what is calculated from (2)). Assuming null hypothesis the

statistic

T asin =

s+1∑
i=0

(Oi − Ei)2

Ei
(7)

6

has approximately χ2(s+ 1) distribution. Large values of T asin mean that PRNG is not good.

Summarizing, for given PRNG we generatem sequences of length n each. Then we calculate dtvP (µasinn , νasinn),
dsepP (µasinn , νasinn) and T asin. Instead of fixing the threshold for dtv, dsep and T asin, we simply calculate these
measures/statistics and compare several PRNGs relatively.

3.2. LIL based testing
The procedure of testing pseudorandom number generators based on Law of Iterated Logarithm (see

Theorem 2.1) was proposed in [8]. This method is similar to that based on Arcsine Law discussed in details
in Section 3.1, hence we will point out only the most significant differences. The LIL based testing procedure
merely differs in that instead of Sasinn we calculate the characteristic

Sliln =
Sn√

2n log log n

and use an appropriate partition of the real line.
Theoretical distribution of Sliln for truly random bit sequence can be obtained using the central limit

theorem. Denoting by Φ the cdf of standard normal distribution N (0, 1) and letting l(n) =
√

2 log log n, we
have

P
(
Sliln ∈ (a, b)

)
= P

(
Sn√
n
∈ (a l(n), b l(n))

)
≈ Φ(b l(n))− Φ(a l(n)). (8)

As the support of Sliln differs from that of Sasinn , we have to adjust the partition of real line, namely we
will use P lils = {P lil0 , P lil1 , . . . , P lils+1}, where

P lil0 = (−∞,−1),

P lili =

[
−1 +

2(i− 1)

s
,−1 +

2i

s

)
, 1 ≤ i ≤ s,

P lils+1 = [1,∞).

The theoretical and empirical measures on P lils in this case are defined for i ∈ {0, . . . , s+ 1} as follows:

µliln
(
P lili

)
= P

(
Sliln ∈ P lili

)
, (9)

νliln
(
P lili

)
=
|{j : Sliln,j ∈ P lili , 1 ≤ j ≤ m}|

m
. (10)

Theoretical distribution µliln of the statistic Sliln can be directly approximated from (8). The measure νliln
describes empirical distribution derived from the outcomes of tests (with Sliln,j being the j-th realization of
random variable Sliln calculated for the j-th generated sequence). All the remaining stages of this testing
procedure are the same as for ASIN test.

3.3. Error analysis
Our test relies on (2), however some approximations are used there. In this Section we will show that

for sequences of length at least 226 the possible error is negligible.

Lemma 3.1. For any fixed a and b such that 0 ≤ a < b ≤ 1 and for n ≥ 226 the approximation error of the
probability P

(
Sasinn ∈ (a, b)

)
in (2) using partition Pasin40 can be upper bounded by 10−5, i.e.,∣∣∣∣∣P (Sasinn ∈ (a, b)

)
− 1

π

∫ b

a

dt√
t(1− t)

∣∣∣∣∣ ≤ 10−5 .

7

Proof. Let us assume that n is even and that n = 2n. Let p2k,2n denote the probability that during 2k
steps in first 2n steps the random walk was above 0-axis, i.e., p2k,2n = P (L2n = 2k). Standard results on
simple random walk show that

p2k,2n =

(
2k

k

)(
2(n− k)

n− k

)
2−2n. (11)

The standard proof of Theorem 2.2 shows that p2k,2n is close to dk,n = 1

π
√
k(n−k)

. We will show that

|p2k,2n − dk,n| is small. A version of Stirling’s formula states that for each n there exists θn, 0 < θn ≤ 1,
such that

n! =
√

2πn
(n
e

)n
exp

{
θn

12n

}
. (12)

Plugging (12) into each factorial appearing in (11) we have

p2k,2n =
1

π
√
k(n− k)

exp

{
θ2k − 4θk

24k
+
θ2(n−k) − 4θn−k

24(n− k)

}
.

Thus we have
p2k,2n
dk,n

≤ exp

{
1

24k
+

1

24(n− k)

}
= exp

{
n

24k(n− k)

}
and

p2k,2n
dk,n

≥ exp

{
−4

24k
+

−4

24(n− k)

}
= exp

{
− n

6k(n− k)

}
.

Using the fact that ex − 1 ≤ 2x for sufficiently small x > 0 and 1− e−x ≤ x we have

p2k,2n − dk,n ≤ dk,n

(
exp

{
n

24k(n− k)

}
− 1

)
≤ dk,n

n

12k(n− k)
,

dk,n − p2k,2n ≤ dk,n

(
1− exp

{
− n

6k(n− k)

})
≤ dk,n

n

6k(n− k)
,

what implies
|p2k,2n − dk,n| ≤ dk,n

n

6k(n− k)
=

n

6π (k(n− k))
3
2

.

Fix δ > 0 and assume furthermore that δ ≤ k
n ≤ 1 − δ. The function k 7→ (k(n− k))

3/2 achieves minimal
value on the border of considered interval, thus

|p2k,2n − dk,n| ≤
n

6π (δn(n− δn))
3
2

=
1

6πn2 (δ(1− δ))
3
2

.

We will estimate the approximation error in (2) in two steps. First, take two numbers a, b such that
δ ≤ a < b ≤ 1− δ. Then∣∣∣∣∣∣

∑
a≤ k

n≤b

p2k,2n −
∑

a≤ k
n≤b

dk,n

∣∣∣∣∣∣ ≤
∑

a≤ k
n≤b

|p2k,2n − dk,n| ≤
∑

a≤ k
n≤b

1

6πn2 (δ(1− δ))
3
2

=
dbn− ane

6πn2 (δ(1− δ))
3
2

≤ b− a
3πn (δ(1− δ))

3
2

≤ 1

3πn (δ(1− δ))
3
2

=: η.

The second source of errors in probability estimation in (2) is approximating the sum by integral. Let us
consider an arbitrary function f differentiable in the interval (a, b). Split (a, b) into subintervals of length

8

1
n and let xk be an arbitrary point in the interval containing k

n . Denote by Mk and mk maximum and
minimum value of f on that interval, respectively. Using the Lagrange’s mean value theorem we obtain∣∣∣∣∣∣

∫ b

a

f(x)dx−
∑

a≤ k
n≤b

1

n
f(xk)

∣∣∣∣∣∣ ≤
∑

a≤ k
n≤b

1

n
(Mi −mi) =

∑
a≤ k

n≤b

1

n2
|f ′(ξi)| ≤

∑
a≤ k

n≤b

1

n2
sup
a≤x≤b

|f ′(x)|

=
dbn− ane

n2
sup
a≤x≤b

|f ′(x)| ≤ 2(b− a)

n
sup
a≤x≤b

|f ′(x)|.

For f(x) = 1

π
√
x(1−x)

we have f ′(x) = 2x−1
2π(x(1−x))3/2 and 1

nf
(
k
n

)
= dk,n. Hence, in the considered interval

(a, b) ⊆ (δ, 1− δ) we have∣∣∣∣∣∣
∫ b

a

f(x)dx−
∑

a≤ k
n≤b

dk,n

∣∣∣∣∣∣ ≤ 2

n
sup

δ<x<1−δ
|f ′(x)| = 1− 2δ

πn(δ(1− δ)) 3
2

=: κ.

In our tests we use the partition Pasin40 of the real line, thus we set δ = 1
80 . Moreover, we assumed that

n ≥ 226, i.e., n ≥ 225. For these parameters’ values

η ≤ 77.4

n
≤ 2.31 · 10−6 and κ ≤ 226.3

n
≤ 6.75 · 10−6.

Finally,

∣∣∣∣∣∣
∫ b

a

f(x)dx−
∑

a≤ k
n≤b

p2k,2n

∣∣∣∣∣∣ ≤
∣∣∣∣∣∣
∫ b

a

f(x)dx−
∑

a≤ k
n≤b

dk,n

∣∣∣∣∣∣+

∣∣∣∣∣∣
∑

a≤ k
n≤b

dk,n −
∑

a≤ k
n≤b

p2k,2n

∣∣∣∣∣∣
=η + κ ≤ 9.06 · 10−6 ≤ 10−5,

what justifies the approximation (2) when δ ≤ a < b ≤ 1− δ.
To complete the analysis we need to investigate the errors “on the boundaries” of unit interval, i.e., for

(0, δ) (and, by symmetry, for (1− δ, δ)). We get∣∣∣∣∣∣
∫ δ

0

f(x)dx−
∑

0≤ k
n<δ

p2k,2n

∣∣∣∣∣∣ =

∣∣∣∣∣∣
∫ 1

2

0

f(x)dx−
∫ 1

2

δ

f(x)dx−
∑

0≤ k
n≤

1
2

p2k,2n +
∑

δ≤ k
n≤

1
2

p2k,2n

∣∣∣∣∣∣
=

∣∣∣∣∣∣12 −
∫ 1

2

δ

f(x)dx− 1

2
+

∑
δ≤ k

n≤
1
2

p2k,2n

∣∣∣∣∣∣ =

∣∣∣∣∣∣
∫ 1

2

δ

f(x)dx−
∑

δ≤ k
n≤

1
2

p2k,2n

∣∣∣∣∣∣ ≤ 10−5 ,

where the last inequality follows directly from the preceding calculations. Thus, the above analysis shows
that the approximation error can be neglected.

3.4. Notes on Takashima’s method for testing PRNG and arcsine test implementation from TestU01
The idea of using arcsine law for testing PRNGs was proposed earlier by Takashima in [19] and further

developed in [20, 21]. In this series of articles, a test statistics built upon discrete arcsine law for random
walks was introduced and used for testing some particular kind of PRNGs, namely maximum-length linearly
recurring sequences (m-sequences). The presented in these papers results of experiments clearly show that
the examined generators generate biased output, hence proving that Takashima’s methods seem to be useful

9

and could be applied in practice as a building block of test suites provided by software tools for testing
RNGs.

The method introduced by Takashima [20] can be briefly described as follows. At the beginning, the
tested PRNG is initialized and a sequence of 2NL bits is generated.1 This sequence is then divided into
N subsequences of length 2L. From each subsequence, a random walk is constructed (starting at 0) and
the test statistic based on arcsine law is calculated. From this N samples, an empirical distribution of200

the time spent by the random walk above the OX axis (author calls it sojourn time) is then derived and
compared with the theoretical distribution. This comparison is done in the following steps. Denoting by
tj2L the value of the test statistic for for jth subsequence, j = 0, . . . , N − 1, for each m = 0, . . . , L, the
values f2m = |{j : tj2L = 2m}| are calculated. Then, the χ2-test is applied to the values f2m. The whole
procedure of generating random bits and calculating test statistic is repeated M times, resulting in the set
of statistics χ2

k, k = 0, . . . ,M − 1. At the final stage, the numbers of χ2
k values falling between 90th and 95th

percentile and bigger than 95th percentile of χ2 distribution with L degrees of freedom are calculated. These
two counts are then the basis for deciding if the null hypothesis (that the pseudorandom bits are generated
independently and uniformly at random) should be rejected.

The author considers also another slightly modified variant of the procedure, where the chi-square test is
combined with Kolomogorov-Smirnov test. Namely, for each k = 0, . . . ,M − 1, 30 repetitions of the χ2 test
are performed and the Kolmogorov-Smirnov test statistics are calculated. Finally, the numbers of samples
between 95th and 99th percentile and bigger than 99th percentile are determined as a result of the testing
method. Let L2n = sup{2k : k ≤ n, S2k = 0} be the last visit to 0 in a walk of length 2n. It is known (cf.
[12]) that L2n has the same distribution as sojourn time, thus it also follows arcsine law. Takashima [21]
exploited this fact to construct another test for PRNGs (beside different statistic, the method is very similar
to that one described in [20]). Note that in our simulations we used (in most cases) sequences of length 234,
thus Takashima’s tests would require huge amount of memory to store values of f2m,m = 0, . . . , L.

As these tests were proven to be useful in detecting flaws of some families of PRNGs (see the results
presented and discussed in [19, 20, 21]), the method based on arcsine law was implemented in the TestU01
library (see [4]). This tool, developed by L’Ecuyer and Simard, provides a big variety of functions for
empirical testing of PRNGs. One of the test modules, swalk, provides a procedure swalk_RandomWalk1
which applies, among others, a test based on arcsine law. This function generates N random walks from
the tested sequence of random bits and for each walk computes the corresponding test statistic. Then, it
compares the empirical distribution derived from these N samples with the theoretical one using χ2 test.
The procedure implemented in TestU01 is very similar to ours. The main difference is that the partition
size s is a parameter in our case, whereas the partition used therein is calculated automatically, and it is
dependent on the numbers to be tested. If there are too few observations within some intervals, the intervals
are merged. In addition, we calculate total variation and separation distances between the theoretical and
the empirical distributions. Besides the single-level test, one can also use TestU01 software to perform the
second-order test, whereM independent repetition of the basic procedure is executed and either the obtained
statistics are then combined (i.e. the distribution of the sum of the statistics’ values is analyzed) or the
goodness of fit tests (like Kolmogorov-Smirnov test) are applied to those results. The implementation of the
swalk_RandomWalk1 procedure is quite general. In particular, it allows for constructing the random walk
from bits extracted in many different ways from the random numbers produced by the tested generator.
Hence, it can be viewed as a generalization of the methods described in the series of Takashima’s articles.

4. Experimental results

In this section we present and discuss a series of experimental results of testing some widely used PRNGs
implemented in standard libraries in various programming languages. We performed both, ASIN and LIL
tests on generators including different implementations of standard C/C++ linear congruential generators,

1In the original paper each bit is the most significant bit of the number produced by the tested PRNG, although the proposed
method can be applied to any sequence of pseudorandom bits.

10

Table 1: Results of ASIN test for initial version of PRNG from BSD libc. Time: 69m 10s
n 221 222 223 224 225 226

tv 0.0424 0.0499 0.0495 0.0464 0.0448 0.0411
sep1 0.1798 0.2036 0.2303 0.2065 0.2093 0.1868
sep2 0.1919 0.2276 0.1729 0.1793 0.2172 0.1897
p-val 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

the standard generator rand from GNU C Library, Mersenne Twister, Minstd and CMRG generators. As
our last example we propose some hypothetical weak PRNG which is clearly identified by our ASIN test as
non-random, whereas the LIL test fails to detect its obvious flaws.

Each considered PRNG was tested by generating m = 10000 sequences of length n = 234 in most cases.
The values of characteristics Sasinr or Slilr were calculated both for each sequence (r = n) as well as for
subsequences of length n/2, . . . , n/2k for some fixed value of k depending on tested PRNG (usually k = 8).
This approach, called in [8] snapshot testing at points 2n, . . . , 2n/2

k

, allows for observing and comparing the
values of analyzed parameters on different stages. Finally, for each PRNG respective statistics and distances
between theoretical and empirical distributions were calculated, as described in detail in Sections 3.1 and
3.2. In our experimental analysis for tests based on characteristics Sasinn and Sliln we used partitions Pasin40250

and P lil40 , respectively.
In the experiments we used our own implementations of tested PRNGs (except MT19937). The gen-

erators were initialized with random seeds from http://www.random.org [22] and each sequence was
generated using different seed. Total running times needed for generating and calculating statistics are
given in tables. Each simulation was performed on one thread on twin Intel Xeon E5-2630 v2 CPUs
(12 physical cores @2.60GHz) with 64 GB RAM. Note that instead of simulating 10000 paths on one
thread, it is possible to simulate e.g., 1000 paths on 10 threads and then combine the results. It would
significantly decrease the total running times. The source code of our implementation is available at
https://github.com/lorek/PRNG_Arcsine_test.

In the following sections we provide the outcomes of performed tests as well as discussion and analysis
of the results. The outcomes of experiments for each PRNG are summarized in tables in the following way.
The first row denotes the length n of generated subsequences. For a subsequence of length nk the theoret-
ical probability measure µnk

was calculated according to formula (3) or (9) and the empirical measure νnk

according to (4) or (10) depending on considered characteristic. Successive columns contain the values of
dtv(µnk

, νnk
), dsep(µnk

, νnk
), dsep(νnk

, µnk
) and p-value of the statistic (7). We provide both, dsep(µnk

, νnk
)

and dsep(νnk
, µnk

), since – despite phrase “distance” in its name – separation distance dsep(·, ·) is not sym-
metric.

We also calculated swalk_RandomWalk1 statistics from TestU01 for 10000 sequences of length 226 of each
PRNG we tested. The following parameters for swalk_RandomWalk1 were used: N = 10000, n = 64, r =
0, s = 32, L0 = L1 = 1048576. The result are given in Table 11. For each Statistic H, M, J, R and C,
four p-values were obtained: using Kolmogorov-Smirnov+, Kolmogorov-Smirnov- (upper part of cells) and
Anderson-Darling, Chi-square (lower part of cells) statistics. For convenience, p-values of ASIN and LIL
tests are also included in the Table.

4.1. BSD libc rand()
Function rand from BSD system standard library has used originally LCG(231, 1103515245, 12345) and

it does not truncate its output, i.e., it returns all bits of generated numbers. Hence, in our experiments
with BSD rand we also adopt the full output produced by this LCG. Tables 1 and 2 clearly depict why the
original implementation of this generator has been changed.

From the obtained results one can easily notice that even for short sequences the output of BSD rand
function turns out to be far from truly random. Also all the statistics of swalk_RandomWalk1 from TestU01
conducted for sequences of length 226 indicate that this is not a good PRNG (see Table 11). The reason
behind that is the LCG uses modulus 231, what implies that the period of d least significant bits equals to

11

http://www.random.org
https://github.com/lorek/PRNG_Arcsine_test

Table 2: Results of LIL test for initial version of PRNG from BSD libc. Time: 65m 40s
n 221 222 223 224 225 226

tv 0.1828 0.2152 0.2381 0.2437 0.2565 0.2613
sep1 0.9903 1.0000 1.0000 1.0000 1.0000 1.0000
sep2 0.3629 1.0000 1.0000 1.0000 1.0000 1.0000
p-val 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Table 3: Results of ASIN test for PRNG in MS Visual C++. Time: 377 hrs
n 226 227 228 229 230 231 232 233 234

tv 0.0289 0.0387 0.0615 0.0768 0.0848 0.0928 0.0965 0.1870 0.2093
sep1 0.2030 0.1548 0.1952 0.2605 0.3664 0.4210 0.5528 0.6533 0.8163
sep2 0.1780 0.2260 0.2524 0.2364 0.2841 0.3160 0.4336 0.6112 0.4328
p-val 0.0148 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Table 4: Results of LIL test for PRNG in MS Visual C++. Time: 397 hrs
n 226 227 228 229 230 231 232 233 234

tv 0.0348 0.0510 0.0938 0.1234 0.1672 0.2423 0.3100 0.4991 0.9500
sep1 0.2831 0.7419 0.9731 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
sep2 0.2670 0.1400 0.2635 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
p-val 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

2d. As a result the number of 0s and 1s is fairly close to each other what is easily recognized by the tests
based on properties of random walks. It is worth mentioning that this flaw is slightly more evident in the
outcomes of tests based on Sliln characteristic, which outperforms those based on Sasinn in this case.

Similarly, the results (not included here) for RANDU (which is defined as MCG(231, 65539)) are com-
parable to those for rand from BSD system standard library.

4.2. Microsoft Visual C++ rand()
Function rand in Microsoft Visual C++ is based on LCG(232, 214013, 2531011) linear congruential gen-

erator). It differs from an ordinary LCG in that it returns only the bits on last 15 positions. This PRNG is
one of those tested in [8]. As the authors in [8], we discard the least significant 7 bits of numbers produced
by the rand function (i.e., we take into account only the MSB on positions from 23 to 30 of the number
generated by LCG). The results of performed tests are presented in Tables 3 and 4.

Notice that this LCG has period 231 and from single call of rand we get 8 = 23 bits. This implies that
when generating a sequence of bits of length 234 we go through the full cycle of generator. Hence, each
combination of 8 bits has to be generated the same number of times, what leads to the conclusion that after
234 steps the random walk always returned to 0. This is evident in test results for characteristic Sliln . For
n = 234 all observations fall into the interval [0, 0.05), for which the theoretical measure µliln ([0, 0.05)) ∼ 0.05,
thus dtv(µliln , νliln) ≈ 0.95.

It is clear that generators with short periods cannot be used for generating large amounts of pseudoran-300

dom numbers. However, observe that the PRNG analyzed in this section fails the tests even for n = 226 and
generating a random walk of this length requires only 223/231 = 1/28 ≈ 0.4% of the full period (for this n,
abouth half of p-values of swalk_RandomWalk1 from TestU01 suggest rejecting the hypothesis that it is a
good PRNG). Thus, this PRNG cannot be considered as random even when restricting only to generators
with short periods. What is surprising, this PRNG passes the NIST Test Suite [5], as pointed out in [8].

We also conducted (not included here) the experiments for the procedure rand from standard library
in Borland C/C++ (which implements LCG(232, 22695477, 1)). The outcomes are very akin to those for
standard PRNG in MS Visual C++.

12

Table 5: Results of ASIN test for GNU C standard library generator. Time: 313.2 hrs
n 226 227 228 229 230 231 232 233 234

tv 0.0238 0.0266 0.0286 0.0247 0.0178 0.0279 0.0232 0.0257 0.0255
sep1 0.2079 0.1187 0.1666 0.1186 0.1481 0.1780 0.1879 0.1514 0.1405
sep2 0.1491 0.1566 0.1785 0.1606 0.1063 0.1482 0.1744 0.1421 0.1961
p-val 0.4731 0.2100 0.1758 0.3663 0.9744 0.1206 0.4593 0.1563 0.2389

Table 6: Results of LIL test for GNU C standard library generator. Time: 295.4 hrs
n 226 227 228 229 230 231 232 233 234

tv 0.0215 0.0272 0.0226 0.023 0.021 0.0212 0.0325 0.0235 0.0220
sep1 0.3828 0.1802 0.2838 0.1978 0.1508 0.1853 0.3451 0.3737 0.2696
sep2 0.1449 0.2568 0.2735 0.1970 0.1831 0.2521 0.3456 0.2284 0.1327
p-val 0.6052 0.0714 0.5685 0.5729 0.7853 0.5988 0.0019 0.4231 0.7914

4.3. GLIBC standard library rand()
Function rand in GNU C Library makes use of more complicated generator than these described in the

preceding sections. Its state is determined by 34 numbers xi, xi+1, . . . , xi+33. The PRNG is seeded with
some random number s, 0 ≤ s ≤ 231, and its initial state is given by

x0 = s

xi = 16807xi−1 mod (231 − 1), 0 < i < 31

xi = xi−31, i ∈ {31, 32, 33}.

The successive values xi are calculated according to the formula

xi = (xi−3 + xi−31) mod 232.

kth call to the function rand results in returning xk+343 � 1 (where � is a right logical shift operator).
For our tests we took all 31 bits outputted by PRNG. From the results gathered in Tables 5 and 6 one

may conclude that ASIN test gives no reason for rejecting the hypothesis that the sequences generated by
the analyzed PRNG are random. In the case of LIL test, the results for n = 234 and n = 233 may also
suggest that this PRNG is good. But for n = 232 we can observe an evident deviation, namely the p-value is
very small, only about 1/1000. This can be a matter of chance – with probability 1/1000 this could happen
even for a truly random generator. However, take a look on p-values for ten data subsets of size 1000 (i.e.,
each sample consists of 1000 sequences). We have 0.9313, 0.0949, 0.8859, 0.1739, 0.3675, 0.0334, 0.0321,
0.1824, 0.0017, 0.6205. As we can see, 4 out of 10 p-values are below 0.1. The probability that for truly
random sequences at least 4 p-values fall into that interval is

1−
3∑
i=0

(
10

i

)(
1

10

)i(
1− 1

10

)10−i

≈ 0.0016 .

This suggests that the GLIBC standard library PRNG may contain some hidden flaws. Similarly, the
statistics of swalk_RandomWalk1 from TestU01 in few cases (mainly Statistic J and R) also suggest that
this PRNG may contain some flaws (for sequences of length 226, see Table 11). However, despite the issue
pointed above, the implementation of rand function considered in this section appears to be the best among
these already tested by us.

4.4. Minstd
Minstd (abbr. from minimal standard generator) is based on MCG with parameters recommended by

Park and Miller in [23]. The authors’ goal was to develop a simple generator, not necessarily perfect,

13

Table 7: Results of ASIN test for Minstd generator with multiplier 48271.
n 226 227 228 229 230 231 232 233 234

tv 0.0318 0.0430 0.0477 0.0982 0.1303 0.0918 0.0848 0.1131 0.2089
sep1 0.1607 0.1467 0.1901 0.3803 0.4280 0.3845 0.4583 0.3975 0.8079
sep2 0.1828 0.1719 0.2120 0.2548 0.3449 0.3179 0.3192 0.3186 0.4579
p-val 0.0115 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Table 8: Results of LIL test for Minstd generator with multiplier 48271.
n 226 227 228 229 230 231 232 233 234

tv 0.0372 0.0563 0.0590 0.2573 0.2879 0.3408 0.3167 0.3434 0.9500
sep1 0.3298 0.4839 0.9328 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
sep2 0.3843 0.1850 0.2207 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
p-val 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Table 9: Results of arcsine test for C++11 implementation of MT19937-64 generator. Time: 309.1 hrs
n 226 227 228 229 230 231 232 233 234

tv 0.0272 0.0245 0.0226 0.0279 0.0273 0.0223 0.0273 0.0233 0.0252
sep1 0.1421 0.1666 0.1167 0.1824 0.1938 0.1571 0.1760 0.1397 0.1573
sep2 0.1133 0.1195 0.1056 0.1399 0.1209 0.1315 0.1391 0.1065 0.1444
p-val 0.2548 0.6674 0.8907 0.1014 0.1287 0.7727 0.1002 0.7447 0.2523

Table 10: Results of LIL test for C++11 implementation of MT19937-64 generator. Time: 291.5 hrs
n 226 227 228 229 230 231 232 233 234

tv 0.0229 0.0243 0.0234 0.0207 0.0251 0.0297 0.0287 0.0309 0.0225
sep1 0.1606 0.2400 0.1689 0.2890 0.1458 0.1853 0.2712 0.2318 0.1795
sep2 0.2106 0.1458 0.2017 0.1228 0.1839 0.2492 0.1951 0.1748 0.1559
p-val 0.5440 0.6035 0.4630 0.8106 0.4609 0.0653 0.0593 0.0077 0.7745

but fast, simple to implement and suitable for most common applications. As a result they proposed
MCG(231− 1, 16807). In their later work from 1993, Park and Miller [24] suggested that it would be better
to use the multiplier 48271. However, changing the multiplier does not affect our tests much. In Tables 7
and 8 the results for 48271 are presented, and those for 16807 (not included here) are similar.

For the ASIN tests the total variation distance between theoretical and empirical measures decreased in
most cases after changing the multiplier, especially for longer sequences. But in the case of LIL tests the
opposite change occurred. Thus, based on these results it is hard to say whether this modification brings
significant improvement. Nevertheless, χ2 test in both cases shows that Minstd is not a sound PRNG. This
can also be seen in statistics of swalk_RandomWalk1 from TestU01 conducted for sequences of length 226.
Seven out of twenty p-values are smaller or equal to 0.01, see Table 11.

Despite its weaknesses, Minstd became a part C++11 standard library. It is implemented by the classes
std::minstd_rand0 (with multiplier 16807) and std::minstd_rand (with multiplier 48271).

4.5. Mersenne Twister
Mersenne Twister generator was tested using the built-in implementation in C++11. We chose 64-bit

version of the PRNG i.e., class std::mt19937_64. In tests all 64 bits returned by a single call to the
generator were used.

The results presented in Tables 9 and 10 give an explanation why the Mersenne Twister is one of the
most popular PRNG used in practice. These outcomes give no arguments against the claim that the output
of this PRNG is indeed truly random (maybe only in case of SLIL there is some deviation from randomness

14

Table 11: Results (p-values) of ASIN, LIL and swalk_RandomWalk1 statistics from TestU01 for n = 226.
PRNG\Test ASIN LIL Statistic H Statistic M Statistic J Statistic R Statistic C

BSD libc 0.0000 0.0000 0.000; 0.000 0.000; 0.000 0.000; 0.000 0.000; 0.000 0.000; 0.000
0.000; 0.000 0.000; 0.000 0.000; 0.000 0.000; 0.000 0.000; 0.000

MS Visual C++ 0.0148 0.0001 0.920; 0.000 0.950; 0.000 0.860; 0.000 0.230; 0.060 0.860; 0.020
0.000; 0.002 0.000; 0.000 0.000; 0.002 0.120; 0.530 0.020; 0.110

GNU C 0.4731 0.6052 0.080; 0.330 0.380; 0.170 0.008; 0.008 0.660; 0.003 0.630; 0.007
0.490; 0.740 0.320; 0.550 0.008; 0.990 0.030; 0.010 0.110; 0.230

Minstd 48271 0.0115 0.0000 0.000; 0.310 0.013; 0.007 0.290; 0.000 0.200; 0.270 0.490; 0.010
0.000; 0.000 0.010; 0.994 0.010; 0.530 0.280; 0.130 0.180; 0.080

MT19937-64 0.2548 0.5540 0.070; 0.007 0.580; 0.004 0.340; 0.002 0.210; 0.270 0.150; 0.460
0.030; 0.670 0.010; 0.080 0.050; 0.029 0.760; 0.570 0.630; 0.270

Flawed 0.0000 0.5558 0.540; 0.430 0.930; 0.370 0.210; 0.910 0.270; 0.800 0.260; 0.550
0.750; 0.310 0.570; 0.180 0.330; 0.900 0.460; 0.750 0.470; 0.700

in case n = 233). This can also the case with in statistics of swalk_RandomWalk1 from TestU01 conducted
for sequences of length 226, see Table 11.

It is worth noting that the experiments for CMRG (not included here) gave similar results. Nevertheless,
one should note that in [9] the authors provide strong evidence that the output of CMRG is not sound.

4.6. Hypothetical flawed PRNG
Describing NIST SP800-22 Test Suite in Section 1 we pointed out some of its inherent limitations directly

related to the approach applied for statistical testing. Namely, this test suite focuses only on the quality of
a single binary sequence produced by a PRNG and does not take into account the set of all bit strings as a
whole. Let us consider some hypothetical PRNG which usually generates sequences which “look” random,
but with some non-negligible probability (e.g., for some subset of seeds) its output is biased and far from
truly random. distinguishable from uniform bit strings. This issue was carefully discussed in Section 3 of
[8], where some specific examples of such PRNGs were presented.

The following example gives an insight on how this kind of weaknesses in generator’s output may be350

detected by the ASIN test.
Before introducing the PRNG we need to define Dyck paths and say how to simulate one randomly.

Definition 4.1. A sequence of 2n bits B1, . . . , B2n is called a Dyck path if the corresponding walk fulfills:
Sk =

∑k
i=1(2Bi − 1) ≥ 0, k = 1, . . . , 2n− 1 and S2n = 0. A set of all Dyck paths of length 2n is denoted by

D2n.

Thus, a Dyck path of length 2n corresponds to valid grouping of n pairs of parantheses, we have |D2n| =
Cn = 1

n+1

(
2n
n

)
(the Catalan number). Let P−12n+1 be the set of sequences of bits B1, . . . , B2n+1 such that

the corresponding walk ends at -1, i.e., S2n+1 = −1. It is relatively easy to simulate uniformly at random
P ∈ P: make a random permutation (0, . . . , 0, 1, . . . , 1), where we have n+ 1 “zeros” and n “ones”.

We can obtain a Dyck path of length 2n from P ∈ P−12n+1 in the following way (the trick is known as
Cycle Lemma [25]). Let P = (B1, . . . , B2n+1) ∈ P and take s = argmin{Sk} (the lowest level). Then,
f(P) = (Bs+1, . . . , B2n+1, B1, . . . , Bs+1) is a Dyck path, see Fig. 2 We have

Lemma 4.2. For any P ∈ P−12n+1 the path f(P) is a Dyck path. Moreover, any Dyck path in D2n is the
image of exactly 2n+ 1 paths in P−12n+1.

The procedure for random sampling of a Dyck path of length 2n is now straightforward. Take a sequence
of n+ 1 “zeros” and n “ones”; perform a permutation of these bits; perform f(·) on the resulting bits.

Now we are ready to present our Flawed PRNG. It takes as an input:

• rng – another PRNG (e.g., Mersenne Twister MT19937-64),

15

p1(i1)

2 4 6 8 10 12

-2

2

s

2 4 6 8 10 12

-2

2

4

Figure 2: A path P ∈ P−1
13 (left) and corresponding Dyck path f(P) of length 12 (right).

• N – the maximal number of bits returned by the generator is limited by 2N ,

• m – parameter which decides how often the output is modified,

• seed – the seed.

Flawed works in the following way.

Algorithm 1 Flawed(rng,N,m, seed)

1: if seed = 0 mod m then
2: return rng(seed)
3: else
4: z1 . . . z2N−2 ← rng(seed)
5: π ← RandPerm(2N−2, rng(seed))
6: for i = 1 to 2N−2 do
7: z2N−2+i := 1− zπ(i)
8: end for
9: z2N−1+1...z2N

← DyckPaths(N, z1 . . . z2N−1 , rng(seed))
10: return z1 . . . z2N
11: end if

The following is an informal description of the procedure DyckPaths(n, r1 . . . r2n−1 , rng):

1. Denote the current half of the output as r = (r1, . . . , r2n−1), the corresponding random walk is given
by Sn =

∑n
i=1(2ri − 1). Recall (1): Dk = 1 (Sk > 0 ∨ Sk−1 > 0).

2. Define O0 := [lO0 , r
O
0] := [0, 0] and Oi = {lOi , . . . , rOi }, where lOi = min{lOi−1 < k ≤ 2n−1 : Dk =

1}, rOi = max{lOi < k ≤ 2n−1 : Dk = 1}, nO = min{i : lOi = ∅} − 1, |Oi| = rOi − lOi + 1.

3. Similarly, U0 := [lU0 , r
U
0] := [0, 0] and Ui = {lUi , . . . , rUi }, where li = min{lUi−1 < k ≤ 2n−1 : Dk =

0}, ri = max{lUi < k ≤ 2n−1 : Dk = 0}, nU = min{i : lUi = ∅} − 1, |Ui| = rUi − lUi + 1.

Oi and Ui are the intervals for which random walk is over x-axis and under x-axis respectively. For
example, if

(D1, . . . , D16) = (1, 1, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1),

then O1 = [1, 2], O2 = [5, 8], O3 = [15, 16], U1 = [3, 4], U2 = [9, 15].
4. In the second half, the bits will be chosen so that the walk will be

∑
i |Oi| steps under x-axis and∑

i |Ui| over this axis in the following way. For this we will generate randomly?? Dyck paths of lengths
|U1|, . . . , |UnU

| and reflected (simply replacing bits 0 ↔ 1) Dyck paths of lengths |O1|, . . . , |OnO
|. A

16

Table 12: Results of ASIN test for the Flawed generator described in Section 4.6.
n 219 220 221 222 223 224 225 226

tv 0.0222 0.0301 0.0213 0.0232 0.0230 0.0258 0.0296 0.0301
sep1 0.1011 0.1529 0.1754 0.1305 0.1029 0.1186 0.1567 0.1594
sep2 0.1022 0.1635 0.1256 0.1404 0.1348 0.1709 0.1536 0.3582
p-val 0.9401 0.0567 0.8188 0.4730 0.7640 0.3532 0.0498 0.0000

Table 13: Results of LIL test for the Flawed generator described in Section 4.6.
n 219 220 221 222 223 224 225 226

tv 0.0203 0.0192 0.0260 0.0212 0.0233 0.0208 0.0276 0.023
sep1 0.2047 0.1929 0.2834 0.1541 0.2018 0.2327 0.1586 0.1631
sep2 0.2309 0.0998 0.1459 0.1663 0.1299 0.1381 0.1648 0.2106
p-val 0.7220 0.9829 0.2290 0.9229 0.5943 0.8944 0.1497 0.5558

random permutation π ← RandPerm(nO + nU , rng(seed)) of nO + nU numbers will indicate their
relative ordering.

5. Return computed bits.

10 sample trajectories of Flawed (all from Dyck path-based part of the Algorithm) are given in Fig. 3.

Figure 3: 10 trajectories of length 218 of Flawed generator

4.6.1. Results of ASIN and LIL tests for Flawed
Testing results for this PRNG which produced m = 10000 sequences of length 226 are shown in Tables

12 and 13. As we expected, for n = 226 the outcomes of ASIN test clearly indicate that the generator is
flawed and its output cannot be recognized as random. Note that this is not the case for LIL test, where the
obtained p-values give no sufficient evidence for rejecting this PRNG. The reason behind the differences in
the behavior of ASIN and LIL tests is that the every hundredth trajectory of Flawed is exactly half of the
time above x-axis, and half of the time below it. Therefore, the fraction of time when number of 1s exceeds
number of 0s (i.e., the random walk is above x-axis) is exactly 1

2 . Hence, the value of characteristic Sasinn

falls into the least probable interval in the partition Pasin in almost 0.01 ·m trials more than for uniform
bit sequences. This suffices for significant increase of the value of statistic .

On the other hand, the characteristic Sliln takes values which belong to very likely intervals in the partition
P lil (first quater of bits are from MT19937-64, then the walk is forced (however randomly) to go to 0 in the

17

Table 14: Partial results from the finalAnalysisReport.txt file produced by NIST Test Suite applied for 104 sequences of
length 215 of flawed generator.

.
C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 P-VALUE PROPORTION STATISTICAL TEST

976 1043 972 1007 943 1053 1029 960 924 1093 0.001907 9907/10000 Frequency
1015 999 927 972 1015 971 991 983 1029 1098 0.032705 9905/10000 BlockFrequency
956 982 1066 996 928 1028 1005 996 956 1087 0.008428 9901/10000 CumulativeSums
987 1027 951 967 1052 950 1011 977 938 1140 0.000101 9918/10000 CumulativeSums
1042 930 972 1008 997 986 993 995 957 1120 0.004239 9886/10000 Runs
1013 1015 1037 1014 1001 1008 947 988 989 988 0.812723 9809/10000 * LongestRun
1006 869 1136 1016 1262 671 1466 864 778 932 0.000000 * 9803/10000 * Rank
1146 928 987 1055 868 995 1076 949 993 1003 0.000000 * 9778/10000 * FFT
1078 939 1008 999 1048 1027 978 1006 976 941 0.041709 9787/10000 * OverlappingTemplate
2017 1305 1154 1083 969 911 755 700 596 510 0.000000 * 9576/10000 * ApproximateEntropy
5 9 2 6 6 3 5 4 6 8 0.494392 53/54 RandomExcursions
6 4 5 4 6 5 7 4 6 7 0.971699 54/54 RandomExcursions
9 5 2 1 5 6 4 8 4 10 0.075719 54/54 RandomExcursions
11 4 7 3 6 6 2 5 9 1 0.040108 51/54 RandomExcursionsVariant
10 6 5 3 5 5 2 7 6 5 0.455937 53/54 RandomExcursionsVariant
8 9 4 1 6 6 7 4 5 4 0.350485 53/54 RandomExcursionsVariant
9 8 3 1 10 9 4 2 6 2 0.011791 53/54 RandomExcursionsVariant
1201 935 1038 983 1005 949 971 951 978 989 0.000000 * 9682/10000 * Serial
1214 980 1037 1013 886 1001 934 925 1025 985 0.000000 * 9697/10000 * Serial
1112 875 931 933 1038 1057 1057 1073 966 958 0.000000 * 9731/10000 * LinearComplexity

- -
The minimum pass rate for each statistical test with the exception of the random excursion (variant) test is approximately =
9870 for a sample size = 10000 binary sequences.

The minimum pass rate for the random excursion (variant) test is approximately = 51 for a sample size = 54 binary sequences.
- -

middle, then oscilates around zero in a similar way as in first half). Thus, it is more difficult for χ2 test to400

detect such deviation.
Note also that Flawed passes all the tests of swalk_RandomWalk1 from TestU01, see Table 11. The p-

values for Flawed are even “better” than the ones for Mersenne Twister. At first glance it may be surprising,
since Flawed is strongly based on Mersenne Twister (and is non-random). But this is because - in a sense -
a walk (randomly enough, but) “oscilates” around x-axis and tests similar to LIL cannot detect flaws.

4.6.2. Results of TestU01 for Flawed
TO DO:

4.6.3. NIST Test Suite
Form = 10000 sequences of length n = 215, the ASIN test already returns p-value 0.000. For comparison,

for this parameters we ran we ran a battery NIST Test Suite. Results are given in Table 14. For each
sequence the corresponding p-value is was calculated. NIST adopted two ways to interpret a set of p-values:
a) examination of proportion of sequences that pass a certain test; b) testing the uniformity of p-values (for
truly random sequences they should be uniformly distributed in [0, 1]).

Values in the columns C1,. . . , C10 represent number of p-values falling into intervals [0.0, 0.1), [0.1, 0.2), . . . , [0.9, 1].
Values in P-VALUE column represent the results for uniformity testing of p-values, value in PROPORTION
column represent proportion of sequences that pass a given test. The character ∗ denotes that the PRNG
failed given test (more exactly: given interpretation of a set of p-values). For detailed description of results’
interpretation see [6]. Note that some tests from NIST Test Suite detected the flaw, but most did not.

5. Conclusions

In this paper we analyzed method for testing PRNGs which is based on arcsine law for random walks.
From classical approaches it mainly differs on that PRNG’s output is considered as a bit string rather
than sequence of numbers. This allows for designing various testing procedures making use of properties of
random walks. Our method is an example of statistical distance based testing techniques, where the quality

18

of PRNG is measured by statistical distance between the empirical distribution of considered characteristic
for generated pseudorandom output and its theoretical distribution for truly random binary sequences.

The experimental results presented in this paper show that our testing procedure can be used for detecting
weaknesses in many common PRNGs implementations. Likewise LIL test from [8], ASIN test also has
revealed some flaws and regularities in generated sequences not necessarily being identified by other current
state of the art tools like NIST SP800-22 Testing Suite or TestU01. Thus, this kind of testing techniques
seems to be very promising, as it allows also for recognition of different kinds of deviations from those detected
by existing tools. Nevertheless, like other statistical tests, ASIN test is not universal and encompasses only
one from immense range of characteristics of random bit strings and does not capture all known flaws.
Therefore, the distance based testing procedures relying on properties of random walks like ASIN or LIL
tests should be used along with other tests bundles for more careful assessment of pseudorandom generators.
This issue is well depicted by the provided example of obviously non-random generator for which LIL test
has failed to detect its weaknesses, but ASIN test has turned out to be very sensitive for that kind of
deviations. Hence, the important line of further research should be developing another novel statistical
distance based tests utilizing various properties of random walks. Such tests should together be capable
of detecting more hidden dependencies between consecutive bits in sequences generated by PRNGs. This
should lead to designing more robust test suite for evaluating the quality of random numbers generated by
both new PRNGs implementation and those being already in use, especially for cryptographic purposes.

Acknowledgements

We thank two anonymous reviewers whose suggestions helped improve and clarify this manuscript.

References

[1] D. E. Knuth, The art of computer programming, Volume 2: Seminumerical Algorithms, 3rd Edition, Addison-Wesley Pub.
Co, 1997.

[2] R. G. Brown, D. Eddelbuettel, D. Bauer, Dieharder: A Random Number Test Suite,
www.phy.duke.edu/˜rgb/General/dieharder.php.

[3] P. L’Ecuyer, R. Simard, TestU01: A C library for empirical testing of random number generators, ACM Transactions on
Mathematical Software 33 (4) (2007) 22.450

[4] P. L’Ecuyer, R. Simard, TestU01: A Software Library in ANSI C for Empirical Testing of Random Number Generators.
User’s guide, detailed version, 23 April 2017.

[5] NIST.gov - Computer Security Division - Computer Security Resource Center, NIST Test Suite,
csrc.nist.gov/groups/ST/toolkit/rng/index.html (2010).

[6] A. Rukhin, J. Soto, J. Nechvatal, M. Smid, E. Barker, S. Leigh, M. Levenson, M. Vangel, D. Banks, A. Heckert, J. Dray,
S. Vo, A Statistical Test Suite for Random and Pseudorandom Number Generators for Cryptographic Applications, Tech.
Rep. Rev. 1a, NIST (2010).

[7] E. Barker, J. Kelsey, DRAFT NIST Special Publication 800-90A , Rev . 1 - Recommendation for Random Number
Generation Using Deterministic Random Bit Generators, Tech. rep., NIST (2014).

[8] Y. Wang, T. Nicol, On statistical distance based testing of pseudo random sequences and experiments with PHP and
Debian OpenSSL, Computers & Security 53 (2015) 44–64.

[9] C. Kim, G. H. Choe, D. H. Kim, Tests of randomness by the gambler’s ruin algorithm, Applied Mathematics and Com-
putation 199 (1) (2008) 195–210.

[10] H. Ekkehard, A. Grønvik, Re-seeding invalidates tests of random number generators, Applied Mathematics and Compu-
tation 217 (1) (2010) 339–346.

[11] P. Lorek, M. Słowik, F. Zagórski, Statistical testing of PRNG: Generalized gambler’s ruin problem, in: Lecture Notes in
Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), Vol.
10693 LNCS, 2017, pp. 425–437.

[12] W. Feller, An Introduction to Probability Theory and Its Applications, Volume 2, 3rd Edition, John Wiley & Sons, 1968.
[13] S. Asmussen, P. Glynn, Stochastic Simulation: Algorithms and Analysis, Springer, 2007.
[14] D. P. Kroese, T. Taimre, Z. I. Botev, Handbook of Monte Carlo Methods, John Wiley & Sons, Inc., Hoboken, NJ, USA,

2011.
[15] P. L’Ecuyer, History of uniform random number generation, in: 2017 Winter Simulation Conference (WSC), IEEE, 2017,

pp. 202–230.
[16] H. Niederreiter, Quasi-Monte Carlo methods and pseudo-random numbers6, Bulletin of the American Mathematical

Society 84 (6) (1978) 957–1041.
[17] M. Denker, W. A. Woyczynski, Introductory statistics and random phenomena : uncertainty, complexity, and chaotic

behavior in engineering and science, Birkhäuser Boston, 1998.

19

[18] A. Khintchine, Über einen Satz der Wahrscheinlichkeitsrechnung, Fundamenta Mathematicae 6 (1) (1924) 9–20.
[19] K. Takashima, Sojourn time test for maximum-length linearly recurring sequences with characteristic primitive trinomials

7 (1994) 77–87.
[20] K. Takashima, Sojourn time test of m-sequences with characteristic pentanomials, Journal of the Japanese Society of

Computational Statistics 8 (1995) 37–46.
[21] K. Takashima, Last visit time tests for pseudorandom numbers, Journal of the Japanese Society of Computational Statistics

9 (1) (1996) 1–14.
[22] RANDOM.ORG - True Random Number Service, https://www.random.org/.
[23] S. K. Park, K. W. Miller, Random number generators: good ones are hard to find, Communications of the ACM 31 (10)

(1988) 1192–1201.
[24] S. K. Park, K. W. Miller, P. K. Stockmeyer, Technical correspondence, Communications of the ACM 36 (7) (1993) 105.
[25] A. Dvoretzky, T. Motzkin, A problem of arrangements, Duke Mathematical Journal 14 (2) (1947) 305–313.

20

	Introduction
	Stochastic laws for random walks
	Arcsine Law

	Testing PRNGs based on Arcsine Law
	Arcsine Law based testing
	LIL based testing
	Error analysis
	Notes on Takashima's method for testing PRNG and arcsine test implementation from TestU01

	Experimental results
	BSD libc rand()
	Microsoft Visual C++ rand()
	GLIBC standard library rand()
	Minstd
	Mersenne Twister
	Hypothetical flawed PRNG
	Results of ASIN and LIL tests for Flawed
	Results of TestU01 for Flawed
	NIST Test Suite

	Conclusions

