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1. Niech T będzie zmienną losową przyjmującą wartości całkowite nieujemne. Pokaż,

że ET =
∞∑
k=0

P (T > k).

2. Udowodnij następujący

Lemat 1 (Nierówność Markowa). Niech X będzie nieujemną zmienną losową.
Wtedy ∀r > 0

P (X ≥ r) ≤ EX

r

3. Udowodnij następujący

Lemat 2 (Nierówność Czebyszewa). Niech X będzie zmienną losową o średniej
µ <∞ i wariancji σ2 <∞. Wtedy ∀r > 0

P (|X − µ| ≥ r) ≤ σ2

r2

4. Pokaż, że dla każdego x ∈ R mamy 1 + x ≤ ex

5. Udowodnij następujący

Lemat 3 (Nierówność Chernoffa). Niech Xi będą niezależnymi zmiennymi losowymi

o rozkładzie P (Xi = 1) = pi = 1− P (Xi = 0). Niech S =
n∑
i=1

Xi oraz µ = ES =

n∑
i=1

EXi =
n∑
i=1

pi. Wtedy dla każdego ε > 0 zachodzi

P (S > (1 + ε)µ) ≤
(

eε

(1 + ε)1+ε

)µ
oraz

P (S < (1− ε)µ) ≤
(

e−ε

(1− ε)1−ε

)µ
6. Pokaż, iż poprzednie zadanie implikuje

P (S < (1− ε)µ) ≤ e
−µ2ε2

2

2016_Sym_Alg_MC_lista1_verB 1



Łańcuchy Markowa

7. Dla Przykładu 1. z wykładu, tj. dla prostego symetryczneg błądzenia po 4
stanach: E = {1, 2, 3, 4} z macierzą przejść

P =


0 1/2 0 1/2

1/2 0 1/2 0

0 1/2 0 1/2

1/2 0 1/2 0


z rozkładem początkowym µ = (1, 0, 0, 0)

a) Oblicz µ3

b) Oblicz µn (“zgadując” rozwiązanie i udowadniając indukcyjnie, że jest ono
poprawne).

8. Model pogody Gothenburga. Rozważmy uproszczony model pogody: rozważamy
tylko dwa stany: “deszcz” i “słońce”. Po dniu deszczowym następuje dzień deszc-
zowy z prawd. 0.75, natomiast po dniu słonecznym następuje dzień słoneczny z
prawd. również 0.75. Oznaczmy przestrzeń stanów E = {e1, e2}, gdzie e1 oznacza
dzień deszczowy, a e2 dzień słoneczny. Wtedy macierz przejść wygląda następu-
jąco:

P =

[
3/4 1/4

1/4 3/4

]
Załóżmy, że µ = (0, 1).

a) Oblicz µ2.

b) Oblicz µn stosując diagonalizację macierzy P.
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9. W modelu pogody “L.A.”, tj. modelu podobnym do poprzedniego zadania, ale z
macierzą przejść

P =

[
1/2 1/2

1/10 9/10

]
(przykład rozważany na wykładzie). Podaj wzór na µk dla

a) µ = (1, 0), b) µ = (1/2, 1/2), c) µ = (1/6, 5/6)

Czy w którymś z przypadków można zaobserwować coś ciekawego? Co to może
oznaczać?

Do czego zbiega µk, w każdym z przypadków, gdy k →∞?

10. Niech (X0, X1, . . .) będzie jednorodnym łańcuchem Markowa z macierzą przejść P
i przestrzenią stanów E = {e1, . . . , eM}, tzn. P (Xn+1 = ej|Xn = ei) = P(ei, ej).
Pokaż, że

P (Xn+m = ej|Xn = ei) = Pm(ei, ej)

11. Dla zadań 7, 8, 9 b) wskaż poprawne funkcje inicjalizujące oraz updatujące.

12. Dla zadania 8 wskaż min. dwie różne funkcje updatujące (funkcje updatujące nie
są wyznaczone jednoznacznie).

13. Dla tasowania kart Top-To-Random dla n = 3 kart narysuj graf przejść oraz podaj
macierz przejść P. Wylicz również P2.

14. Dla dwóch miar probabilistycznych µ, ν na E = {e1, . . . , eM} definiujemy normę

całkowitego wahania: dTV (µ, ν) =
1

2

∑
e∈E

|µ(e)− ν(e)|.

Oblicz normę całkowitego wahania między rozkładami:

µ ∼ Bin(4, 1/2), ν ∼ Bin(4, 1/4)

15. Na przestrzeni E = {1, 2} zdefiniujmy: µk =

[
1

6
+

1

3

(
2

5

)k
,
5

6
− 1

3

(
2

5

)k]
, oraz

ν =

[
1

6
,
5

6

]
.

a) Oblicz dTV (µk, ν).

b) Dla jakiego (całkowitego) k norma całkowitego wahania między µk i ν jest
mniejsza od 0.01?

16. Rozważmy n kart. Niech µ będzie rozkładem jednostajnym na wszystkich permu-
tacjach n kart. Natomiast niech ν będzie rozkładem jednostajnym na wszystkich
takich permutacjach, w których pierwsza karta jest ustalona.

Oblicz dTV (µ, ν).
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