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Lista nr 4
Paweł Lorek

(Stała Poincarego). Niech X o macierzy przejść P będzie odwracalnym łańcuchem
Markowa na grafie G = (V,K), gdzie V = {e1, . . . , eM} (wierzchołki) oraz K =
{(ei, ej) : P(ei, ej) > 0} (krawędzie). Dla skierowanej krawędzi k̃ = (ei, ej) (o wierz-
chołkach ei - początkowy, i ej -końcowy) zdefiniujmy Λ(k̃) = π(ei)P(ei, ej).
Dla ustalonych wierzchołków ei oraz ej ustalamy deterministyczną, jednoznaczną scieżkę
od ei do ej oznaczoną Γ(ei, ej). Dla ustalonej ścieżki jej długość definiujemy jako:
|Γ(ei, ej)| =

∑
k̃∈Γ(ei,ej)

1. Stałą Poincarego definijemy jako:

γP := max
k̃

 1

Λ(k̃)

∑
(ei,ej):k̃∈Γ(ei,ej)

|Γ(ei, ej)|π(ei)π(ej)


(dla ustalonego k̃ suma jest po wszystkich wierzchołkach (ei, ej) takich, że krawędź k̃
należy do ścieżki Γ(ei, ej))

Niech λ2 oznacza drugą (co do wartości bezwzględnej) wartość własną macierzy P
odwracalnego łańcucha Markowa X. Przypomnijmy dwa twierdzenia z wykładu:

Twierdzenie A.
|λ2| ≤ 1− 1

γP

Twierdzenie B.

dTV (δeP
n, π) ≤ 1

2

1√
π(e)
|λ2|n

(δePn to rozkład łańcucha w n−tym kroku, takiego, który zaczął ze stanu e, tzn.
P (X0 = e) = 1)

Dla odwracalnego, ergodycznego łańcucha X ∼ P definiujemy stałą Cheegera

γC := min
A⊂E:π(A)≤1/2

∑
ei∈A

∑
ej∈AC

π(ei)P(ei, ej)

π(A)

(AC oznacza dopełnienie zbioru A)

Twierdzenie C.

|λ2| ≤ 1− 1

2
γ2
C
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Zadania:

1. Udowdonij, że ∀x ∈ R 1− x ≤ e−x.

2. Niech n(ε) oznacza taką liczbę kroków, po której norma całkowitego wahania jest
mniejsza od ε, tzn. dTV (δeP

n(ε), π) ≤ ε.

Pokaż, że dTV (δeP
nγP (ε), π) ≤ ε dla nγP (ε) = γP log

(
1

2ε
√
π(e)

)
(gdzie γP jest

stałą Poincarego)

3. Pokaż, że dTV (δeP
nγC (ε), π) ≤ ε dla nγC (ε) =

2

γ2
C

log

(
1

2ε
√
π(e)

)
(gdzie γC jest

stałą Cheegera)

4. NiechP będzie macierzą przejścia ergodycznego łańcuchaX z rozkładem stacjonarnym
π. Macierz łańcucha odwróconego w czasie X̃ definiuje się następująco P̃(e2, e1) =
π(e1)

π(e2)
P(e1, e2) (łańcuch jest odwracalny jeśli P = P̃). Pokaż, że rozkładem

stacjonarnym łańcucha X̃ jest również π.

5. NiechP będzie macierzą przejścia ergodycznego łańcuchaX z rozkładem stacjonarnym
π. Zdefiniujmy: M := P · P̃. Pokaż, że macierz M jest odwracalna wzglę-
dem rozkładu π (tzn. π(e1)M(e1, e2) = π(e2)M(e2, e1)). Czy M jest macierzą
stochastyczną?

6. Rozważmy następujące symetryczne błądzenie po okręgu: E = {0, 1, . . . , n− 1}.

P =



1− 2p p 0 0 . . . 0 0 p

p 1− 2p p 0 . . . 0 0 0

0 p 1− 2p p 0 . . . 0 0

. . .

p 0 0 0 0 . . . p 1− 2p


,

gdzie p < 1/2.

Policz (lub oszacuj) stałą γP .

7. Policz (lub oszacuj) stałą γC dla błądzenia z zadania 6.

8. Dla jakiego p γC jest “lepsza” od γP dla wyników otrzymanych w zadaniach 6 i 7?
Poprzez “lepsza” rozumiemy, iż daje lepsze oszacowanie w Twierdzeniu B.
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9. Rozważmy następujące błądzenie po okręgu: E = {0, 1, . . . , n− 1}.

P =



1− p p 0 0 . . . 0 0 0

0 1− p p 0 . . . 0 0 0

0 p 1− p p 0 . . . 0 0

. . .

p 0 0 0 0 . . . p 1− p


,

Pokaż, iż licząc macierz M = PP̃ zadanie liczenia/szacowania γC i γP sprowadza
się do zadań 6 i 7. Podaj stosowne oszacowania.

10. Niech X będzie prostym błądzeniem po grafie G = (V,K), gdzie V = {v1, . . . , vM}
to zbiór wierzchołków, a K to zbiór krawędzi. Prawdopodobieństwa przejść:
P(vi, vj) = 1/d(vi) jeśli (vi, vj) ∈ K (d(vi) to stopień wierzchołka vi). Niech
Γ(v, v′) oznacza jakiś wybór ścieżki z v do v′, który nie ma powtarzających się
krawędzi. Zdefiniujmy:

d∗ = max
v
d(v), s∗ = max

v,v′
|Γ(v, v′)|, η∗ = max

k̃∈K
#{(v, v′) ∈ V 2 : k̃ ∈ Γ(v, v′)}

Pokaż, że γP ≤
(d∗)2s∗η∗

|K|
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