
On testing pseudorandom generators via statistical tests based on the
arcsine lawI

Pawe l Loreka, Grzegorz Lośb, Karol Gotfrydc, Filip Zagórskic

aMathematical Institute, University of Wroc law, pl. Grunwaldzki 2/4, 50-384, Wroc law, Poland
bInstitute of Computer Science, University of Wroc law, Joliot-Curie 15, 50-383, Wroc law, Poland

cDepartment of Computer Science, Faculty of Fundamental Problems of Technology, Wroc law University of Science and
Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wroc law, Poland

Abstract

Testing the quality of pseudorandom number generators is an important issue. Security requirements become
more and more demanding, weaknesses in this matter are simply not acceptable. There is a need for an
in-depth analysis of statistical tests – one has to be sure that rejecting/accepting a generator as good is not
a result of errors in computations or approximations. In this paper we propose a second level statistical test
based on the arcsine law for random walks. We provide a Berry-Esseen type inequality for approximating
the arcsine distribution, what allows us to perform a detailed error analysis of the proposed test.

Keywords: The arcsine law, Random walks, Pseudorandom number generator, Statistical testing, Second
level testing, Berry-Esseen type inequality, Randomness, Dyck paths

1. Introduction

Random numbers are key ingredients in various applications, e.g., in cryptography (e.g., for generating
cryptographic keys) or in simulations (e.g., in Monte Carlo methods), just to mention a few. No algorithm
can produce truly random numbers. Instead, pseudorandom number generators (PRNGs) are used. These
are deterministic algorithms producing numbers which we expect to resemble truly random ones in some
sense. There are two classes of tests used to evaluate PRNGs, theoretical and statistical ones. Theoretical
tests examine the intrinsic structure of a given generator, the sequence does not necessarily need to be
generated. Two classical examples are the lattice test [1] and the spectral test described in [2] (Section
3.3.4). See also [3] for a description of some standard tests from this class. This category of tests is very
specific to each family of generators e.g., some are designed only for linear congruential generators. On
the other hand, the second class of tests – empirical tests – are conducted on a sequence generated by a
PRNG and require no knowledge of how it was produced. The main goal of these tests is to check if the
sequence of numbers U = (U1, U2, . . . , Un) (or bits, depending on the actual implementation) produced by
a PRNG has properties similar to those of a sequence generated truly at random. These tests try to find
statistical evidence against the null hypothesis H0 stating that the sequence is a sample from independent
random variables with uniform distribution. Any function of a finite number of uniformly distributed
random variables, whose (sometimes approximate) distribution under hypothesis H0 is known, can be used
as a statistical test. Due to the popularity and significance of the problem, a variety of testing procedures
have been developed in recent years. Such statistical tests aim at detecting various deviations in generated
sequences, what allows for revealing flawed PRNGs producing predictable output. Some of the procedures
encompass classical tools from statistics like the Kolmogorov-Smirnov test or the Pearson’s chi-squared test,

IWork supported by NCN Research Grant DEC-2013/10/E/ST1/00359
Email addresses: Pawel.Lorek@math.uni.wroc.pl (Pawe l Lorek), grzegorz314@gmail.com (Grzegorz Loś),

Karol.Gotfryd@pwr.edu.pl (Karol Gotfryd), Filip.Zagorski@pwr.edu.pl (Filip Zagórski)

Preprint submitted to Journal of Computational and Applied Mathematics July 10, 2019

which are used for comparing the theoretical and empirical distributions of appropriate statistics calculated
for a PRNG’s output. It is also possible to adapt tests of normality like the Anderson-Darling or Shapiro-
Wilk tests for appropriately transformed pseudorandom sequences. These methods exploit the properties of
sequences of i.i.d. random variables. Based on the original sequence U returned by the examined PRNG we
are able to obtain realizations of random variables with known theoretical distributions. Some examples of
probabilistic laws used in practice in this kind of tests can be found e.g., in [2]. They include such procedures
like the gap test, the permutation test and the coupon collector’s test, just to name a few (see [2] for a more
detailed treatment). These methods have also the advantage that they implicitly test the independence of
the generator’s output. The main issue with such methods is that a single statistical test looks only at
some specific property that holds for sequences of truly random numbers. Hence, for practical purposes
bundles of diverse tests are created. Such a test bundle consists of a series of individual procedures based on
various stochastic laws from probability theory. A PRNG is then considered as good if the pseudorandom
sequences it produces pass all tests in a given bundle. Note that formally it proves nothing, but it increases
the confidence in the simulation results. Thus, they are actually tests for non-randomness, as pointed out in
[4]. Some examples of such test suites are Marsaglia’s Diehard Battery of Tests of Randomness from 1995,
Dieharder developed by Brown et al. (see [5]), TestU01 implemented by L’Ecuyer and Simard (see [6, 7])
and NIST Test Suite [8]. The last one, designed by the National Institute of Standard and Technology, is
currently considered as one of the state of the art test bundles. It is often used for the preparation of many
formal certifications or approvals.

A result of a single statistical test is typically given in the form of a p-value, which, informally speaking,
represents the probability that a perfect PRNG would produce “less random” sequence than the sequence
being tested w.r.t. the used statistic. We then reject H0 if p < α, where α is the significance level (usually
α = 0.01) and acceptH0 if p ≥ α. Such an approach is usually called one level or first level test. Although the
interpretation of a single p-value has a clear statistical explanation, it is not quite obvious how to interpret
the results of a test bundle, i.e., of multiple tests. Under H0 the distribution of p-values is uniform. However,
in a test bundle several different tests are applied to the same output of a PRNG, hence the results are
usually correlated. The documentation of the NIST Test Suite includes some clues on how to interpret the
results of their bundle (Section 4.2 in [9]), but in the introduction it is frankly stated: “It is up to the tester
to determine the correct interpretation of the test results”.50

To disclose flaws of PRNGs, a very long sequence is often required. In such situations, the applicability
of a statistical test can be limited (depending on the test statistic) by the memory size of the computer.
An alternative approach is to use a so-called two level (a term used e.g., in [3]) or second level (a term
used e.g., in [4, 10]) test. In this approach we take into account several results from the same test over
disjoint sequences generated by a PRNG. We obtain several p-values which are uniformly distributed under
H0, what is tested by e.g., some goodness-of-fit test (with potentially different level of significance – NIST
suggests to use 0.0001 – obtaining new “final” p-value). The authors in [11] observed that this method
may be comparable to a first level test in terms of the power of a test (informally speaking, it represents
the probability of observing “less random” sequence than the sequence being tested under an alternative
hypothesis H1, see [11] for details), but often it produces much more accurate results, as shown in [4].
Roughly speaking, the accuracy is related to the ability, given a non-random PRNG, of recognizing its
sequences as non-random (for details see [4]). We will follow this approach.

In the second level approach one has to take under consideration the approximation errors in the com-
putation of a p-value. For example, in a first level test one usually calculates a p-value of a statistic which
– under H0 – is approximately normally distributed. The approximation comes then from the central limit
theorem, which lets us substitute the distribution of a given sum with the standard normal distribution.
These errors in calculations of individual p-values may accumulate, resulting in an error of a p-value in a
second level test, thus making the test not reliable. Following [4] we say that the second level test is not
reliable when, due to errors or approximations in the computation of p-values (in the first level), the distri-
bution of p-values is not uniform under H0. Fortunately, this approximation error can be bounded using the
Berry-Esseen inequality and the final error of a second level test can be controlled (see [4, 10] for a detailed
example based on the binary matrix rank test). The influence of approximations on the computation of
p-values in a second level test was also considered in [12, 13]. In this article we present a statistical test based

2

on the arcsine law, in which at some point we approximate a distribution of some random variable with
the arcsine distribution. We provide a Berry-Esseen type inequality which upper bounds the approximation
error, what allows us to control the reliability of our second level test.

An interesting approach for testing PRNGs was presented by Kim et al. in [14]. The concept of
their tests is based on the properties of a random walk (the gambler’s ruin algorithm) on the cyclic group
Zn = {0, . . . , n−1} with 0 being an absorbing state – more precisely, on the time till absorption. The authors
in [14] propose three different variants of the test. The general idea of the basic procedure is the following.
For some fixed p ∈ (0, 1) and x ∈ Zn, the output U = (Ui) of a PRNG is treated as numbers from the unit
interval and used to define a random walk starting in x such that if Ui < p and the process is in state s, then
it moves to (s + 1) mod n, otherwise it moves to (s − 1) mod n. The aim of this test is to compare the
theoretical and the empirical distributions of the time to absorption in 0 when starting at x. Based on the
values of testing statistic, the PRNG is then either accepted or rejected. The authors reported some “hidden
defects” in the widely used Mersenne Twister generator. However, one has to be very careful when dealing
with randomness. It seems like re-seeding a PRNG with a fixed seed is an error which can lead to wrong
conclusions. The criticism was raised by Ekkehard and Grønvik in [15], where the authors also showed that
the properly performed tests of Kim et al. [14] do not reveal any defects in the Mersenne Twister PRNG.
Recently, the authors in [16] have proposed another gambler’s ruin based procedure for testing PRNGs. In
their method they exploited formulas for winning probabilities for arbitrary sequences p(i) and q(i), (i.e., the
winning and losing probabilities depend on the current fortune) which are the parameters of the algorithm.

In recent years a novel kind of testing techniques has been introduced for more careful verification of
generators. The core idea of this class of methods is based on an observation that the binary sequence
(Bi) produced by a PRNG, after being properly rescaled, can be interpreted as an one-dimensional random

walk (Sn)n∈N with Sk =
∑k
i=1Xi, where Xi = 2Bi − 1. For random walks defined by truly random binary

sequences a wide range of statistics have been considered over the years and a variety of corresponding
stochastic laws have been derived (see e.g., [17]). For a good PRNG we may expect that its output will
behave like Sn. Hence, the following idea comes to mind: choose some probabilistic law that holds for
truly random bit sequences and compare the theoretical distribution of the corresponding statistic with the100

empirical distribution calculated for m sequences produced by a given PRNG in m independent experiments.
This comparison can be done e.g., by computing the p-value of an appropriate test statistic under the null
hypothesis that the sequence generated by this PRNG is truly random.

Another concept named statistical distance based testing was suggested in [18]. It relies on calculation of
some statistical distances like e.g., total variation distance between the theoretical and empirical distributions
for considered characteristics and rejecting a PRNG if the distance exceeds some threshold. We will also
follow this approach, indicating the corresponding threshold. In [18] the authors derive their test statistics
from the law of iterated logarithm for random walks (the procedure is called the LIL test). The proposed by
us procedure uses similar methodology and is based on the arcsine law. We made the code publicly available,
see [19]. It includes the arcsine law based as well as the law of iterated logarithm based statistical tests, the
implementation of many PRNGs (more than described in this article) including the Flawed generator (see
Section 4) and the seeds we used.

Organization of the paper. In the following Section 2 we define a general notion of a PRNG and recall
the aforementioned stochastic laws for random walks. The testing method along with the error analysis is
described in Section 3. The concise report on experimental results (including the Flawed generator introduced
in Section 4) is given in Section 5. In Section 6 we mention other implementations of the tests based on the
arcsine law. We conclude in Section 7.

2. Pseudorandom generators and stochastic laws for random walks

2.1. Pseudorandom generators

The intuition behind pseudorandom number generator is clear. However, let us give a strict definition
roughly following Asmussen and Glynn [20].

3

Definition 2.1. A Pseudorandom number generator (PRNG) is a 5-tuple < E, V, s0, f, g >, where E is a
finite state space, V is a set of values, s0 ∈ E is a so-called seed, i.e., an initial state in the sequence (si)

∞
i=0,

a function f : E → E describes the transition between consecutive states sn = f(sn−1) and g : E → V maps
the generator’s state into the output.

Usually V = (0, 1) or V = {0, 1, . . . ,M − 1} for some M ∈ N, the latter one is used throughout the
paper. Recall that LCG (linear congruential generator) is a generator which updates its state according to
the formula sn = (asn−1 + c) mod M . Thus, it is defined by three integers: a modulus M , a multiplier a,
and an additive constant c. In the case c = 0, the generator is called MCG (multiplicative congruential
generator). For a detailed description of some commonly used PRNGs see the surveys [21, 22, 23] or the
book [24].

It is clear that both the input and the output of a random number generator can be viewed as a finite
sequence of bits. For a PRNG to be considered as good, the output sequences should have some particular
property, namely each returned bit has to be generated independently with equal probability of being 0 and
1. We say that the sequence of bits is truly random if it is a realization of a Bernoulli process with success
probability p = 1

2 .

Given a PRNG G returning integers from the set V , we may obtain a pseudorandom binary sequence with
any given length using the following simple procedure. Namely, as long as the bit sequence s is not sufficiently
long, generate the next pseudorandom number a and append its binary representation (on dlog2Me bits) to
the current content of s. In the ideal model with G being truly random number generator, such algorithm
produces truly random bit sequences provided that M is a power of 2. Indeed, for M = 2k there is one to one
correspondence between k-bit sequences and the set V . Hence, if each number is generated independently
with uniform distribution on V , then each combination of k bits is equally likely and therefore each bit of
the output sequence is independent and equal to 0 or 1 with probability 1

2 .
However, this is not true for M 6= 2k. It is easy to observe that in such a case the generator is more

likely to output 0s and the generated bits are no longer independent. Thus, rather than simply outputting
the bits of a, one may instead take d first bits from the binary representation of a

M for some fixed d. Such
a method has the advantage that it can be easily adopted for an underlying generator returning numbers
from the unit interval, what is common for many PRNG implementations.

2.2. Stochastic laws for random walks150

Let (Bi)i≥0 be a Bernoulli process with a parameter p ∈ (0, 1), i.e., a sequence of independent random
variables with identical distribution P (B1 = 1) = 1 − P (B1 = 0) = p. A good PRNG should behave like
a generator of Bernoulli process with p = 1/2 (what we assume from now on). It will be, however, more
convenient to consider the following transformed process

Xi = 2Bi − 1, S0 = 0, Sk =

k∑
i=1

Xi, k = 1, . . . (1)

The sequence Xi is {−1,+1}-valued, the process (Sn)n∈N is called a random walk.

The law of iterated logarithm. Of course |Sn| ≤ n. However, large values of |Sn| occur with small probability
and the values of Sn are in practice in a much narrower range than [−n, n]. The weak and the strong law of

large numbers imply that Sn

n

P→ 0, and even Sn

n

a.s.→ 0, where
P→ denotes the convergence in probability and

a.s.→ denotes the almost sure convergence. Thus, the deviations of Sn from 0 grow much slower than linearly.

On the other hand the central limit theorem states that Sn

n

D→ N (0, 1) (where
D→ denotes the convergence

in distribution), what is in some sense a lower bound on fluctuations of Sn – they will leave the interval
[−
√
n,
√
n] since we have lim supn→∞

Sn√
n

=∞ (implied by 0-1 Kolmogorov’s Law, see e.g., Theorem 5.1 in

[25]). It turns out that the fluctuations can be estimated more exactly.

4

Theorem 2.2 (The law of iterated logarithm, [26], cf. also Chapter VIII.5 in [17]). For a random walk Sn
we have

P
(

lim inf
n→∞

Sn√
2n log log n

= −1

)
= 1,

P
(

lim sup
n→∞

Sn√
2n log log n

= +1

)
= 1.

Thus, to normalize Sn dividing by n is too strong and dividing by
√
n is too weak. The fluctuations of

Sn from 0 grow proportionally to
√

2n log log n.

−1e+05

−5e+04

0e+00

5e+04

1e+05

0e+00 3e+08 6e+08 9e+08

Step

S
ta

te

Figure 1: 500 trajectories of random walks of length 230. Blue plot: ±
√
n, red plot: ±

√
2n log logn

To depict the law of iterated logarithm, we took 500 output sequences B1, . . . ,B500 from the Mersenne
Twister MT19937 generator, each initialized with a random seed taken from http://www.random.org, where
each output Bj = (Bj1, . . . , B

j
n), Bji ∈ {0, 1}, j = 1, . . . , 500, i = 1, . . . , n was of length n = 230. In Figure 1

we presented these 500 trajectories (k, Sjk), j = 1, . . . , 500, k = 0, . . . , n, where Sjk =
∑k
i=1(2Bji − 1). Each

trajectory is depicted by a single polyline. The darker the image the higher the density of trajectories. We
can see that ±

√
2n log log n roughly corresponds to the fluctuations of Sn. However, few trajectories after

around billion steps are still outside [−
√

2n log log n,
√

2n log log n]. The law of iterated logarithm tells us
that for appropriately large n the trajectories will not leave [−

√
2n log log n,

√
2n log log n] with probability

1, what is not the case in Figure 1. It means that n must be much larger than 230.
One could think that the following is a good test for randomness: fix some number, say 100, and classify

the considered PRNG as good if the difference between the number of ones and zeros never exceeds 100.
The large difference may suggest that zeros and ones have different probabilities of occurrence. However, the
law of iterated logarithm tells us that this reasoning is wrong. Indeed, we should expect some fluctuations
and the absence of them means that a PRNG does not produce bits which can be considered random. This
property of random walks was used by the authors in [18] for designing a novel method of testing random
number generators.

There is yet another interesting property. Define Sliln = Sn√
2n log logn

. The law of iterated logarithm

implies that Sliln does not converge pointwise to any constant. However, it converges to 0 in probability. Let
us fix some small ε > 0. For almost all n, with an arbitrary high probability p < 1 the process Sliln will not
leave (−ε, ε). On the other hand, this tells us that the process will be outside this interval infinitely many
times. This apparent contradiction shows how can our intuition be unreliable on phenomena taking place
at infinity.

The arcsine law. The observations described previously imply that averaging every Sn, it will spend half of
its time above the x-axis and half of its time below. However, the typical situation is counter-intuitive (at

5

http://www.random.org

first glance): typically the random walk will either spend most of its time above or most of its time below
the x-axis. This is expressed in the Theorem 2.3 below (for reference see e.g., [17]). Before we formulate
the theorem, let us first introduce some notations. For a sequence X1, X2, . . ., as defined in (1), let

Dk = 1 (Sk > 0 ∨ Sk−1 > 0) , k = 1, 2, . . . , (2)

where 1(·) is the indicator function. Dk is equal to 1 if the number of ones exceeds the number of zeros
either at step k or at step k− 1, and 0 otherwise (in a case of ties, i.e., Sk = 0, we look at the previous step
letting Dk = Dk−1). In other words, Dk = 1 corresponds to the situation in which the line segment of the
trajectory of the random walk between steps k − 1 and k is above the x-axis.

Theorem 2.3 (The arcsine law). Let (Bi)i≥0 be a Bernoulli process. Define Xi = 2Bi − 1 and Ln =∑n
k=1Dk (Dk is given in (2)). For x ∈ (0, 1) we have

P (Ln ≤ x · n) −−−−→
n→∞

1

π

∫ x

0

dt√
t(1− t)

=
2

π
arcsin

√
x .

The probability P (Ln ≤ x · n) is the chance that the random walk was above the x-axis for at most x
fraction of the time. The limiting distribution is called the arcsine distribution. Its density function is given
by fasin(t) = 1

π

√
t(1− t) and the cumulative distribution function (cdf) is F asin(t) = 2

π arcsin
√
t. The

shape of the pdf fasin(t) clearly indicates that the fractions of time spent above and below the x-axis are
more likely to be unequal than close to each other.

3. Testing PRNGs based on the arcsine law

In this Section we will show how to exploit the theoretical properties of random walks from the preceding
discussion to design a practical routine for testing PRNGs. We describe our approach based on the arcsine
law which we employ for experimental evaluation of several commonly used generators (the results are
presented in Section 5). We also perform an error analysis of the proposed testing procedure, providing
corresponding bounds on the approximation errors. Finally, we make some remarks on the reliability of our
second level test.

3.1. The arcsine law based testing200

The general idea of tests is the following. Take a sequence of bits generated by PRNG, rescale them as
in (1) and compare the empirical distribution of

Sasinn =
1

n

n∑
k=1

Dk ∈ [0, 1]

(a fraction of time instants at which ones prevail zeros) with its theoretical distribution assuming that truly
random numbers were generated. In terms of hypothesis testing: given the null hypothesis H0 that the bits
in the sequence were generated independently and uniformly at random (vs. HA: that the sequence was not
randomly generated), the distribution of Sasinn follows the arcsine law (Theorem 2.3), i.e., we can conclude
that for large n we have

P
(
Sasinn ≤ x|H0

)
≈ 1

π

∫ x

0

dt√
t(1− t)

=
2

π
arcsin(

√
x) (3)

(we will be more specific on “≈” in Section 3.2). We follow the second level testing approach (cf. [4, 10]),
i.e., we take into account several results from the same test over different sequences. To test a PRNG we
generate m sequences of length n each, thus obtaining m realizations of the variable Sasinn . Denoting by

6

Sasinn,j the value of j-th simulation’s result (we call them a basic tests), we then calculate the corresponding
p-values

pj = P
(
Sasinn > Sasinn,j |H0

)
= 1− 2

π
arcsin

(√
Sasinn,j

)
, j = 1, . . . ,m

Under H0 the distribution of pj , j = 1, . . . ,m, should be uniform on [0, 1]. We fix some partition of [0, 1]
and count the number of p-values within each interval. In our tests we will use an (s+ 1)-element partition
Ps = {P1, . . . , Ps+1}, where

P1 =

[
0,

1

2s

)
,

Pi =

[
2i− 3

2s
,

2i− 1

2s

)
, 2 ≤ i ≤ s,

Ps+1 =

[
1− 1

2s
, 1

]
.

Now we define the measures µm (the uniform measure on Ps), νn (the empirical measure on Ps), Ei (the
expected number of p-values within Pi) and Oi (the number of observed p-values within Pi). For 1 ≤ i ≤ s+1
let

µm (Pi) =


1
s if i ∈ {2, . . . , s}

1
2s if i ∈ {1, s+ 1}

, Ei =


m
s if i ∈ {2, . . . , s}

m
2s if i ∈ {1, s+ 1}

νm (Pi) =
|{j : pj ∈ Pi, 1 ≤ j ≤ m}|

m
, Oi = m · νm(Pi).

We perform the Pearson’s goodness-of-fit test, which uses the following test statistic

T asin =

s+1∑
i=1

(Oi − Ei)2

Ei
= m ·

∑
A∈Ps

(µm(A)− νm(A))2

µm(A)
.

Under the null hypothesis, T asin has approximately the chi-squared distribution with s degrees of freedom.
We calculate the corresponding p-value

pχ2 = P
(
X > T asin

)
,

where X has a χ2(s) distribution. Large values of T asin – and thus small values of pχ2 – let us suspect that
a given PRNG is not good. Typically, we reject H0 (i.e., we consider the test failed) if pχs < α, where α
is a predefined level of significance (for a second level test we use α = 0.0001, as suggested by NIST). Note
that the probability of rejecting H0 when the sequence is generated by a perfect random generator (so-called
Type I error) is exactly α.

Another approach relies on the statistical distance based testing, which is the technique presented in
[18]. We consider the statistic

dasintv =
1

2

∑
A∈Ps

|µm(A)− νm(A)| ∈ [0, 1],

i.e., a total variation distance between the theoretical distribution µm and the empirical distribution νm.
Similarly, large values of dasintv indicate that a given PRNG is not good. Concerning Type I error we will
make use of the following lemma (see Lemma 3 in [27] or its reformulation, Lemma 1 in [28]).

Lemma 3.1. Assume H0 and consider the partition Ps. Then, for all ε ≥
√

20(s+ 1)/m we have

P
(
2dasintv > ε|H0

)
≤ 3 exp

(
−mε

2

25

)
.

7

To summarize, for a given PRNG we generate m sequences of length n each. and we choose s (and thus
the partition Ps). We then calculate dasintv and T asin together with its pχ2-value. We specify the thresholds
for pχ2 -value and dasintv indicating whether the test failed or not (the details are presented in Section 5). We
denote the described procedure as the ASIN test.

Remark. Note that the described procedure for calculating T asin and dasintv is equivalent to the following
one. Instead of calculating p-values of Sasinn,j , we could directly count the number of Sasinn,j falling into each
interval Pi, i = 1, . . . , s + 1 and compare the empirical distribution with the theoretical one. To be more
precise, for 1 ≤ i ≤ s+ 1 let

µ′m (Pi) = P
(
Sasinn ∈ Pi

)
, Ei = m · µ′m(Pi),

ν′m (Pi) =
|{j : Sasinn,j ∈ Pi, 1 ≤ j ≤ m}|

m
, Oi = m · ν′m(Pi),

where P
(
Sasinn ∈ Pi

)
= F asin(b)− F asin(a) for Pi = [a, b]. Then statistics T asin and dasintv can be rewritten

as

T asin = m ·
∑
A∈Ps

(µ′m(A)− ν′m(A))2

µ′m(A)
, dasintv =

1

2

∑
A∈Ps

|µ′m(A)− ν′m(A)|.

This technique was presented in [18] (for the total variation and few other distances) and this is how our
implementation of the ASIN test [19] calculates the statistics.

We could also calculate just one p-value of the statistic Sasinn′ for a longer sequence (say, for n′ = n ·m)
– i.e., perform a first level test. However, as mentioned in Section 1, the second level approach produces
more accurate results (roughly speaking, the accuracy is related to the ability, given a non-random PRNG,
of recognizing its sequences as non-random, see details in [4]).

It is worth noting that the following approach can be applied when dasintv or pχ2 are slightly outside the
acceptance region (e.g., if pχ2 ∈ (10−4, 10−2), what suggests rejecting H0, but is not a strong evidence).
Namely, double the length of the sequence, take a new output from the PRNG and apply the test again.
Repeat the procedure (at most some predefined number of times) until the evidence is strong enough (e.g.,
pχ2 < 10−4) or H0 is accepted (e.g., pχ2 > 0.01). This method, called “automation of statistical tests on
randomness”, was proposed and analyzed in [29].

3.2. Error analysis

3.2.1. Bounding errors in approximating p-values in basic tests

In this subsection we will show a bound on the approximation error in (3). Recall that F asin(x) =
2
π arcsin

√
t.

Lemma 3.2. Fix a partition Ps, s ≥ 2 and an even n ≥ 2. Let Fn be the cdf of the empirical distribution
of Sasinn under H0 (stating that the bits B1, . . . , Bn were generated uniformly at random), i.e., Fn(x) =
P
(
Sasinn ≤ x|H0

)
. Then we have

sup
x∈[0,1]

|Fn(x)− F asin(x)| ≤ C

n
, C =

4

3π

(
2− 3

2s

)(
4s2

2s− 1

) 3
2

.

Proof. We will show that for fixed a and b such that 0 ≤ a < b ≤ 1 we have∣∣∣∣∣P (Sasinn ∈ (a, b)
)
− 1

π

∫ b

a

dt√
t(1− t)

∣∣∣∣∣ ≤ C

n
.

Let us assume that n = 2n. Let p2k,2n denote the probability that during 2k steps in the first 2n steps the
random walk was above the x-axis, i.e., p2k,2n = P (L2n = 2k). The classical results on a simple random
walk state that

p2k,2n =

(
2k

k

)(
2(n− k)

n− k

)
2−2n. (4)

8

The standard proof of Theorem 2.3 (see, e.g., Chapter XII.8 in [30]) shows that p2k,2n converges to dk,n =
1

π
√
k(n−k)

. In the following, we will bound the difference |p2k,2n − dk,n|. We will use a version of Stirling’s

formula stating that for each n there exists θn, 0 < θn ≤ 1, such that

n! =
√

2πn
(n
e

)n
exp

(
θn

12n

)
. (5)

Plugging (5) into each factorial appearing in (4) we have

p2k,2n =
1

π
√
k(n− k)

exp

(
θ2k − 4θk

24k
+
θ2(n−k) − 4θn−k

24(n− k)

)
.

Thus, we get
p2k,2n
dk,n

≤ exp

(
1

24k
+

1

24(n− k)

)
= exp

(
n

24k(n− k)

)
and

p2k,2n
dk,n

≥ exp

(
−4

24k
+

−4

24(n− k)

)
= exp

(
− n

6k(n− k)

)
.

For any x it holds that 1−e−x ≤ x and for x ∈ [0, 1.25] we have that ex−1 ≤ 2x. Note that n
24k(n−k) ≤ 1.25,

what is equivalent to n ≥ 30k2

30k−1 , what holds for any 0 < k < n. Hence,

p2k,2n − dk,n ≤ dk,n

(
exp

(
n

24k(n− k)

)
− 1

)
≤ dk,n

n

12k(n− k)
,

dk,n − p2k,2n ≤ dk,n

(
1− exp

(
− n

6k(n− k)

))
≤ dk,n

n

6k(n− k)
,

what implies

|p2k,2n − dk,n| ≤ dk,n
n

6k(n− k)
=

n

6π (k(n− k))
3
2

.

Fix δ > 0 and assume furthermore that δ ≤ k
n ≤ 1 − δ. The function k 7→ (k(n− k))

3/2
achieves the

minimum value at the endpoints of the considered interval, thus

|p2k,2n − dk,n| ≤
n

6π (δn(n− δn))
3
2

=
1

6πn2 (δ(1− δ))
3
2

.

We will estimate the approximation error in (3) in two steps. First, take two numbers a, b such that
δ ≤ a < b ≤ 1− δ. We have

∣∣∣∣∣∣
∑

a≤ k
n≤b

p2k,2n −
∑

a≤ k
n≤b

dk,n

∣∣∣∣∣∣ ≤
∑

a≤ k
n≤b

|p2k,2n − dk,n| ≤
∑

a≤ k
n≤b

1

6πn2 (δ(1− δ))
3
2

=
dbn− ane

6πn2 (δ(1− δ))
3
2

≤ b− a
3πn (δ(1− δ))

3
2

≤ 1

3πn (δ(1− δ))
3
2

=: η.

The second kind of errors in probability estimates given by (3) is caused by approximating the sum by
an integral. Let us consider an arbitrary function f differentiable in the interval (a, b). Split (a, b) into
subintervals of length 1

n and let xk be an arbitrary point in the interval containing k
n . Denote by Mk and

9

mk the maximum and the minimum value of f on that interval, respectively. Using the Lagrange’s mean
value theorem we obtain∣∣∣∣∣∣

∫ b

a

f(x)dx−
∑

a≤ k
n≤b

1

n
f(xk)

∣∣∣∣∣∣ ≤
∑

a≤ k
n≤b

1

n
(Mi −mi) =

∑
a≤ k

n≤b

1

n2
|f ′(ξi)| ≤

∑
a≤ k

n≤b

1

n2
sup
a≤x≤b

|f ′(x)|

=
dbn− ane

n2
sup
a≤x≤b

|f ′(x)| ≤ 2(b− a)

n
sup
a≤x≤b

|f ′(x)|.

For f(x) = 1

π
√
x(1−x)

we have f ′(x) = 2x−1
2π(x(1−x))3/2 and 1

nf
(
k
n

)
= dk,n. Hence, in the considered interval

(a, b) ⊆ (δ, 1− δ) we have∣∣∣∣∣∣
∫ b

a

f(x)dx−
∑

a≤ k
n≤b

dk,n

∣∣∣∣∣∣ ≤ 2

n
sup

δ<x<1−δ
|f ′(x)| = 1− 2δ

πn(δ(1− δ)) 3
2

=: κ.

We also have

∣∣∣∣∣∣
∫ b

a

f(x)dx−
∑

a≤ k
n≤b

p2k,2n

∣∣∣∣∣∣ ≤
∣∣∣∣∣∣
∫ b

a

f(x)dx−
∑

a≤ k
n≤b

dk,n

∣∣∣∣∣∣+

∣∣∣∣∣∣
∑

a≤ k
n≤b

dk,n −
∑

a≤ k
n≤b

p2k,2n

∣∣∣∣∣∣ ≤ η + κ.

Taking δ = 1
2s we obtain

η + κ =
2

3πn

2− 3δ

(δ(1− δ))3/2
=

4

3πn

(
1− 3

4s

)(
4s2

2s− 1

) 3
2

=
1
2C

n
=
C

n
,

what justifies the approximation (3) for δ ≤ a < b ≤ 1− δ. To complete the analysis we need to investigate
the errors “on the boundaries” of a unit interval, i.e., for (0, δ) (and, by symmetry, for (1− δ, δ)). We get∣∣∣∣∣∣
∫ δ

0

f(x)dx−
∑

0≤ k
n<δ

p2k,2n

∣∣∣∣∣∣ =

∣∣∣∣∣∣
∫ 1

2

0

f(x)dx−
∫ 1

2

δ

f(x)dx−
∑

0≤ k
n≤

1
2

p2k,2n +
∑

δ≤ k
n≤

1
2

p2k,2n

∣∣∣∣∣∣
=

∣∣∣∣∣∣12 −
∫ 1

2

δ

f(x)dx− 1

2
+

∑
δ≤ k

n≤
1
2

p2k,2n

∣∣∣∣∣∣ =

∣∣∣∣∣∣
∫ 1

2

δ

f(x)dx−
∑

δ≤ k
n≤

1
2

p2k,2n

∣∣∣∣∣∣ ≤ C

n
,

where the last inequality follows directly from the preceding calculations.

Remark. Let X1, X2, . . . be zero-average i.i.d. random variables with E|Xi|3 <∞. Denote EX2
i = σ2. The

central limit theorem states that N , a normal random variable N(0, 1) (denote its cdf by Φ), is the limiting
distribution of Yn =

∑n
i=1

Xi

σ
√
n

(denote its cdf by by FYn). It means that for large n we can approximate Yn
by N and the approximation error is bounded by the Berry-Esseen inequality

sup
x
|FYn (x)− Φ(x)| ≤ C0E|X1|3

σ3
√
n

,

where C0 is a positive constant (in original paper [31] it was shown that C0 ≤ 7.59, in [32] it was shown
that C0 ≤ 0.4785). Lemma 3.2 is thus a Berry-Esseen type inequality for approximating Sasinn by a random
variable with cdf F asin, tailored to our needs.

10

3.2.2. Reliability of the results from the second level test

Following [10], we say that a basic test (calculating Sasinn,j) is not reliable if, due to approximation
errors in the computations of pj-values, the distribution of pj , j = 1, . . . ,m for truly random numbers is
not uniform. We test the uniformity via T asin and dasintv . Since we compare two continuous distributions,
some discretization needs to be applied. In our testing procedure we use a partition Ps for this, splitting
the interval [0, 1] into (s + 1) intervals (i.e., the bins). Lemma 3.2 states that a maximum error in the
computation of pj is bounded by C

n (note that C implicitly depends on s). It means that a pj-value that
should belong to a given bin can be found in the neighboring ones only if the distance between pj and one
of the endpoints of a given bin is less than C

n . Thus, this is also the fraction of pj-values that can be found
in wrong bins. The maximum propagated deviation is twice the error (since most bins have two neighbors),
i.e.,

∆ =
2C

n
.

UnderH0 the distribution of the numbers pj , j = 1, . . . ,m in the bins 1, . . . , s+1 is a multinomial distribution.
Indeed, this is equivalent to throwing m balls independently into s+1 bins, where the probability of choosing
first and last bin is 1

2s and 1
s for all remaining bins. The variance of the ratio of number of balls in bin

j ∈ {1, s + 1} is equal to 2s−1
m4s2 , and for bin j ∈ {2, . . . , s} is equal to s−1

ms2 . We have σ >
√

s−1
s2m , where

σ is the expected statistical deviation of the ratio of pj-values found in a given bin. We expect that the
error in approximating pj-values propagates into an additional deviation. If the deviation is smaller than
the statistical deviation, i.e., if

∆ ≤ σ, (6)

then we say that the second level test is reliable. Note that the reliability of a test imposes a restriction on
a relation between the length of a sequence used for each base test (i.e., n) and the number of basic tests
(m). Inequality (6) implies a lower bound on m, namely

m ≤ (s− 1)
(n

2Cs

)2
. (7)

4. The Flawed PRNG

In this section we present Flawedrng,N,τ – a family of PRNGs. The family depends on three param-
eters: rng (a PRNG, e.g., the Mersenne Twister), N (a small integer, e.g., N = 30) and τ ∈ [0, 1].
Flawedrng,N,τ (seed) generates the output of length 2N . For a fraction 1− τ of all possible seeds the output
is the same as the output of rng(seed). For the remaining fraction τ of seeds it outputs bits such that the
corresponding walk spends exactly half of the time (2N−1 steps) above zero and exactly half of the time
below zero.

4.1. Dyck Paths

To generate walks with the aforementioned property we will use Dyck paths, i.e., walks starting and
ending at 0 with the property that for each prefix the number of ones is not smaller than the number of250

zeros.

Definition 4.1. Let n be an integer. A sequence of 2n bits B1, . . . , B2n is called a Dyck path if the corre-
sponding walk Sk fulfills Sk =

∑k
i=1(2Bi − 1) ≥ 0, k = 1, . . . , 2n− 1 and S2n = 0. A set of all Dyck paths of

length 2n is denoted by D2n.

Thus, a Dyck path of length 2n corresponds to a valid grouping of n pairs of parentheses. We have
|D2n| = Cn = 1

n+1

(
2n
n

)
(Cn is the n-th Catalan number).

We are interested in generating Dyck paths uniformly at random. To achieve this goal we will use the
following three ingredients.

11

2 4 6 8 10 12

-2

2

t

2 4 6 8 10 12

-2

2

4

Figure 2: A path I ∈ I−1
13 (left) and the corresponding Dyck path fDyck(I) of length 12 (right).

(1) Walk sampling. Let I−12n+1 be the set of sequences of bits B1, . . . , B2n+1 such that the corresponding

walk Sk ends at −1, i.e., S2n+1 = −1. One can easily sample a sequence I ∈ I−12n+1 uniformly at random –
it is enough to make a random permutation of the vector of bits (0, . . . , 0, 1, . . . , 1), consisting of n+ 1 zeros
and n ones.

(2) fDyck transformation. One can obtain a Dyck path of length 2n from I ∈ I−12n+1 using Algorithm 1.

Algorithm 1 fDyck(I)

Input: I = (B1, . . . , B2n+1) ∈ I−12n+1

Output: DyckPath – the Dyck path corresponding to I

1: Sk =
∑k
i=1(2Bi − 1) for k = 1, . . . , 2n + 1

2: t = min(argmin{Sk : k ∈ {1, . . . , 2n + 1}})
3: DyckPath = (Bt+1, . . . , B2n+1, B1, . . . , Bt−1)
4: return DyckPath

Observe that fDyck(I) transforms I ∈ I−12n+1 into a Dyck path. This follows from simple observations:

1. I has exactly n + 1 zeros and n ones;

2. since t = min(argmin{Sk : k ∈ {1, . . . , 2n + 1}}) then Bt = 0 and after Bt is removed then fDyck(I)
has exactly n bits equal to 0 and n bits equal to 1;

3. from the definition of t (which enforces in particular that Bt+1 = 1), the walk that corresponds to
bits (Bt+1, . . . , B2n+1, B1, . . . , Bt−1) cannot go below 0 (note that for t = 2n + 1 the walk is given by
(B1, . . . , B2n)).

An example of a fDyck transformation is presented in the Figure 2.

(3) The Cycle Lemma. The correspondence between the set I−12n+1 and the set D2n is expressed by the Cycle
Lemma (see, e.g., [33]).

Lemma 4.2 (The Cycle Lemma). For any I ∈ I−12n+1 the path fDyck(I) is a Dyck path. Moreover, any Dyck

path in D2n is the image of exactly 2n + 1 paths in I−12n+1.

Thus, to obtain a random sample of a Dyck path of length 2n one needs to run Algorithm 2. We use
the following convention: for a pseudorandom generator rng and a seed seed we denote by random =
rng.Init(seed) an initialized object (with rng and seed), for which one can call random.getBits() – a

12

function that (1) returns next bits of the generator (as many as required), and (2) the internal state of the
random object is updated, so the following calls of the getBits() method return next bits.

Algorithm 2 sampleDyckPath(n, rng, seed, b)

Input: n – an integer
rng – a pseudorandom generator
seed – a seed
b – a bit deciding if the output path should be over (b = 0) or under (b = 1) of the x-axis

Output: P – a sampled Dyck path of length 2n (for b = 0) or a sampled Dyck path with its bits
flipped (xi → 1− xi, for b = 1)

0: random := rng.Init(seed)
1: x = (B1, . . . , B2n+1) where B1 = . . . = Bn+1 = 0 and Bn+2 = . . . = B2n+1 = 1
2: σ ← RandPerm(2n + 1, random.getBits()) – a random permutation σ of 2n + 1 elements
3: I = (Bσ(1), . . . , Bσ(2n+1))
4: P = fDyck(I)
5: if b = 1 then
6: each bit x of P is flipped (x→ 1− x)
7: end if
8: return P

We denote by RandPerm(n, seed) a function that returns a pseudorandom permutation of n elements,
using seed as its seed.

4.2. The Flawed generator

As mentioned at the beginning of this section, the Flawedrng,N,τ (seed) generator – described as Algo-
rithm 3 – generates 2N bit sequences. It works exactly the same as the underlying generator for a fraction
(1− τ) of seeds (lines 1-2). For the remaining fraction τ of seeds (lines 3-8) the output is generated in the
following way.

1. The first 2N−2 bits are exactly the same as the first 2N−2 bits of rng(seed) (line 4).

2. The next 2N−2 bits (z2N−2+1, . . . , z2N−1) are generated as follows:

(a) a pseudorandom permutation π is generated (line 5),
(b) the bit z2N−2+i is set to be equal to 1− zπ(i) (lines 6-8).

As the result, there is the same number of zeros and ones in the first 2N−1 bits – these bits are denoted
as zL (i.e., the corresponding walk is at zero at step 2N−1).

3. The remaining 2N−1 bits (denoted as zR) in the block are obtained by calling DyckPaths(N, zL, rng, seed)
(Algorithm 4). As the result, the whole block zLzR, concatenated blocks of zL and zR, of 2N output
bits has the property that the corresponding walk spends the same number of steps above and below
0 (the description of DyckPaths is in Algorithm 4).

13

Algorithm 3 Flawedrng,N,τ (seed)

Input: N – an integer
rng – a pseudorandom generator
seed – a seed
τ ∈ (0, 1) – a parameter deciding which fraction of seeds returns flawed output

Output: (z1, . . . , z2N) – generated bits

0: random := rng.Init(seed)
1: if seed 6= 0 mod d1/τe then
2: return random.getBits()
3: else
4: (z1, . . . z2N−2)← random.getBits()
5: π ← RandPerm(2N−2, random.getBits())
6: for i = 1 to 2N−2 do
7: z2N−2+i := 1− zπ(i)
8: end for
9: seed := random.getBits()

10: (z2N−1+1, . . . , z2N)← DyckPaths(N, (z1, . . . , z2N−1), rng, seed)
11: return (z1, . . . , z2N)
12: end if

Example 4.3 (Flawed). Let N = 5 and let us assume that the seed used in Algorithm 3 has such a value
that lines 4-11 are executed. Let the result of line 4 be (z1, . . . , z8) = (1, 1, 0, 0, 0, 0, 0, 1) ← rng(seed) and
line 5 returns a permutation

π =

(
1 2 3 4 5 6 7 8
7 3 6 1 4 8 2 5

)
.

Then the bits computed in lines 6-8 are

(z9, z10, z11, z12, z13, z14, z15, z16) = (1−z7, 1−z3, 1−z6, 1−z1, 1−z4, 1−z8, 1−z2, 1−z5) = (1, 1, 1, 0, 1, 0, 0, 1).

Then bits zL = (z1, . . . , z8, z9, . . . , z16) are used as an input to function DyckPaths in line 10. The
example is continued as Example 4.4.

Let us assume that Algorithm 3 (Flawed) has generated bits zL = (z1, . . . , z2N−1) by executing lines 4−8.300

Then the corresponding random walk spent TU (zL) time under the x-axis and TO(zL) time over the x-
axis (TU (zL) + TO(zL) = 2N−1). The goal of the procedure DyckPaths(N, zL, rng, seed) is to generate
bits zR = (z2N−1+1, . . . , z2N) in such a way that TU (zR) = TO(zL) and TO(zR) = TU (zL). Then if one
concatenates sequences zL and zR, for the corresponding random walk it holds that TU (zLzR) = TO(zLzR).

The following is an informal explanation of the procedure DyckPaths(N, zL, rng, seed) (the formal de-
scription is provided by Algorithm 4).

1. The walk corresponding to zL is given by S0 := 0, Sk =
∑k
i=1(2zi − 1), k = 1, . . . , 2N−1.

2. The sequence Dk is defined as: Dk = 1(Sk > 0 ∨ Sk−1 > 0), for k = 1, . . . , 2N−1.
3. The set of points where the walk changes its sign is defined as R = {i|i = 1, ..., 2N−1 − 1, Di+1 6=
Di} ∪ {2N−1}.

4. Elements of R are sorted in increasing order (obtaining (r1, . . . , rw)).
5. The sequence {li} is defined as: l1 := 1, and the next “left-ends” as li = ri−1 + 1 (for i = 2, . . . , w).
6. The set Oi is defined as Oi := {li, l1 + 1, . . . , ri}, for i = 1, . . . , w.
7. Bits 2N−1 + 1, . . . , 2N (zR) are chosen so that the whole walk spends the same number of steps over

and under the x-axis. Dyck’s paths are generated1: DPi = sampleDyckPath(|Oi|/2, rng, seed,Dri), for
i = 1, . . . , w and seed = random.getBits(), so consecutive DPi are computed with different seeds.

1The definitions of li and ri imply that |Oi| is even, i = 1, . . . , w

14

8. A relative ordering of the paths (generated in the previous step) is obtained from a permutation
ρ← RandPerm(w, rng(seed)).

9. The resulting bits are obtained by concatenating permuted Dyck’s paths.

Example 4.4 (DyckPaths). Let input to DyckPaths be zL = (z1, . . . , z16) = (1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 1, 0, 0, 1).
Then (r1, r2, r3, r4) = (4, 10, 14, 16), (l1, l2, l3, l4) = (1, 5, 11, 15) and thus O1 = {1, 2, 3, 4}, O2 = {5, 6, 7, 8, 9, 10}, O3 =
{11, 12, 13, 14}, O4 = {15, 16}.

Let the output of sampleDyckPath (called in lines 7-9 of DyckPaths) be DP1 = (0, 1, 0, 1), DP2 =
(1, 1, 0, 1, 0, 0), DP3 = (0, 0, 1, 1), DP4 = (1, 0).

Let

ρ =

(
1 2 3 4
3 2 1 4

)
.

Then (z17, . . . , z32) = DPρ(1)DPρ(2)DPρ(3)DPρ(4) = (0, 0, 1, 1, 1, 1, 0, 1, 0, 0, 0, 1, 0, 1, 1, 0).

Algorithm 4 DyckPaths(N, (z1, . . . , z2N−1), rng, seed)

Input: N – an integer
(z1, . . . , z2N−1) – a sequence of input bits
rng – a pseudorandom generator
seed – a seed

Output: (z2N−1+1, . . . , z2N) – generated bits

0: random := rng.Init(seed)

1: S0 := 0, Sk :=
∑k
i=1(2zi − 1), k = 1, . . . , 2N−1

2: Dk := 1(Sk > 0 ∨ Sk−1 > 0), k = 1, . . . , 2N−1

3: R := {i : Di+1 6= Di} ∪ {2N−1}, i = 1, . . . , 2N−1 − 1
4: Let (r1, . . . , rw) be the sorted sequence of elements of R

5: li =

{
1 i = 1
ri−1 + 1 i = 2, . . . , w

6: Oi := {li, . . . , ri} for i = 1, . . . , w
7: for i = 1, . . . , w do
8: seed = random.getBits()
9: DPi = sampleDyckPath(|Oi|/2, rng, seed,Dri)

10: end for
11: ρ← RandPerm(w, random.getBits())
12: (z2N−1+1, . . . , z2N) = DPρ(i) . . . DPρ(w)

13: return (z2N−1+1, . . . , z2N)

Ten sample trajectories of the Flawed generator (all generated by the Dyck path-based part of Algorithm
3) are depicted in Figure 3 (the instance of Flawedrng,N,τ was initialized with the following parameters:
N = 18, rng – the Mersenne Twister).

15

Figure 3: 10 trajectories of length 218 produced by the Flawed generator for ten seeds of form seed = k · d1/τe}, k = 0, . . . , 9,
i.e., each path resulted from lines 4-10 of Algorithm 3

Discussion on the influence of the parameter τ of the Flawed PRNG on the statistic T asin. Recall that
in the Algorithm 3 the parameter τ corresponds to a fraction of simulations which are exactly half of
the time above and half of the time below the x-axis, i.e., we have Sasinn,j = 0.5 for bτmc simulations.
Note that the pj-value is then also equal to 0.5. The remaining d(1 − τ)me simulations come from the
rng. Let us assume that the rng returns truly random numbers. Concerning the statistic T asin, we have
E1 = Es+1 = m

2s and Ei = m
s , i = 2, . . . , s. Set r := d s2e + 1. For an “ideal“ rng we would have

O1 = Os+1 = m(1−τ)
2s , Ok = m(1−τ)

s , k ∈ {2, . . . , s} \ {r} and Or = m(1−τ)
s + τm. Thus,

T asin =

s+1∑
i=1

(Oi − Ei)2

Ei
= (s− 2)

(m(1−τ)
s − m

s)2

m
s

+ 2
(m(1−τ)

2s − m
2s)2

m
2s

+
(m(1−τ)

s + τm− m
s)2

m
s

= (s− 2)
m

s
τ2 +

m

s
τ2 +

m

s
(τ(s− 1))2 = mτ2(s− 1). (8)

5. Experimental results

In this section we briefly report our experimental results of testing some widely used PRNGs implemented
in standard libraries in various programming languages. We have applied the ASIN test to different gener-
ators including the implementations of the standard C/C++ linear congruential generators, the standard
generator rand from the GNU C Library, the Mersenne Twister, the Minstd and the Combined Multiple
Recursive Generator (CMRG) from Example 4 in [34].

As our last example we show the results of testing the Flawed generator. Flawed is identified by our
ASIN test as non-random, whereas it passed many other tests, including all closely related procedures
(swalk RandomWalk1 test from TestU01 with statistics: H, M, J, R, C, see Table 2).

Each considered PRNG was tested by generating m = 10000 sequences of length n ∈ {226, 230, 234},
using the partition Pasin40 , i.e., s = 40. For these parameters our second level test is reliable (see Section
3.2.2) – σ, the expected statistical deviation of the ratio of pj values found in a given bin is greater than√

s−1
s2m = 0.0015, what significantly exceeds the maximum propagated error ∆ = 2C

n , i.e., the inequality (6)

holds. Note that for s = 40 the inequality (7) yields:

• ∆ = 7.0703 · 10−8,m ≤ 4.8760 · 1012 for n = 234,350

• ∆ = 0.00000113,m ≤ 1.9047 · 1010 for n = 230, and

16

Table 1: Results of the ASIN test for several generators with parameters m = 10000, n = 234, s = 40.

dasintv pχ2

MS Visual C++ 0.2093 0.0000
GNU C 0.0255 0.2389
Minstd 48271 0.2089 0.0000
MT19937-64 0.0252 0.2523

Table 2: Results of the statistic Tasin with corresponding p-values and swalk RandomWalk1 statistics from TestU01 for n = 226.

ASIN TestU01

PRNG\Test T asin pχ2 Statistic H Statistic M Statistic J Statistic R Statistic C

MS Visual C++ 61.86 0.0148 0.2700 0.0900 0.6300 0.4200 0.8000

GNU C 39.93 0.4731 0.1600 0.9800 0.1100 0.1900 0.4900

Minstd 48271 65.88 0.0096 0.0090 0.1400 0.4900 0.0700 0.0044

MT19937-64 45.47 0.2548 0.0800 0.1000 0.4200 0.9700 0.3500

FlawedMT19937−64,26,1/66 94.08 0.0000 0.0000 0.2200 0.0000 0.3900 0.3800

• ∆ = 0.000018, m ≤ 7.44027 · 107 for n = 226.

In the experiments we used our custom implementations of tested PRNGs (except the Mersenne Twister).
We used 64-bit version of C++11 implementation of the Mersenne Twister, i.e., the class std::mt19937 64,
which is, however, known to have some problems [35]. The generators were initialized with random seeds
from http://www.random.org [36] and each sequence was generated using different seed.

The results are presented in Table 1. The values indicating that H0 should be rejected (w.r.t. significance
level α = 0.0001) are bolded. For pχ2 these are simply the values smaller or equal to α. Concerning the

values of dasintv , Lemma 3.1 implies that for ε ≤
√

20 · 41/10000 ≤ 0.2862 we have P
(
dasintv > ε/2

)
≤

3 exp
(
−400ε2

)
. It can be checked that 3 exp(−400ε2) ≤ 0.0001 for ε ≤ 0.1605, in other words

P
(
dasintv > 0.0802

)
≤ 0.0001,

i.e., we reject H0 if the value of dasintv is larger than 0.0802.

We have also calculated the swalk RandomWalk1 statistics from TestU01 for 10000 sequences of length
226 of each PRNG. The following parameters for swalk RandomWalk1 were used: N = 1, n = 10000, r =
0, s = 32, L0 = L1 = 226. The results are given in Table 2 (including the Flawed generator described
in Section 4). For each Statistic H, M, J, R and C, the corresponding p-values were obtained using the
chi-square statistics. We also include the values of the statistic T asin and corresponding p-values for each
generator. Note that for these parameters an “ideal” rng (see paragraph Discussion on the influence of
the parameter τ of the Flawed PRNG on the statistic T asin in Section 4.2 and equation (8)) would yield
T asin = mτ2(s−1) = 10000·39

662 = 89.5316. As can be seen in Table 2, only the result FlawedMT19937−64,26,1/66
is close to this value.

Our ASIN test would reject the MS Visual C++ PRNG and the Minstd with a multiplier 48271 (The
Minstd with a multiplier 16807 gave similar results - not reported here) as good PRNGs. Note that this is
indicated by both pχ2 and the value of dasintv . We also conducted the experiments for the procedure rand

from the standard library in the Borland C/C++ (not included here). The outcomes are very akin to those
for a standard PRNG in the MS Visual C++. Note that for n = 226 none of the p-values calculated by
the swalk RandomWalk1 from TestU01 suggests rejecting the hypothesis that the MS Visual C++ PRNG
is good. It is worth mentioning that the MS Visual C++ PRNG passes the NIST Test Suite [8], as pointed
out in [18]. Minstd, despite its weaknesses, became a part the C++11 standard library. It is implemented
by the classes std::minstd rand0 (with the multiplier 16807) and std::minstd rand (with the multiplier
48271). Concerning the GNU C and the MT19937-64 – as can be seen in both Table 1 and Table 2 – they

17

http://www.random.org

can be both considered as good. It is worth mentioning that the results for the CMRG generator (not
reported here) were similar to those for the MT19937-64.

The open source code of our implementation is publicly available, see [19] (it includes the Flawed PRNG
as well as the Law of Iterated Logarithm test from [18]).

5.1. Results of TestU01 for Flawed

We have run several general-purpose tests against the FlawedMT,30,1/66 generator. For SmallCrush all
15 out of 15 tests were passed. For the Mersenne Twister (MT) and the FlawedMT,30,1/66 we run BigCrush.
Tests for which generators failed are presented in the Table 3. In addition, we have run FIPS 140 2 tests
(issued by NIST, included in TestU01) on FlawedMT,26,1/66, Mersenne Twister and MS Visual C++. All
the tests for all three PRNGs were passed.

Table 3: Tests from BigCrush which failed. The first column tno is the test number, for the p-value, ε is a value such that
ε < 1.0e− 15.

Mersenne Twister

tno test name parameters p-value
74 RandomWalk1 R L = 50, r = 0 6.1e− 4
80 LinearComp r = 0 1− ε
81 LinearComp r = 29 1− ε

FlawedMT,30,1/66

tno test name parameters p-value
80 LinearComp r = 0 1− ε
81 LinearComp r = 29 1− ε
88 PeriodsInStrings r = 0 1.1e− 4
89 PeriodsInStrings r = 20 1.3e− 19

102 Run of bits r = 27 7.1e− 4

6. Notes on Takashima’s method for testing PRNGs and the arcsine test implementation from
TestU01

The idea of using the arcsine law for developing statistical tests for an empirical evaluation of PRNGs was
formerly proposed by Takashima in [37, 38, 39]. In this series of articles, test statistics based on the arcsine
law were applied for assessing the randomness of the output of maximum-length linearly recurring sequences
(m-sequences in short). The experimental results presented there clearly show that the bits produced by
this family of PRNGs are biased. Besides revealing the weakness of m-sequences, these outcomes have also
proved that Takashima’s tests are effective methods, worth applying in practice.

The approach introduced in [37, 38] can be briefly described as follows. After an initialization of a
PRNG, a sequence of 2nm bits is generated and divided into m subsequences of length n = 2n. Then, each
subsequence is used for constructing a random walk. For each of these m sample random walks, the value of
a test statistic based on the arcsine law is calculated. The investigated statistic, called in [37, 38] the sojourn
time – denote them by tjn, j = 0, . . . ,m− 1 – is the time spent by a random walk above the x-axis. From m
realizations of this statistic an empirical distribution of the sojourn time f2i = |{j : tjn = 2i}|, i = 0, . . . , n400

is then derived and compared with its theoretical distribution via a chi-square test. The whole procedure is
repeated λ ≥ 1 times, yielding a set of χ2 test statistics’ values {χ2

k}, k = 0, . . . , λ− 1. The final step of the
Takashima’s testing method is to count the number of χ2

k values falling between 90-th and 95-th percentile
and those bigger than 95-th percentile of a respective χ2 distribution. These two counts are then the basis
for deciding if H0 should be rejected. Note that for λ > 1 this is a third level test, which in general is not
reliable, as shown in [3].

The author in [38] considers also a slightly modified variant of the procedure, where the chi-square test
is combined with the Kolomogorov-Smirnov test. Another method, presented in [39], exploits the relations
between the sojourn time and the last visit time for one-dimensional random walks.

It is worth noting that in our simulations we used binary sequences of length at least n = 226. Thus,
a direct application of the Takashima’s methods from [37, 38] would require large amount of additional
memory to store the values of f2i, i = 0, . . . , n.

18

As the arcsine law based statistical tests were proven to be useful in detecting flaws of some PRNGs,
such procedures were implemented in the TestU01 library (see [7]). This tool, developed by L’Ecuyer and
Simard, provides a big variety of functions for empirical examining of PRNGs. One of the test modules,
swalk, contains a procedure swalk_RandomWalk1, which calculates a bunch of test statistics for a sample
of m random walks constructed from chosen bits of generated binary sequences. Among them, there is
the Statistic J, which implements the test based on the arcsine law. This procedure is similar to ours.
Namely, m calculated values of the test statistic are grouped according to some partition and their empirical
distribution is compared with the theoretical one by means of the chi-square test. The main difference is
that in our testing method the partition size s is a parameter chosen by the user, whereas the partition
used by swalk_RandomWalk1 is calculated automatically, depending on the tested sequence. Moreover, we
provide bounds on approximation errors in the computations of p-values (a Berry-Esseen type inequality),
assuring the reliability of the whole testing procedure.

7. Conclusions

In this paper we analyzed a method for testing PRNGs based on the arcsine law for random walks. Our
procedure is a second level statistical test. We also provided a detailed error analysis of the proposed method.
The approximation errors in the calculation of p-values are bounded by a Berry-Esseen type inequality, what
allows to control the overall error, assuring the reliability of the test. We evaluate the quality of PRNGs
via the chi-square statistics as well as by calculating a statistical distance (the total variation distance)
between the empirical distribution of the considered characteristic for generated pseudorandom output and
its theoretical distribution for truly random binary sequences.

The experimental results presented in this paper show that our testing procedure can be used for detecting
weaknesses in many common PRNGs’ implementations. Likewise the Law of Iterated Logarithm test from
[18], the ASIN test has also revealed some flaws and regularities in generated sequences not necessarily being
identified by other current state of the art tools like the NIST SP800-22 Testing Suite or TestU01. Thus,
these kind of testing techniques seem to be very promising, as they allow also for recognition of different
kinds of deviations from those detected by existing tools. Nevertheless, like other statistical tests, the ASIN
test is not universal and encompasses only one from an immense range of characteristics of random bit strings
and does not capture all known flaws. Therefore, the testing procedures relying on properties of random
walks like the ASIN test should be used along with other tests for more careful assessment of pseudorandom
generators. This issue is well depicted by the provided example of obviously non-random generator Flawed
for which the LIL test has failed to detect its weaknesses, but the ASIN test has turned out to be very
sensitive for that kind of deviations. Hence, an important line of further research is to develop another novel
tests utilizing various properties of random walks. Such tests, when combined together, should be capable
of detecting more hidden dependencies between the consecutive bits in the sequences generated by PRNGs.
This could lead to designing more robust test suites for evaluating the quality of random numbers generated
by the new implementations of PRNGs as well as those being already in use, especially for cryptographic
purposes.

Acknowledgements450

We would like to thank the anonymous reviewers whose suggestions and insightful comments helped
significantly improve and clarify this manuscript. In particular we thank one of the reviewers for pointing
out the article [4] on second level tests.

References

[1] G. Marsaglia, The Structure of Linear Congruential Sequences, in: S. Zaremba (Ed.), Applications of Number Theory to
Numerical Analysis, Academic Press, 1972, pp. 249–285.

[2] D. E. Knuth, The Art of Computer Programming, Volume 2: Seminumerical Algorithms, 3rd Edition, Addison-Wesley
Pub. Co, 1997.

19

[3] P. L’Ecuyer, Testing Random Number Generators, in: Proceedings of the 24th Conference on Winter Simulation, WSC
’92, ACM, New York, NY, USA, 1992, pp. 305–313.

[4] F. Pareschi, R. Rovatti, G. Setti, Second-level NIST Randomness Tests for Improving Test Reliability, in: 2007 IEEE
International Symposium on Circuits and Systems, 2007, pp. 1437–1440. doi:10.1109/ISCAS.2007.378572.

[5] R. G. Brown, D. Eddelbuettel, D. Bauer, Dieharder: A Random Number Test Suite, http://www.phy.duke.edu/~rgb/

General/dieharder.php (Accessed: 2019-07-03).
[6] P. L’Ecuyer, R. Simard, TestU01: A C Library for Empirical Testing of Random Number Generators, ACM Trans. Math.

Softw. 33 (4) (2007) 22:1–22:40. doi:10.1145/1268776.1268777.
[7] P. L’Ecuyer, R. Simard, TestU01: A Software Library in ANSI C for Empirical Testing of Random Number Generators.

Software user’s guide, version of May 16, 2013, http://simul.iro.umontreal.ca/testu01/tu01.html/ (2013).
[8] NIST.gov - Computer Security Division - Computer Security Resource Center, NIST Test Suite, https://csrc.nist.gov/

projects/random-bit-generation/ (Accessed: 2019-07-03).
[9] A. Rukhin, J. Soto, J. Nechvatal, M. Smid, E. Barker, S. Leigh, M. Levenson, M. Vangel, D. Banks, A. Heckert, J. Dray,

S. Vo, A Statistical Test Suite for Random and Pseudorandom Number Generators for Cryptographic Applications, Tech.
Rep. Rev. 1a, NIST (2010).

[10] F. Pareschi, R. Rovatti, G. Setti, Second-level testing revisited and applications to NIST SP800-22, in: 2007 18th European
Conference on Circuit Theory and Design, IEEE, 2007, pp. 627–630.

[11] P. L’Ecuyer, R. Simard, S. Wegenkittl, Sparse Serial Tests of Uniformity for Random Number Generators, SIAM J. Sci.
Comput. 24 (2) (2002) 652–668.

[12] M. Matsumoto, T. Nishimura, A Nonempirical Test on the Weight of Pseudorandom Number Generators, in: K.-T. Fang,
H. Niederreiter, F. J. Hickernell (Eds.), Monte Carlo and Quasi-Monte Carlo Methods 2000, Springer Berlin Heidelberg,
Berlin, Heidelberg, 2002, pp. 381–395.

[13] P. C. Leopardi, Testing the Tests: Using Random Number Generators to Improve Empirical Tests, in: P. L’ Ecuyer, A. B.
Owen (Eds.), Monte Carlo and Quasi-Monte Carlo Methods 2008, Springer Berlin Heidelberg, Berlin, Heidelberg, 2009,
pp. 501–512.

[14] C. Kim, G. H. Choe, D. H. Kim, Tests of randomness by the gambler’s ruin algorithm, Applied Mathematics and
Computation 199 (1) (2008) 195–210.

[15] H. Ekkehard, A. Grønvik, Re-seeding invalidates tests of random number generators, Applied Mathematics and Compu-
tation 217 (1) (2010) 339–346.

[16] P. Lorek, M. Slowik, F. Zagórski, Statistical Testing of PRNG: Generalized Gambler’s Ruin Problem, in: J. Blömer, I. S.
Kotsireas, T. Kutsia, D. E. Simos (Eds.), Mathematical Aspects of Computer and Information Sciences - 7th International
Conference, MACIS 2017, Vienna, Austria, November 15-17, 2017, Proceedings, Vol. 10693 of Lecture Notes in Computer
Science, Springer, 2017, pp. 425–437. doi:10.1007/978-3-319-72453-9.

[17] W. Feller, An Introduction to Probability Theory and Its Applications, Volume 1, 3rd Edition, John Wiley & Sons, 1968.
[18] Y. Wang, T. Nicol, On statistical distance based testing of pseudo random sequences and experiments with PHP and

Debian OpenSSL, Computers & Security 53 (2015) 44–64.
[19] P. Lorek, G. Loś, F. Zagórski, K. Gotfryd, PRNG Arcsine test: Empirical tests for PRNGs based on the arcsine law.

GitHub repository, https://github.com/lorek/PRNG_Arcsine_test (2019).
[20] S. Asmussen, P. W. Glynn, Stochastic Simulation: Algorithms and Analysis, Vol. 57 of Stochastic Modelling and Applied

Probability, Springer-Verlag New York, 2007.
[21] D. P. Kroese, T. Taimre, Z. I. Botev, Handbook of Monte Carlo Methods, Wiley Series in Probability and Statistics, John

Wiley & Sons, Hoboken, NJ, USA, 2011.500

[22] P. L’Ecuyer, History of uniform random number generation, in: 2017 Winter Simulation Conference (WSC), IEEE, 2017,
pp. 202–230.

[23] H. Niederreiter, Quasi-Monte Carlo methods and pseudo-random numbers, Bulletin of the American Mathematical Society
84 (6) (1978) 957–1041.

[24] M. Denker, W. A. Woyczynski, Introductory Statistics and Random Phenomena. Uncertainty, Complexity, and Chaotic
Behavior in Engineering and Science, Birkhäuser Boston, 1998.

[25] A. Gut, Probability: A Graduate Course, Springer Texts in Statistics, Springer-Verlag New York, 2005.
[26] A. Khintchine, Über einen Satz der Wahrscheinlichkeitsrechnung, Fundamenta Mathematicae 6 (1) (1924) 9–20.
[27] L. Devroye, The Equivalence of Weak, Strong and Complete Convergence in L1 for Kernel Density Estimates, The Annals

of Statistics 11 (3) (1983) 896–904.
[28] D. Berend, A. Kontorovich, On the Convergence of the Empirical Distribution, https://arxiv.org/abs/1205.6711v2

(2012).
[29] H. Haramoto, Automation of Statistical Tests on Randomness to Obtain Clearer Conclusion, in: P. L’ Ecuyer, A. B.

Owen (Eds.), Monte Carlo and Quasi-Monte Carlo Methods 2008, Springer Berlin Heidelberg, Berlin, Heidelberg, 2009,
pp. 411–421.

[30] W. Feller, An Introduction to Probability Theory and Its Applications, Volume 2, 2nd Edition, John Wiley & Sons, 1971.
[31] C. G. Esseen, On the Liapunoff limit of error in the theory of probability, Ark. Mat. Astr. Fysik 28A (2) (1942) 1–19.
[32] I. S. Tyurin, Refinement of the upper bounds of the constants in Lyapunov’s theorem, Russian Mathematical Surveys

65 (3) (2010) 586–588.
[33] A. Dvoretzky, T. Motzkin, A problem of arrangements, Duke Mathematical Journal 14 (2) (1947) 305–313.
[34] P. L’Ecuyer, Combined Multiple Recursive Random Number Generators, Oper. Res. 44 (5) (1996) 816–822.
[35] S. Harase, Conversion of Mersenne Twister to double-precision floating-point numbers, https://arxiv.org/abs/1708.

06018 (2017).

20

http://dx.doi.org/10.1109/ISCAS.2007.378572
http://www.phy.duke.edu/~rgb/General/dieharder.php
http://www.phy.duke.edu/~rgb/General/dieharder.php
http://www.phy.duke.edu/~rgb/General/dieharder.php
http://dx.doi.org/10.1145/1268776.1268777
http://simul.iro.umontreal.ca/testu01/tu01.html/
https://csrc.nist.gov/projects/random-bit-generation/
https://csrc.nist.gov/projects/random-bit-generation/
https://csrc.nist.gov/projects/random-bit-generation/
http://dx.doi.org/10.1007/978-3-319-72453-9
https://github.com/lorek/PRNG_Arcsine_test
https://arxiv.org/abs/1205.6711v2
https://arxiv.org/abs/1708.06018
https://arxiv.org/abs/1708.06018
https://arxiv.org/abs/1708.06018

[36] M. Haahr, RANDOM.ORG: True Random Number Service, https://www.random.org (Accessed: 2019-07-03).
[37] K. Takashima, Sojourn time test for maximum-length linearly recurring sequences with characteristic primitive trinomials,

Journal of the Japanese Society of Computational Statistics 7 (1994) 77–87.
[38] K. Takashima, Sojourn time test of m-Sequences with characteristic pentanomials, Journal of the Japanese Society of

Computational Statistics 8 (1995) 37–46.
[39] K. Takashima, Last visit time tests for pseudorandom numbers, Journal of the Japanese Society of Computational Statistics

9 (1996) 1–14.

21

https://www.random.org

	Introduction
	Pseudorandom generators and stochastic laws for random walks
	Pseudorandom generators
	Stochastic laws for random walks

	Testing PRNGs based on the arcsine law
	The arcsine law based testing
	Error analysis
	Bounding errors in approximating p-values in basic tests
	Reliability of the results from the second level test

	The Flawed PRNG
	Dyck Paths
	The Flawed generator

	Experimental results
	Results of TestU01 for Flawed

	Notes on Takashima's method for testing PRNGs and the arcsine test implementation from TestU01
	Conclusions

